説明

ナノファイバ製造方法、および製造装置

【課題】製造コストを低減するとともに、生産性を向上させることができるナノファイバ製造方法、および製造装置を提供する。
【解決手段】高分子材料を含む液状の原料Fを帯電させて空中に放出し、静電延伸現象により原料Fから繊維状物質F1を生成することによりナノファイバを製造する。ここで、製造装置1は、原料Fを空中に放出する、少なくとも一部が導体からなる容器2と、容器2と所定距離を置いて配設される電極3とを備えている。容器2と電極3との間に電界を発生させるように、容器2は接地され、電極3は高電圧電源4の一方の端子と接続される。静電延伸現象により原料Fから生成された繊維状物質F1は、少なくとも一部が網状の布地からなる袋18により収集される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノファイバ製造方法、および製造装置に関し、さらに詳しくはエレクトロスピニング法によりナノファイバを製造する技術に関する。
【背景技術】
【0002】
近年、直径がサブミクロンスケールの繊維状物質であるナノファイバを容易に製造できることから、エレクトロスピニング法(電荷誘導紡糸法)が注目を集めている。エレクトロスピニング法は、溶媒中に高分子材料を分散または溶解させた原料液を空中に放出するとともに、放出の際に原料液を高電圧で帯電させ、原料液を空中で電気的に延伸させてナノファイバを得る方法である(例えば特許文献1参照)。
【0003】
より詳細には、電界により帯電されて空気中に放出された原料液は空中を飛翔する間に溶媒が蒸発し、体積が減少していく。一方、原料液に付与された電荷は溶媒の蒸発にかかわらず維持されるために、原料液の電荷密度は溶媒の蒸発とともに増大していく。そして、原料液内部の反発方向のクーロン力が原料液の表面張力より大きくなったときに原料液が爆発的に線状に延伸される現象(以下、静電延伸現象と述べる)が生じる。この静電延伸現象が空中において連続的に発生し、原料液が幾何級数的に線状に細分化されていくことで直径がサブミクロンスケールの微細な繊維が形成される。
【0004】
ここで、特許文献2および3には、ノズルから噴射された高分子材料から生成されるナノファイバを、長手方向に送られる長尺帯状のシートからなる収集体の上に堆積させて収集する方法が示されている。
【0005】
【特許文献1】特開2005−330624号公報
【特許文献2】特開2006−373295号公報
【特許文献3】特開2006−283240号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
特許文献2および3に示されているように、従来、長手方向に送られる長尺帯状の収集体の上に堆積させて、ナノファイバを収集する方法が一般に行われている。ところが、この方法には以下に示すような不都合が存在する。
まず、ノズルなどの原料放出手段から放出された高分子材料の一部がわきにそれてしまい、全ての高分子材料を収集することができない場合がある。これにより材料ロスが発生する。また、他部材に付着した高分子材料を取り除く作業を定期的に実行する必要が生じ、その間は、製造装置を停止させねばならず、生産性が低下する。また、長手方向に送られる収集体は、表面に堆積した高分子材料とともに巻き取られるために、高分子材料が押しつけられて圧縮されてしまう。
【0007】
更には、収集体の表面に堆積した高分子材料を収集体から取り外すときに、収集体の材料が混入してしまう。
また、エレクトロスピニング法は、原料放出手段と、収集体の後方または原料放出手段の周囲に配された電極との間に高電位差を生じさせることにより行われる。このとき、原料放出手段は原料供給管等を介してポンプ等の他部材と接続されているために、原料放出手段から外部への漏電を防止することが困難である。このため、原料放出手段に高電圧を印加することは行われず、電極の側に高電圧を印加するのが一般的である。
【0008】
ところが、繊維状となった高分子材料が収集体に付着せずに例えば電極に付着してしまうと、その高分子材料を介して高電圧が印加された電極と原料放出手段とが導通されてしまい、原料放出手段を介して漏電が引き起こされる。これを避けるためには、原料放出手段を他部材からより厳重に絶縁する必要があり、コストが増大する。特に、高分子材料もしくは高分子材料に混合する溶媒が導電性を有する場合には、顕著に漏電現象が発生する。
さらには、特許文献2および3記載の方法では、帯状の収集体や、それを長手方向に送るための機構(ローラ、その回転装置等)が必要となり、装置が大がかりなものとなって、コストが増大する。
【0009】
本発明は、上記問題点に鑑みてなされたものであり、製造コストを低減するとともに、生産性を向上させることができるナノファイバ製造方法、および製造装置を提供することを目的としている。
【課題を解決するための手段】
【0010】
上記目的を達成するための本発明は、高分子材料を含む液状の原料を帯電させて空中に放出し、静電延伸現象により前記原料から繊維状物質を生成するナノファイバ製造方法であって、
前記生成された繊維状物質を、少なくとも一部が通気性を有する布地からなる袋により収集するナノファイバ製造方法である。
【0011】
また、本発明は、高分子材料を含む液状の原料を帯電させて空中に放出し、静電延伸現象により前記原料から繊維状物質を生成するナノファイバ製造装置であって、
前記原料を空中に放出する、少なくとも一部が導体からなる原料放出手段と、
前記原料放出手段と所定距離を置いて配設される電極と、
前記原料放出手段と前記電極との間に電界を発生させるように、前記容器と前記電極との間に電位差を与える電位差付与手段と、
静電延伸現象により前記原料から生成された繊維状物質を収集する収集手段と、を備え、
前記収集手段が、少なくとも一部が通気性を有する布地からなる袋を含むナノファイバ製造装置を提供する。
【0012】
上記本発明の製造装置において、好ましい実施の形態においては、前記原料が前記原料放出手段から前記電極に向かって放出されるとともに、
前記放出された前記原料、ないしはそれから生成された前記繊維状物質を、前記原料の放出方向とは異なる方向に偏向する偏向手段を備える。
【0013】
上記本発明の製造装置において、好ましい他の実施の形態においては、前記袋の開口端部が、前記原料放出手段と前記電極との間に介在される。
【0014】
また、上記本発明の製造装置において、好ましい他の実施の形態においては、リボルバ式の袋交換手段またはスライド式の袋交換手段が備えられる。
【0015】
また、上記本発明の製造装置において、好ましい他の実施の形態においては、前記原料放出手段が、
周壁に前記原料を放出するための細孔が形成され、内部に前記原料が導入される、略円筒形状の回転容器、または
少なくとも1つの平坦な面を有し、その面の壁部に前記原料を放出するための細孔が形成され、内部に前記原料が所定圧力で導入される容器
から構成される。
【0016】
または、前記原料放出手段は、2流体ノズルから構成され、当該ノズルの少なくとも1つの孔から放出される前記原料を、当該ノズルの他の少なくとも1つの孔から噴射される気体により霧化して放出する。
【0017】
また、上記本発明の製造装置において、好ましい他の実施の形態においては、前記原料を構成する高分子材料および液状成分の少なくとも一方が、導電性を有する。
【0018】
また、前記偏向手段が、送風および吸引の少なくとも一方の動作により気流を発生する気流発生手段から構成されるのもよい。このとき、前記気流発生手段による気流の流量を測定する流量測定手段を備え、その流量測定手段の測定結果に基づいて前記袋交換手段を制御する制御手段を備えるのがより好ましい。
【発明の効果】
【0019】
本発明によれば、原料放出手段により放出された原料から静電延伸現象により生成された繊維状物質が、少なくとも一部が通気性を有する布地からなる袋により、収集されるので、繊維状物質を取りこぼすことなく収集することが可能となる。これにより、原料等が他部材に付着するのを防止することができる。したがって、メンテナンスの頻度を低減させて、生産性を向上させることができる。
【0020】
特に、原料放出手段に電荷を誘導するための電極に向かって原料が放出される場合には、原料ないしはそれから生成される繊維状物質が電極に付着する量も多くなる。したがって、本発明の好ましい形態におけるように、袋の開口端部を原料放出手段と電極との間に介在させることで、原料等が電極に付着してしまうのを防止することができる。その結果、電極に付着した原料を取り除く等のためにメンテナンスを実行する必要がなくなり、生産性を向上させることができる。
また、原料、ないしは繊維状物質を介して漏電が生じるのを防止することができるとともに、機構を簡素化することができるので、製造コストを低減させることができる。特に、高分子材料もしくは高分子材料に混合する溶媒が導電性を有する場合には、顕著に漏電現象が発生する。
【発明を実施するための最良の形態】
【0021】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
《実施の形態1》
図1は、本発明の実施の形態1に係るナノファイバ製造装置の概略構成を示す、一部を断面にした側面図である。
【0022】
製造装置1は、金属などの導体からなる略円筒形状の容器2を備えている。容器2は、高分子材料を所定の液体に分散または溶解してなる液状の原料Fを一時的に保持するものである。容器2の周壁には原料Fを外部に放出するための多数の細孔2a(図7参照)が形成されている。原料Fは、原料供給管27を介して容器2の内部に供給される。
【0023】
また、容器2は、その円筒形状の軸心に一致する回転軸2bに接続された電動機5により回転駆動される回転容器である。容器2の回転による遠心力により原料Fが細孔2aから放出される。
【0024】
また、容器2の周囲には、長板の長手方向の両端部を接合して輪にしたような形状の環状電極3が、内周面を容器2の外周面と一定の距離をおいて対向するように同軸に配設されている。環状電極3は、高電圧電源4の一方の端子と接続されている。また、高電圧電源4の他方の端子は接地されている。一方、容器2は接地されており、これにより容器2の外周面と、環状電極3の内周面とには、それぞれ逆極性の電荷が誘導され、両者の間には電界が発生する。
【0025】
細孔2aから放出される原料Fは、細孔2aの開口部において電荷が付与される。電荷が付与された原料Fは、空中を飛翔する間に溶媒または分散媒が蒸発し、内部の反発方向のクーロン力が増大し、連続的に静電延伸現象が引き起こされて繊維状に細分化される。このようにして、原料Fから静電延伸現象により繊維状物質F1が形成される。
ここで、細孔2aは、容器2の周壁に規則的に形成されるのが好ましい。例えば、容器2の軸方向に等間隔で並び、周方向に等ピッチで形成されるのが好ましい。
【0026】
なお、図1においては、原料Fと繊維状物質F1とを便宜的に区別している。しかしながら、実際のナノファイバの製造においては原料Fと繊維状物質F1との区別は曖昧であり、その存在領域の明確な線引きは困難である。したがって、以下の説明では、特に区別の必要のある場合にのみ、原料F、繊維状物質F1と記載し、それ以外の場合は原料Fおよび繊維状物質F1を総称して原料F等と記載する。
【0027】
また、容器2の回転軸2bを、電動機5を超えて更に延長した位置には前側送風機6が配設されている。前側送風機6と、後で説明する吸引用の後側送風機20とにより発生される気流8は、環状のフード10により容器2と環状電極3との間に導かれる。
また、フード10内の前側送風機6の直下流の位置には、環状のヒータ12が配設されている。これにより、原料F等からの分散媒または溶媒の蒸発を促進して、原料Fから繊維状物質F1を速やかに生成することができる。また、静電延伸減少が早期に引き起こされることから、生成される繊維状物質F1の繊維径はより細くなり、微細な繊維状物質F1を安定して生成することができる。
【0028】
前側送風機6等が発生する気流8により、原料F等の進む方向は、放出方向(容器2の径方向)と略垂直な方向(容器2の軸方向)に偏向される。原料F等が偏向される方向(図示例では右方向)には、繊維状物質F1を収集するコレクタ14が配されている。
【0029】
コレクタ14は、内径が環状電極3の内径とほぼ同じである円筒状の袋収納部16と、繊維状物質F1を収集するための袋18と、前側送風機6と協働して気流8を発生させる、吸引用の後側送風機20とを含んでいる。
図2および図3に示すように、袋収納部16は、一端開口部(網配置側開口部)16bに絶縁体からなる網22が配置されて、袋18を支えている。他端開口部(開放側開口部)16aは開放されている。袋18は絶縁体からなる網状の通気性を有する布地からなり、袋収納部16の内部にフィットする形状とされている。袋18の開口部18a近傍の端部(開口端部)18bは、袋収納部16の開口部16aから所定幅だけ突出している。その突出部分である開口端部18bは、環状電極3の内側に挿入される。これにより環状電極3は、袋18により容器2から隔てられている。
【0030】
後側送風機20は、径が軸方向に直線的に変化するメガフォン状の環状気流誘導部24の小径側開口部24aに接続されている。また、環状気流誘導部24は、大径側開口部24bが、袋収納部16の網配置側開口部16bと正対している。
また、環状気流誘導部24の内側には、気流8の流量を測定する流量センサ26が配置される。流量センサ26の出力信号は、制御部28に入力される。制御部28は、流量センサ26により測定される気流8の流量が所定値以下となったときに、袋18に一定量以上の繊維状物質Fが収集されたものとして、電動機5による容器2の回転、並びに原料供給管27を介した容器2内部への原料Fの供給を停止させる。
【0031】
次に、以上の構成のナノファイバ製造装置の動作を説明する。
原料供給管27を介して容器2の内部に原料Fが供給される。容器2は、電動機5の回転出力により所定速度で回転される。容器2の内部に供給された原料Fは、容器2の回転による遠心力により細孔2aから放出される。また、接地された容器2と、電源4により高電圧が印加された環状電極3との間には電界が発生し、容器2と環状電極3とには、それぞれ逆極性の電荷が誘導される。
【0032】
上記遠心力により細孔2aから放出される原料Fは、容器2に誘導された電荷により帯電される。帯電された原料Fには、容器2と環状電極3との間の電界により環状電極3に向かう力が働く。
【0033】
このようにして、原料Fは、上記遠心力および電界により、細孔2aから環状電極3に向かって放射状に放出される。細孔2aから放出された原料Fは、空中を飛翔する間に分散媒または溶媒が蒸発し、原料Fの体積が減少すると共に、電荷密度が次第に高くなっていく。原料F内部の反発方向のクーロン力がその表面張力を超えたときに静電延伸現象が発生し、それを繰り返すことによって原料Fは繊維状に細分化されて、繊維状物質F1(ナノファイバ)が形成される。
【0034】
一方、細孔2aから放出された原料F、ないしはそれから形成された繊維状物質F1は、気流8により、進む方向が放出方向(容器2の径方向)とは略垂直な方向(容器2の軸方向)に変えられて、繊維状物質F1がコレクタ14により収集される。
コレクタ14においては、網状の通気性を有する布地からなる袋18の内部に繊維状物質F1が集積されて、繊維状物質F1が袋18により収集される。流量センサ26により測定される気流8の流量が所定値以下となると、制御部28により電動機5による容器2の回転、並びに原料供給管27を介した容器2内部への原料Fの供給が停止される。その後、袋18を交換して、上述の動作が繰り返される。
【0035】
このように、本実施の形態1においては、容器2の周壁に形成された細孔2aから原料Fが放出され、放出された原料Fから生成された繊維状物質F1が網状の通気性を有する布地からなる袋18により収集される。ここで、袋18は、開口端部18bが、容器2と環状電極3との間に挿入されるので、容器2から放出された原料F、ないしはそれから生成された繊維状物質F1が環状電極3に付着するのを防止することができる。これにより、環状電極3に付着した原料Fを取り除くため等に、定期的にメンテナンスを行う必要性がなくなる。したがって、装置を停止させる頻度が低下して生産性を向上させることができる。
【0036】
また、繊維状物質F1を介しての漏電を防止することができることから、漏電を防止するための特別の機構を設ける必要がなくなり、機構が簡素化される。また、従来技術のような、長尺帯状の収集体を長手方向に送る機構を設ける必要がなく、これによりさらに機構が簡素化される。
【0037】
ここで、本発明は、原料Fなどを介した漏電を防止することができるという特有の効果を奏し得るものであることから、原料Fを構成する高分子材料の性質と、その分散媒または溶媒の性質との組み合わせが以下の3通りの場合に対して特に有効である。すなわち、
1)原料Fが、導電性のない高分子材料と、導電性を有する分散媒または溶媒とからなる場合、
2)原料Fが、導電性を有する高分子材料と、導電性のない分散媒または溶媒とからなる場合、並びに
3)原料Fが、導電性を有する高分子材料と、導電性を有する分散媒または溶媒とからなる場合、
の3通りである。
【0038】
上記第1の場合の原料Fの例としては、10%のセルロース(高分子材料)を、アンモニアと銅イオンの水溶液(銅:5%、アンモニア:20%、水:65%)からなる溶媒に溶解させた溶液(銅アンモニアセルロースドープ)が考えられる。
上記第2の場合の原料Fの例としては、ナフィオン(登録商標)等のイオン性高分子材料とPVDF(ポリフッ化ビニリデン)等の補助ポリマーとからなる高分子材料を、エチレングリコール、プロピレングリコールおよびグリセリンの少なくとも1種からなる溶媒に溶解させた溶液が考えられる。
また、上記以外の導電性を有する高分子材料の例としては、ポリアニリン、ポリエチレンジオキシチオフェン、ポリチオフェン、並びに有機溶剤可溶性ポリピロール等がある。
【0039】
このように、本発明は、上記3つの場合に特に有効であるが、それ以外の場合に適用しても、生産性の向上等の効果は奏し得る。
【0040】
また、容器2は外径を10mm〜300mmとするのがよい。容器2の直径が300mmを超えると、上記気流により原料F等を適度に集中させることが困難となるからである。また、容器2の直径が300mmを超えると、容器2を安定して回転させるためには容器2を支持する支持構造の剛性をかなり高くする必要が生じ、装置が大型化するからである。一方、容器の直径が10mmより小さいと、原料を放出させるのに十分な遠心力を得るためには回転数を高くする必要があり、その場合にはモータの負荷や振動が増大するために振動対策等を施す必要が生じるからである。以上の点を考慮すると、容器2の外径は、20〜100mmとするのがより好ましい。
【0041】
また、細孔2aの径は、0.01〜2mmとするのがよい。また、細孔2aの形状は円形であることが好ましいが、多角形形状や星形状等であってもよい。また、容器2の表面に突起部を設けて、その先に細孔2aを設けてもよい。また、容器2の回転数は、原料Fの粘度、原料Fの組成(高分子材料の種類)、溶媒の種類並びに細孔2aの径等に応じて例えば数rpm以上10,000rpm以下の範囲で調節することができる。
【0042】
また、環状電極3は、内径は例えば200〜1000mmとするのがよい。
また、環状電極3には、電源4から1〜200kVの電圧を印加するのが好ましい。より好ましくは、10kV以上の高電圧を印加するのがよい。特に、容器2と環状電極3との間の電界強度が重要であり、1kV/cm以上の電界強度になるように印加電圧や環状電極3の配置を行うことが好ましい。これにより、容器2と環状電極3との間に均等且つ強い電界を発生させることができる。
【0043】
なお、環状電極3は、必ずしも円環状の電極である必要はなく、例えば、軸方向から見た形状を多角形としてもよい。また、環状電極3は、容器2の周面から所定の距離をおいて容器2を囲むように配置されてさえいればよく、例えば、環状の金属線を、容器2を囲むように配置して構成してもよい。
【0044】
また、袋18は、ポリエチレンまたはポリプロピレン等の素材から構成するのが好ましい。また、メッシュは、0.1〜3mmとするのがよい。しかしながら、そのメッシュの大きさは、特に限定するものではなく、又、その形状もメッシュに限定するものではない。袋18は、通気性が高い布地からなる袋で、その袋の中に、生成される繊維状物質F1が回収できればよい。
【0045】
なお、本実施の形態1においては、容器2を接地する一方、電源4により環状電極3に高電圧を印加するものとしているが、電源4により容器2に高電圧を印加し、環状電極3を接地するものとしてもよい。ただし、この場合には、回転する容器2に高電圧が印加されることになるために、容器2を他部材と絶縁するための特別の機構が必要となる。
また、容器2と環状電極3とを電源4の2つの端子にそれぞれ接続するなどして、容器2と環状電極3との双方に電圧を印加するようにしてもよい。すなわち、容器2と環状電極3との間に電位差が発生し、その間に電界ができて細孔2aから流出する原料Fが電荷を有するようになればよい。
【0046】
ここで、原料Fに含ませる高分子材料は、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、アクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ナイロン、アラミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等が好適なものとして例示でき、これらより選ばれる少なくとも1種が使用される。しかしながら、原料Fに含ませることができる高分子材料はこれらに限られるものではなく、既存の物質であってもナノファイバの原料としての適性が新たに認められたものや、今後に開発される物質でナノファイバの原料としての適性が認められるものを好適に用いることができる。
【0047】
また、高分子材料を分散または溶解させるための分散媒または溶媒は、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、ピリジン、水等が好適なものとして例示でき、これらより選ばれる少なくとも1種が使用される。しかしながら、高分子材料を分散または溶解させるための分散媒または溶媒は、これらに限られるものではなく、既存の物質であってもエレクトロスピニング法における高分子材料の分散媒または溶媒としての適性が新たに認められたものや、今後に開発される物質で分散媒または溶媒としての適性が認められるものを好適に用いることができる。
【0048】
また、原料Fには無機質固体材料を混入することも可能である。混入可能な無機質固体材料としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物などを挙げることができる。耐熱性、加工性などの観点からは酸化物を用いるのが好ましい。酸化物としては、Al23、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B23、P25、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb23、As23、CeO2、V25、Cr23、MnO、Fe23、CoO、NiO、Y23、Lu23、Yb23、HfO2、Nb25等を例示でき、これらより選ばれる少なくとも1種が使用される。しかしながら、原料Fに混入される無機質固体材料はこれらに限定されるものではない。
【0049】
高分子材料と分散媒または溶媒との混合比率は、それらの種類にもよるが、分散媒または溶媒の比率が60〜98質量%となるように混合されるのが好ましい。
【0050】
《実施の形態2》
次に、図4〜図10を参照して、本発明の実施の形態2を説明する。実施の形態2は、実施の形態1を改変したものであり、以下、実施の形態1とは異なる部分のみを説明する。なお、説明の便宜上、以下の各実施の形態においては、製造装置1のコレクタ14および制御部28以外の要素(容器2、環状電極3等)をナノファイバ生成部30(図4参照)と称し、コレクタ14の後側送風機20、環状気流誘導部24および流量センサ26を吸引部40と称する。
【0051】
図4〜図6に示すように、実施の形態2のナノファイバ製造装置においては、コレクタ14Aはリボルバ式に袋18を交換し得るように構成されている。
すなわち、コレクタ14Aは、複数(図示例では4つ)の袋収容部16を保持して回転するドラム32を備えている。ドラム32の内部は、複数(図示例では4つ)の同じ大きさの空間32aに、仕切り板32dにより周方向に分割されており、それぞれの空間32aに袋収容部16が保持されている。袋収容部16はそれぞれの中心軸が、ドラム32の回転軸32bと平行となるように空間32aに保持されている。また、それぞれの袋収容部16は開放側開口部16aが同じ側に向けられている。
【0052】
ドラム32は、回転軸32bが両側支持されるとともに、回転軸32bに受動ギア32cが装着されている。また、ドラム回転用電動機46が、その出力回転軸46aが回転軸32bと平行となるように配設されている。出力回転軸46aには能動ギア46bが取り付けられており、この能動ギア46bと上記受動ギア32cとにベルト48が掛け渡されて、ドラム32がドラム回転用電動機46により回転駆動される。また、ドラム回転用電動機46は制御部28により制御されている。
そして、ドラム32における、袋収容部16の開放側開口部16aが向いている側にはナノファイバ生成部30が配され、その反対側には吸引部40が配される。
【0053】
本実施の形態2においては、制御部28は、流量センサ26の検出値が所定値以下となったときに、ナノファイバの生成動作を停止させた後、ドラム32を所定角度回転させるように制御を行う。ここで、ドラム32を回転させる角度は、ドラム32に保持された袋収容部16の数に応じて調節される。例えば袋収容部16の数が「4」であれば、ドラム32は1回当たり90°(=360°÷4)回転される。また、袋収容部16の数が「6」であれば、ドラム32は1回当たり60°(=360°÷6)回転される。
【0054】
また、本実施形態装置は、ナノファイバ生成部30を進退させる機構(生成部進退機構)50を備えている。生成部進退機構50は、ナノファイバの生成動作を停止した後、ドラム32を回転させる前に、図7に示すように、環状電極3の内側に挿入された状態の袋18の開口端部18bを抜き去るために、ナノファイバ生成部30を後退させるように動作する。また、生成部進退機構50は、ドラム32が所定角度回転された後に、次の袋18の開口端部18bを環状電極3の内側に挿入させるために、ナノファイバ生成部30を前進させるように動作する。また、生成部進退機構50の動作は制御部28により制御される。
【0055】
図8および図9に、生成部進退機構50の一例を示す。図示例の生成部進退機構50は、ナノファイバ生成部30を支持する生成部支持部34と、直動機構42と、直動機構42を支持する直動機構支持部44とを含む。
直動機構42は、袋18の開口端部18bが環状電極3の内側に挿入される挿入位置(図1参照)と、袋18の開口端部18bが環状電極3の内側から抜き去られる抜き去り位置(図7参照)との間で、ナノファイバ生成部30を進退させるように、生成部支持部34を直線的に移動させる機構である。
【0056】
以上説明したように、袋18をリボルバ式に交換する袋交換機構をコレクタ14Aに設けたことによって、所定量の繊維状物質F1が袋18により収集される毎に、ドラム32を回転させて、新たな袋18を使用して繊維状物質F1の収集を実行することができる。
したがって、ナノファイバ生成部30による生成動作の停止時間を最小限度に抑えることが可能となる。これにより、生産性がますます向上される。
【0057】
なお、図10に示すように、袋18の開口端部が袋収納部16の開放側開口部16aから突出しない構成とした場合には、生成部進退機構50を省略して、リボルバ式の袋交換機構により袋18を交換することができる。これにより、袋18の交換に要する時間が短縮されるとともに、機構が簡素化される。しかしながら、この場合には、環状電極3に付着した原料F等を取り除くためのメンテナンスの頻度を低減させることができる等の効果は奏し得なくなる。
【0058】
《実施の形態3》
次に、図11〜図13を参照して、本発明の実施の形態3を説明する。本実施の形態3は、実施の形態1を改変したものであり、以下、実施の形態1とは異なる部分のみを説明する。
【0059】
図11〜図13に示すように、本実施の形態3のナノファイバ製造装置においては、コレクタ14Bは袋18を横にスライドさせて交換し得るように構成されている。
すなわち、コレクタ14Bは、スライド式の袋交換機構60を備えている。この袋交換機構60は、複数の袋収容部16をそれぞれが1つずつ保持する複数(図示例では2つ)の角形筒体46と、筒体直動機構48とを備えている。
【0060】
角形筒体46は、長さ方向が筒体直動機構48による移動方向に垂直な方向と平行になるように筒体直動機構48に取り付けられている。一方、図には明瞭に示されていないが、袋収容部16はそれぞれの開放側開口部16aが同じ側に向くように、それぞれの角形筒体46に挿入されている。これにより、袋収容部16のそれぞれに収容された袋18はそれぞれの開口部18aが全て同じ側に向いている。
【0061】
そして、ナノファイバ生成部30は角形筒体46の袋18が開口する側に配され、吸引部40はその反対側に配される。
本実施の形態3においては、実施の形態2におけると同様の生成部進退機構50が設けられている。そして、制御部28は、流量センサ26の検出値が所定値以下となったときに、ナノファイバ生成部30によるナノファイバの生成動作を停止させる。その後、環状電極3の内側に挿入された状態の袋18の開口端部18bを抜き去るために、ナノファイバ生成部30を後退させるように生成部進退機構50を制御する。そして、次の袋を使用して繊維状物質を収集させるために、それぞれの角形筒体46を横方向にスライドさせる。
【0062】
次に、制御部28は、次の袋18の開口端部18bを環状電極3の内側に挿入させるために、ナノファイバ生成部30を前進させるように制御する。
以上のように、スライド式の袋交換機構によっても実施の形態2と同様の制御により、同様の効果を奏することが可能となる。
【0063】
《実施の形態4》
次に、図14〜図17を参照して、本発明の実施の形態4を説明する。本実施の形態4は、実施の形態1を改変したものであり、以下、実施の形態1とは異なる部分のみを説明する。
【0064】
実施の形態4においては、ナノファイバ生成部は、容器2Aが箱形とされ、原料Fを放出させる細孔は、容器の下側壁面に設けられたノズル2cの先端に開口している。
また、本実施の形態4においては、環状電極3の代わりに、容器2Aの下面と所定距離を置いて容器2Aの下面と対向するように板状電極3Aが配設されている。板状電極3Aは、高電圧電源4の一方の端子と接続されている。高電圧電源4の他方の端子は接地されている。また、容器2Aは接地されている。これにより、容器2Aと板状電極3Aとの間には電界が発生し、容器2Aと板状電極3Aとにそれぞれ逆極性の電荷が誘導される。
【0065】
容器2Aの内部には、原料供給管27Aを介して所定の圧力で原料Fが供給されており、この供給圧力によって、原料Fは、ノズル2cの先端から板状電極3Aに向かって放出される。
また、容器2Aと板状電極3Aとの間の空間の側方には、容器2Aと板状電極3Aとの間の空間に向かって送風するように送風機6Aが配設されている。上記ノズル2cの先端から板状電極3Aに向かって放出された原料Fは、送風機6Aが発生する気流により放出方向と垂直な方向に偏向される。
【0066】
一方、容器2Aと板状電極3Aとの間の空間に対して、送風機6が配置されている方向と反対の方向には、角形の袋収容部16Aが配置されている。袋収容部16Aの内部には、角形の袋18Aがその開口を上記空間に向けて収容されている。袋18Aは、図16に示すように、角形の開口の1つの辺が延出しており、その延出部分が板状電極3Aを覆うように、容器2Aと板状電極3Aとの間に介在されている。なお、袋18Aは、図17に示すように、延出部分を省略した形状とすることも可能である。
【0067】
以上説明したように、本発明は、略円筒体形状の容器を用いてその回転による遠心力により原料を放出する場合のみならず、方形箱形の容器から、原料をその供給圧力により放出するものとすることも可能である。
また、図15に示すように、ナノファイバ生成部の原料放出手段を、噴霧して放出するものとすることも可能である。この例では、原料放出手段は、2流体ノズル2Bから構成されており、所定圧力でポンプ38により供給されてノズル2Bの先端から放出される原料を、ガス源52より供給される高圧ガスの噴射により霧化している。
【0068】
霧化された原料Fから生成される繊維状物質F1は、高圧ガスの噴射の方向に配された角形の袋収容部16Aの内部に配された角形の袋18Bにより収集される。このように、原料Fを2流体ノズル2Bにより噴射する場合には、その噴射方向に袋18Bを配するだけで収集することができ、袋18Bの開口端部を2流体ノズル2Bと電極3との間に挟む必要性は存在しない。
【0069】
また、図16に示すように、容器2Cの放出孔2aよりも上流側(気流8bにおける上流側)の位置に環状電極3Bが配されている構成の装置においても、環状電極3Bに原料F等が付着する虞はない。したがって、この場合にも、容器2Bと環状電極3との間に袋18の開口端部18bを挟む必要性は存在しない。
【0070】
また、上記各実施の形態においては、原料放出手段(2、2A、2B、2C)から気流8bに対して略直交する方向に電極(3、3A、3B)を配置している。しかしながら、これに限定するものではなく、電極を気流8bの下流側、例えばコレクタ14の袋収納部16と後側送風機20との間に配置して、原料放出手段とその電極との間に電位差を持たせるように構成してもよい。
また、各実施の形態においては、袋は、網状の通気性を有する布地からできていたが、これに限定するものではなく、布地も網状に限らず通気性を有するものであればよい。
【産業上の利用可能性】
【0071】
本発明のナノファイバ製造装置および製造方法によれば、エレクトロスピニング法を利用してナノファイバを製造する場合に、高品質のナノファイバを高い生産性で製造することが可能となる。
【図面の簡単な説明】
【0072】
【図1】本発明の実施の形態1に係るナノファイバ製造装置の概略構成を示す、一部を断面にした側面図である。
【図2】図1の装置のコレクタの詳細を示す斜視図である。
【図3】同コレクタを別の角度から見た斜視図である。
【図4】本発明の実施の形態2に係るナノファイバ製造装置の一部を簡略化した斜視図である。
【図5】同装置の側面図である。
【図6】同装置のコレクタの詳細を示す正面図である。
【図7】同装置の動作を説明するために参照する、図1と同様の側面図である。
【図8】同装置の生成部進退機構の側面図である。
【図9】同生成部進退機構の他の動作状態を示す、図8と同様の側面図である。
【図10】袋の他の形態を示す斜視図である。
【図11】本発明の実施の形態3に係るナノファイバ製造装置の一部を簡略化した斜視図である。
【図12】同製造装置の平面図である。
【図13】同製造装置の他の動作状態を示す、図12と同様の平面図である。
【図14】本発明の実施の形態4に係るナノファイバ製造装置の一部を断面にした側面図である。
【図15】同製造装置の変形例の一部を断面にした側面図である。
【図16】図14の製造装置の他の変形例の一部を断面にした側面図である。
【図17】図14の装置に用いられる袋の一例を示す斜視図である。
【図18】同袋の他の一例を示す斜視図である。
【符号の説明】
【0073】
1 ナノファイバ製造装置
2 容器
2a 細孔
3 環状電極
4 高圧電源
14 コレクタ
16 袋収容部
F 原料
F1 繊維状物質

【特許請求の範囲】
【請求項1】
高分子材料を含む液状の原料を帯電させて空中に放出し、静電延伸現象により前記原料から繊維状物質を生成するナノファイバ製造方法であって、
前記生成された繊維状物質を、少なくとも一部が通気性を有する布地からなる袋により収集するナノファイバ製造方法。
【請求項2】
高分子材料を含む液状の原料を帯電させて空中に放出し、静電延伸現象により前記原料から繊維状物質を生成するナノファイバ製造装置であって、
前記原料を空中に放出する、少なくとも一部が導体からなる原料放出手段と、
前記原料放出手段と所定距離を置いて配設される電極と、
前記原料放出手段と前記電極との間に電界を発生させるように、前記容器と前記電極との間に電位差を与える電位差付与手段と、
静電延伸現象により前記原料から生成された繊維状物質を収集する収集手段と、を備え、
前記収集手段が、少なくとも一部が通気性を有する布地からなる袋を含むナノファイバ製造装置。
【請求項3】
前記原料が前記原料放出手段から前記電極に向かって放出されるとともに、
前記放出された前記原料、ないしはそれから生成された前記繊維状物質を、前記原料の放出方向とは異なる方向に偏向する偏向手段を備えた請求項2記載のナノファイバ製造装置。
【請求項4】
前記袋の開口端部が、前記原料放出手段と前記電極との間に介在される請求項2または3記載のナノファイバ製造装置。
【請求項5】
リボルバ式の袋交換手段を備えた請求項2〜4のいずれかに記載のナノファイバ製造装置。
【請求項6】
スライド式の袋交換手段を備えた請求項2〜4のいずれかに記載のナノファイバ製造装置。
【請求項7】
前記原料放出手段が、
周壁に前記原料を放出するための細孔が形成され、内部に前記原料が導入される、略円筒形状の回転容器
から構成される請求項2〜6のいずれかに記載のナノファイバ製造装置。
【請求項8】
前記原料放出手段が、
少なくとも1つの平坦な面を有し、その面の壁部に前記原料を放出するための細孔が形成され、内部に前記原料が所定圧力で導入される容器
から構成される請求項2〜6のいずれかに記載のナノファイバ製造装置。
【請求項9】
前記原料放出手段が、2流体ノズルから構成され、当該ノズルの少なくとも1つの孔から放出される前記原料を、当該ノズルの他の少なくとも1つの孔から噴射される気体により霧化して放出する請求項2〜8のいずれかに記載のナノファイバ製造装置。
【請求項10】
前記原料を構成する高分子材料および液状成分の少なくとも一方が、導電性を有する請求項2〜9のいずれかに記載のナノファイバ製造装置。
【請求項11】
前記偏向手段が、送風および吸引の少なくとも一方の動作により気流を発生する気流発生手段から構成される請求項3〜10のいずれかに記載のナノファイバ製造装置。
【請求項12】
前記気流発生手段による気流の流量を測定する流量測定手段を備え、その流量測定手段の測定結果に基づいて前記袋交換手段を制御する制御手段を備えた請求項11記載のナノファイバ製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2010−121226(P2010−121226A)
【公開日】平成22年6月3日(2010.6.3)
【国際特許分類】
【出願番号】特願2008−293847(P2008−293847)
【出願日】平成20年11月17日(2008.11.17)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成20年度、独立行政法人新エネルギー・産業技術総合開発機構「革新的部材産業創出プログラム/新産業創造高度部材基盤技術開発/先端機能発現型新構造繊維部材基盤技術の開発」にかかる委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】