説明

ナノファイバ製造装置、ナノファイバ製造方法

【課題】高い生産効率でナノファイバを製造する。また、製造されるナノファイバの品質を安定させる。
【解決手段】原料液300を空間中に流出させる流出孔216を有する流出体211と流出体211と所定の間隔を隔てて配置され、流出体211に電荷を誘導する帯電手段202と、ナノファイバ301を搬送する気体流を発生させる気体流発生手段203と、ナノファイバ301を気体流と共に案内する管状の案内体206であって、絶縁体からなる内壁207を有する案内体206と、内壁207を所定の帯電状態に調整する調整手段260とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本願発明はナノファイバの製造装置に関し、特に、気体流によりナノファイバを所望の場所に案内するナノファイバ製造装置に関する。
【背景技術】
【0002】
高分子物質などから成り、サブミクロンスケールの直径を有する糸状(繊維状)物質(ナノファイバ)を製造する方法として、エレクトロスピニング(電荷誘導紡糸)法が知られている。
【0003】
このエレクトロスピニング法とは、溶媒中に高分子物質などを分散または溶解させた原料液を空間中にノズルなどにより流出(吐出)させるとともに、原料液に電荷を付与して帯電させ、空間を飛行中の原料液を静電爆発させることにより、ナノファイバを得る方法である。
【0004】
より具体的にエレクトロスピニング法を説明すると次のようになる。すなわち、帯電され空間中に流出された原料液は、空間を飛行中に徐々に溶媒が蒸発していく。これにより、飛行中の原料液の体積は、徐々に減少していくが、原料液に付与された電荷は、原料液に留まる。この結果として、空間を飛行中の原料液は、電荷密度が徐々に上昇することとなる。そして、溶媒は、継続して蒸発し続けるため、原料液の電荷密度がさらに高まり、原料液の中に発生する反発方向のクーロン力が原料液の表面張力より勝った時点で高分子溶液が爆発的に線状に延伸される現象(静電爆発)が生じる。この静電爆発が、空間において次々と幾何級数的に発生することで、直径がサブミクロンの高分子から成るナノファイバが製造される(例えば特許文献1参照)。
【0005】
以上のようなエレクトロスピニング法で製造されるナノファイバの生産効率を向上させるためには空間中に流出させる原料液を多くすれば良い。しかし、原料液が同電位に帯電している等の理由から、小さな空間に多量の原料液を一度に流出させることは困難であり、また、ナノファイバを空間的に均一に製造することも困難であった。
【0006】
そこで、本願発明者らは、原料液やナノファイバを気体流で搬送し、筒状の案内体で所望の場所に案内することで、ナノファイバの生産効率を向上させ、ナノファイバの製造品質(ナノファイバの空間分布度など)を向上させることができるナノファイバ製造装置を先に提案している。
【特許文献1】特開2008−31624号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところが、本願発明者は、ナノファイバ製造装置を使用していくうちに、筒状の案内体の内壁にナノファイバが付着して、ナノファイバの生産効率が低下したり、ナノファイバの空間分布が安定しないことを見いだした。
【0008】
さらに、本願発明者らは鋭意研究と実験の結果、前記生産効率の低下や空間分布の不安定さが案内体の内壁の帯電状態に起因することを見いだすに至った。
【0009】
本願発明は、上記知見に基づきなされたものであり、案内体内壁の帯電状態を安定させ、ナノファイバの生産効率を高い状態で維持し、また、ナノファイバの製造品質を高い状態で維持しうるナノファイバ製造装置の提供を目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本願発明にかかるナノファイバ製造装置は、原料液を空間中で静電爆発させ、ナノファイバを製造するナノファイバ製造装置であって、前記原料液を空間中に流出させる流出孔を有する流出体と、前記流出体と所定の間隔を隔てて配置され、前記流出体に電荷を誘導する誘導電極と、前記流出体と前記誘導電極との間を所定の電圧にする誘導電源と、前記流出体から流出する前記原料液から製造されるナノファイバを搬送する気体流を発生させる気体流発生手段と、前記ナノファイバを前記気体流と共に案内する管状の案内体であって、絶縁体からなる内壁を有する案内体と、前記案内体に接触状態で配置される調整電極と、前記調整電極を所定の電位とする調整電源とを備えることを特徴とする。
【0011】
これにより、ナノファイバを安定して搬送することができるため、ナノファイバの生産効率を高い状態で維持し、ナノファイバの製造品質を高い状態で維持することが可能となる。
【0012】
特に、前記案内体の前記内壁を、レーヨンよりも正に帯電しやすい、または、ポリエステルよりも負に帯電しやすい絶縁体で構成することが望ましい。
【0013】
これにより、正または負の電荷が高密度状態で存在する高い帯電状態に案内体内壁を維持することができ、ナノファイバをより安定して搬送することが可能となる。
【0014】
さらに、前記案内体の前記内壁は、フッ素系樹脂からなることが望ましい。
【0015】
これにより、フッ素系樹脂によりナノファイバが内壁に付着し難くなり、ナノファイバの付着による案内体内壁の帯電状態の乱れを防止することが可能となる。
【0016】
一方、上記課題を解決するために、本願発明にかかるナノファイバ製造方法は、原料液を空間中で静電爆発させ、ナノファイバを製造するナノファイバ製造方法であって、前記原料液を空間中に流出させる流出孔を有する流出工程と、前記原料液に電荷を付与して帯電させる帯電工程と、静電爆発により空間中で製造されるナノファイバを搬送する気体流を発生させる気体流発生工程と、気体流により搬送されるナノファイバを案内する案内体の内壁の帯電状態を調整する調整工程とを含むことを特徴とする。
【0017】
これにより、内壁の帯電状態が調整された案内体によりナノファイバの搬送が行われるため、ナノファイバの生産効率を高い状態で維持し、ナノファイバの製造品質を高い状態で維持することが可能となる。
【発明の効果】
【0018】
本願発明によれば、製造されたナノファイバは案内体により安定した状態で案内される。従って、ナノファイバの高い生産効率を維持することができると共に、安定した製造品質を確保することが可能となる。
【発明を実施するための最良の形態】
【0019】
次に、本願発明にかかるナノファイバ製造装置の実施の形態を、図面を参照しつつ説明する。
【0020】
図1は、本願発明の実施の形態であるナノファイバ製造装置を模式的に示す断面図である。
【0021】
同図に示すように、ナノファイバ製造装置100は、放出手段200と、案内体206と、拡散手段240と、収集手段110と、誘引手段120と、調整手段260とを備えている。
【0022】
ここで、ナノファイバを製造するための原料液については、原料液300と記し、製造されたナノファイバについてはナノファイバ301と記すが、製造に際しては原料液300が静電爆発しながらナノファイバ301に変化していくため、原料液300とナノファイバ301との境界は曖昧であり、明確に区別できるものではない。
【0023】
図2は、放出手段を示す断面図である。
【0024】
図3は、放出手段を示す斜視図である。
【0025】
これらの図に示すように、放出手段200は、帯電した原料液300や製造されるナノファイバ301を気体流に乗せて放出することができるユニットであり、流出手段201と、帯電手段202と、風洞体209と、気体流発生手段203とを備えている。
【0026】
さらに、流出手段201は、原料液300を空間中に流出させる装置であり、本実施の形態では、原料液300を遠心力により放射状に流出させ、誘導電極221の内方に原料液を流出させる装置である。流出手段201は、流出体211と、回転軸体212と、モータ213とを備えている。回転軸体212は、ベアリング(図示せず)を介して支持体(図示せず)に回転可能に支持されている。
【0027】
流出体211は、原料液300を空間中に流出させるための部材であり、原料液300が通過する流出孔216が多数設けられる部材である。本実施の形態の場合、流出体211は、原料液300が内方に注入されながら自身の回転による遠心力により空間中に原料液300を流出させることのできる容器であり、一端が閉塞された円筒形状となされ、周壁には流出孔216を多数備えている。流出体211は、貯留する原料液300に電荷を付与するため、導電体で形成されている。流出体211は支持体(図示せず)に設けられるベアリング215により回転可能に支持されている。
【0028】
具体的には、流出体211の直径は、10mm以上、300mm以下の範囲から採用されることが好適である。あまり大きすぎると後述の気体流により原料液300やナノファイバ301を集中させることが困難になるからであり、また、流出体211の回転軸が偏心するなど、重量バランスが少しでも偏ると大きな振動が発生してしまい、当該振動を抑制するために流出体211を強固に支持する構造が必要となるからである。一方、小さすぎると遠心力により原料液300を流出させるための回転を高めなければならず、駆動源の負荷や振動など問題が発生するためである。さらに流出体211の直径は、20mm以上、100mm以下の範囲から採用することが好ましい。
【0029】
また、流出孔216の形状は円形が好ましく、その直径は、流出体211の肉厚にもよるが、おおよそ0.01mm以上、3mm以下の範囲から採用することが好適である。これは、流出孔216があまりに小さすぎると原料液300を流出体211の外方に流出させることが困難となるからであり、あまりに大きすぎると一つの流出孔216から流出する原料液300の単位時間当たりの量が多くなりすぎ(つまり、流出する原料液300が形成する線の太さが太くなりすぎ)て所望の径のナノファイバ301を製造することが困難となるからである。
【0030】
なお、流出体211は、自身の回転による遠心力により原料液300を空間中に流出させる部材ばかりでなく、自身は静止しており、圧力がかけられた原料液300が流出孔216から流出する部材でもかまわない。また、遠心力により原料液300を流出させる流出体211の形状は、円筒形状に限定するものではなく、断面が多角形状の多角筒形状のようなものや円錐形状のようなものでもよい。流出孔216が回転することにより、流出孔216から原料液300が遠心力で流出可能な形状であればよい。また、流出孔216の形状は、円形に限定することなく、多角形状や星形形状などであってもよい。
【0031】
回転軸体212は、流出体211を回転させ遠心力により原料液300を流出させるための駆動力を伝達するための軸体であり、流出体211の他端から流出体211の内部に挿通され、流出体211の閉塞部と一端部が接合される棒状体である。また、他端はモータ213の回転軸と接合されている。
【0032】
モータ213は、遠心力により原料液300を流出孔216から流出させるために、回転軸体212を介して流出体211に回転駆動力を付与する装置である。なお、流出体211の回転数は、流出孔216の口径や使用する原料液300の粘度や原料液内の高分子物質の種類などとの関係により、数rpm以上、10000rpm以下の範囲から採用することが好ましく、本実施の形態のようにモータ213と流出体211とが直動の時はモータ213の回転数は、流出体211の回転数と一致する。
【0033】
帯電手段202は、原料液300に電荷を付与して帯電させる装置である。本実施の形態の場合、帯電手段202は、誘導電極221と、誘導電源222と、接地手段223とを備えている。また、流出体211も帯電手段202の一部として機能している。
【0034】
誘導電極221は、自身がアースに対し高い電圧もしくは低い電圧となることで、近傍に配置され接地されている流出体211に電荷を誘導するための部材であり、流出体211の先端部分を取り囲むように配置される円環状の部材である。誘導電極221に正の電圧が印加されると流出体211には、負の電荷が誘導され、誘導電極221に負の電荷が印加されると流出体211には、正の電荷が誘導される。また、誘導電極221は、気体流発生手段203からの気体流を案内体206に案内する風洞体209としても機能している。
【0035】
誘導電極221の大きさは、流出体211の直径よりも大きい必要があるが、その直径は、200mm以上、800mm以下の範囲から採用されることが好適である。なお、誘導電極221の形状は、円環状に限ったものではなく、多角形状を有する多角形環状の部材であってもよい。
【0036】
誘導電源222は、誘導電極221に高電圧を印加することのできる電源である。誘導電源222は、一般には、直流電源が好ましい。特に、発生させるナノファイバ301の帯電極性に影響受けないような場合、生成したナノファイバ301の帯電を利用して、電極上に回収するような場合には、直流電源が好ましい。また、誘導電源222が直流電源である場合、誘導電源222が誘導電極221に印加する電圧は、10KV以上、200KV以下の範囲の値から設定されるのが好適である。誘導電源222に負の電圧が印加される場合には、前記の印加する電圧の極性は、負になる。特に、流出体211と誘導電極との間の電界強度が重要であり、1KV/cm以上の電界強度になるように印加電圧や誘導電極221の配置を行うことが好ましい。
【0037】
接地手段223は、流出体211と電気的に接続され、流出体211を接地電位に維持することができる部材である。接地手段223の一端は、流出体211が回転状態であっても電気的な接続状態を維持することができるようにブラシとして機能するものであり、他端は大地と接続されている。
【0038】
本実施の形態のように帯電手段202に誘導方式を採用すれば、流出体211を接地電位に維持したまま原料液300に電荷を付与することができる。流出体211が接地電位の状態であれば、流出体211に接続される回転軸体212やモータ213などの部材を流出体211から電気的に絶縁する必要が無くなり、流出手段201として簡単な構造を採用しうることになり好ましい。
【0039】
なお、帯電手段202として、流出体211に電源を接続し、流出体211を高電圧に維持し、誘導電極221を接地することで原料液300に電荷を付与してもよい。また、流出体211を絶縁体で形成すると共に、流出体211に貯留される原料液300に直接接触する電極を流出体211内部に配置し、当該電極を用いて原料液300に電荷を付与するものでもよい。このような流出体211に直接もしくは原料液に直接電極を配置する場合には、原料液に帯電する電荷の極性は、印加する電圧の極性と同じ極性になる。
【0040】
気体流発生手段203は、流出体211から流出される原料液300の飛行方向を案内体206で案内される方向に変更するための気体流を発生させる装置である。気体流発生手段203は、モータ213の背部に備えられ、モータ213から流出体211の先端に向かう気体流を発生させる。気体流発生手段203は、流出体211から径方向に流出される原料液300が誘導電極221に到達するまでに前記原料液300を軸方向に変更することができる風力を発生させることができるものとなっている。図2において、気体流は矢印で示している。本実施の形態の場合、気体流発生手段203として、放出手段200の周囲にある雰囲気を強制的に送風する軸流ファンを備える送風機が採用されている。
【0041】
なお、気体流発生手段203は、シロッコファンなど他の送風機により構成してもかまわない。また、高圧ガスを導入することにより流出された原料液300の方向を変更するものでもかまわない。また、吸引手段102などにより案内体206内方に気体流を発生させるものでもかまわない。この場合、気体流発生手段203は積極的に気体流を発生させる装置を有しないこととなるが、本願発明の場合、案内体206の内方に気体流が発生していることをもって気体流発生手段203が存在しているものとする。また、気体流発生手段203を有しない状態で、吸引手段102により吸引することで、風洞体209や案内体206の内方に気体流を発生させるようにすることも気体流発生手段が存在しているものとする。また、気体流発生手段203を有しない状態で、吸引手段102により吸引することで、風洞体209や案内体206の内方に気体流が発生する場合、吸引手段102が気体流発生手段として機能しているとみなす。
【0042】
風洞体209は、気体流発生手段203で発生した気体流を流出体211の近傍に案内する導管である。風洞体209により案内された気体流が流出体211から流出された原料液300と交差し、原料液300の飛行方向を変更する。
【0043】
さらにまた、放出手段200は、気体流制御手段204と、加熱手段205とを備えている。
【0044】
気体流制御手段204は、気体流発生手段203により発生する気体流が流出孔216に当たらないよう気体流を制御する機能を有するものであり、本実施の形態の場合、気体流制御手段204として、気体流を所定の領域に流れるように案内する風路体が採用されている。気体流制御手段204により、気体流が直接流出孔216に当たらないため、流出孔216から流出される原料液300が早期に蒸発して流出孔216を塞ぐことを可及的に防止し、原料液300を安定させて流出させ続けることが可能となる。なお、気体流制御手段204は、流出孔216の風上に配置され気体流が流出孔216近傍に到達するのを防止する壁状の防風壁でもかまわない。
【0045】
加熱手段205は、気体流発生手段203が発生させる気体流を構成する気体を加熱する加熱源である。本実施の形態の場合、加熱手段205は、案内体206の内方に配置される円環状のヒータであり、加熱手段205を通過する気体を加熱することができるものとなっている。加熱手段205により気体流を加熱することにより、空間中に流出される原料液300は、蒸発が促進され効率よくナノファイバを製造することが可能となる。
【0046】
図4は、案内体と調整手段とを示す断面図である。
【0047】
同図に示すように、案内体206は、放出手段200から放出されるナノファイバ301を所定の場所に案内する風洞であり、筒状の案内基体208と、案内基体208の内壁全体を覆う内壁207とを備えている。本実施の形態における案内体206は、円筒体であり、放出手段200のナノファイバ301が放出される側の開口形状と同じ開口形状を備え、放出手段200と一連に配置されている。
【0048】
案内基体208は、案内体206の形状を形成する基本となる部材である。案内基体208の材質は、特に限定されるものではないが、本実施の形態の場合、透明の塩化ビニルが用いられている。これは、案内体206内方を搬送されるナノファイバ301の状態を目視するのに好適だからである。
【0049】
内壁207は、案内体206の帯電状態を安定させるために設けられる絶縁体からなる部材である。本実施の形態の場合、内壁207は、案内基体208の内周面全体を覆う薄いシート状の部材である。内壁207を構成する材料は、絶縁体であれば良いが、特に、レーヨンよりも正に帯電しやすい、または、ポリエステルよりも負に帯電しやすい絶縁体からなるものが好ましい。
【0050】
ここで、レーヨンよりも正に帯電しやすい絶縁体とは、レーヨンと絶縁体とを擦り合わせた結果、レーヨンが負に帯電し絶縁体が正に帯電した場合の絶縁体である。具体的にレーヨンよりも正に帯電しやすい絶縁体としては、羊毛、雲母、ガラス、人毛、アスベストなどが例示できる。または、ポリエステルよりも負に帯電しやすい絶縁体とは、ポリエステルと絶縁体とを擦り合わせた結果、ポリエステルが正に帯電し絶縁体が負に帯電した場合の絶縁体を言う。具体的にポリエステルよりも負に帯電しやすい絶縁体としては、アクリル、塩化ビニル、テフロン(登録商標)が例示できる。
【0051】
本実施の形態の場合、内壁207の材質は、テフロンが採用されているものとして説明する。
【0052】
本実施の形態のように、案内基体208を塩化ビニルで構成し、内壁207をテフロンで構成した場合、いずれの材質もポリエステルよりも負に帯電しやすい材質で構成されることになる。従って案内体206全体が負に帯電しやすい状態となる。
【0053】
なお、本実施の形態では、案内基体208と内壁207とを別部材として説明したが、本願発明はこれに限定されるわけではなく、案内基体208と内壁207とを一体としてもかまわない。この場合、案内基体208は、内壁207と同じ材質となる。また、案内体206の形状は円筒に限らず矩形の筒でもかまわない。また、曲がった形状の案内体206でもかまわない。
【0054】
調整手段260は、案内体206の帯電状態を調整する装置であり、調整電極261と調整電源262とを備えている。
【0055】
調整電極261は、案内体206に接触状態で配置される導電性の部材であり、所定の電位が印加されることで案内体206の内壁207の帯電状態を調節する部材である。本実施の形態の場合、調整電極261は、環状の部材であり、案内体206の外周面に巻かれた状態で取り付けられている。
【0056】
調整電源262は、調整電極261を所定の電位に維持しうる直流電源である。本実施の形態の場合、調整電源262は、調整電極261に対し負の電位を印加している。
【0057】
以上のように、調整手段260を用いると、案内体206は、全体として負に帯電し、帯電状態が安定する。特に、案内基体208よりも内壁207の方が負に帯電しやすい材質であるため、特に、内壁207が強く負に帯電し、当該帯電状態を安定して維持することができる。
【0058】
図1の参照に戻る。
【0059】
拡散手段240は、案内体206に接続され、高密度状態のナノファイバ301を広く均等に拡散させ低密度状態とする導管であり、ナノファイバ301が案内される空間を滑らか、かつ、連続的に拡大することで、ナノファイバ301を搬送する気体流の速度とナノファイバ301の速度とを徐々に減速させるフード状の部材である。
【0060】
収集手段110は、拡散手段240から放出されるナノファイバ301を収集するための装置であり、被堆積部材101と、移送手段104と、供給手段111とを備えている。
【0061】
被堆積部材101は、静電爆発により製造され飛来するナノファイバ301が堆積される対象となる部材である。本実施の形態の場合、被堆積部材101は、堆積したナノファイバ301と容易に分離可能な材質で構成された薄く柔軟性のある長尺のシート状の部材である。具体的に被堆積部材101としては、アラミド繊維からなる長尺の布を例示することができる。さらに、被堆積部材101の表面にテフロン(登録商標)コートを行うと、堆積したナノファイバ301を被堆積部材101から剥ぎ取る際の剥離性が向上するため好ましい。また、被堆積部材101は、ロール状に巻き付けられた状態で供給手段111から供給されるものとなっている。
【0062】
移送手段104は、被堆積部材101を移送することができる装置である。本実施の形態の場合、長尺の被堆積部材101を巻き取りながら供給手段111から引き出し、堆積するナノファイバ301と共に被堆積部材101を搬送するものとなっている。移送手段104は、不織布状に堆積しているナノファイバ301を被堆積部材101とともに巻き取ることができるものとなっている。
【0063】
誘引手段120は、空間中を飛行しているナノファイバ301を所定の場所に誘引するための装置である。ナノファイバ301を誘引する方法としては、気体流を吸引することでナノファイバ301を誘引する方法と、帯電しているナノファイバ301を電界(電場)により誘引する方法とを例示することができる。本実施の形態の場合、気体流を吸引する方式が採用されており、誘引手段120は、吸引手段102を備えている。
【0064】
吸引手段102は、被堆積部材101を通過する気体流を強制的に吸引する装置である。本実施の形態では、吸引手段102は、漏斗状のフード103と送風機105とを備えている。送風機105は、シロッコファンや軸流ファンなどの送風機であって、被堆積部材101から送風機105に向かう気体流を発生させることができる装置である。
【0065】
また、吸引手段102は、原料液300から蒸発した溶媒が混ざったほとんどの気体流を吸引し、吸引手段102に接続される溶剤回収装置106まで前記気体流を搬送することができるものとなっている。
【0066】
次に、上記構成のナノファイバ製造装置100を用いたナノファイバ301の製造方法を説明する。
【0067】
まず、気体流発生手段203により、案内体206や風洞体209の内部に気体流を発生させる。一方、吸引手段102により、案内体206内に発生する気体流を吸引する。以上の状態で、案内体206内の風量が30m3/分となるよう調整した。
【0068】
次に、流出手段201の流出体211に原料液300を供給する。原料液300は、別途タンク(図示せず)に蓄えられており、供給路217(図2参照)を通過して流出体211の他端部から流出体211内部に供給される。具体的には、ナノファイバ301の材質はPVA(ポリビニルアルコール)を選定し、原料液300は、溶媒を水とし、水にPVAを10重量%で溶解したものを用いた。
【0069】
次に、誘導電源222により流出体211に貯留される原料液300に電荷を供給しつつ(帯電工程)、流出体211をモータ213により回転させて、遠心力により流出孔216から帯電した原料液300を流出する(流出工程)。具体的には、直径がΦ60mmの流出体211を用いた。流出体211に設けられる流出孔216の数は、108個であり、孔径は0.3mmであった。また、原料液300は、流出体211を2000rpmで回転させることにより流出させた。一方、誘導電極221は内径Φ600mmのものを用い、誘導電源222により誘導電極221を接地電位に対して負の60KVとした。これにより、流出体211には正の電荷が誘導され、正に帯電した原料液300が流出することとなる。
【0070】
流出体211の径方向放射状に流出された原料液300は、気体流により飛行方向が変更され、気体流に乗り風洞体209により案内される。原料液300は静電爆発によりナノファイバ301を製造しつつ(ナノファイバ製造工程)放出手段200から放出される。また、前記気体流は、加熱手段205により加熱されており、原料液300の飛行を案内しつつ、原料液300に熱を与えて溶媒の蒸発を促進している。
【0071】
以上のようにして放出手段200から放出されるナノファイバ301は、案内体206に導入される。そして、ナノファイバ301は、案内体206の内方を気体流に搬送されながら案内される(搬送工程)。
【0072】
一方、案内体206に接続される調整電極261は、調整電源262により負の電位が印加されている。従って案内体206の内壁207は、負に帯電している。
【0073】
ここで、案内体206の内方で搬送されているナノファイバ301は、正に帯電しており、案内体206の内壁207は、負に帯電している。従って、ナノファイバ301と内壁207はクーロン力により引き合い、ナノファイバ301が案内体206の内壁207に付着することが懸念されるが、実験的にはほとんど案内体206にナノファイバ301が付着せず、加えて、案内体206から放出されるナノファイバ301の一部は負に帯電していることが確認されている。これにより、内壁207近傍の雰囲気(空気)も負に帯電しており、内壁207近傍を流通するナノファイバ301は、中和され、さらに、負に帯電する。従って、ナノファイバ301は付着することなく気体流により搬送されると考えられる。
【0074】
拡散手段240にまで搬送されたナノファイバ301は、ここで急速に速度が低下すると共に、均一に分散状態となる(拡散工程)。
【0075】
この状態において、被堆積部材101の背方に配置される吸引手段102は、蒸発した蒸発成分である溶媒と共に気体流を吸引し、ナノファイバ301を被堆積部材101上に誘引する(誘引工程)。
【0076】
以上により、被堆積部材101上にナノファイバ301が堆積していく。被堆積部材101は、移送手段104によりゆっくり移送されているため、ナノファイバ301も移送方向に延びた貼着の帯状部材として回収される。
【0077】
以上のように、案内体206の帯電状態を調整すれば、製造されたナノファイバ301が案内体206の内壁207に付着することなく、ほとんどのナノファイバ301が被堆積部材101に到達する。従って、ナノファイバ301を高い効率で収集することができ、ナノファイバ301の高い生産効率を得ることが可能となる。また、案内体206の内壁207の近傍を搬送されるナノファイバ301が内壁207に付着することなく安定して被堆積部材101に到達するため、乱れた状態でナノファイバ301が堆積することを回避することができ、ナノファイバ301の製造品質を確保することが可能となる。
【0078】
さらに、ナノファイバ301は案内体206から安定した状態で拡散手段240に放出された後、拡散手段240により均一に拡散し分散することとなる。従って、ナノファイバ301は、被堆積部材101上に均一に堆積させることが可能となる。
【0079】
ここで、ナノファイバ301を構成する高分子物質としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等およびこれらの共重合体を例示できる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記高分子物質に限定されるものではない。
【0080】
原料液300に使用される溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホオキシド、ピリジン、水等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記溶媒に限定されるものではない。
【0081】
さらに、原料液300に骨材や可塑剤などの添加剤を添加してもよい。当該添加剤としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、耐熱性、加工性などの観点から酸化物を用いることが好ましい。当該酸化物としては、Al23、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B23、P25、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb23、As23、CeO2、V25、Cr23、MnO、Fe23、CoO、NiO、Y23、Lu23、Yb23、HfO2、Nb25等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記添加剤に限定されるものではない。
【0082】
溶媒と高分子物質との混合比率は、溶媒と高分子物質により異なるが、溶媒量は、約60重量%から98重量%の間が望ましい。
【0083】
上記のように、溶媒蒸気が気体流により滞留することなく処理されるため、原料液300は、上記のように溶媒を50vol%以上含んでいても十分に蒸発し、静電爆発を発生させることが可能となる。従って、溶質である高分子が薄い状態からナノファイバ301が製造されるため、より細いナノファイバ301をも製造することが可能となる。また、原料液300の調整可能範囲が広がるため、製造されるナノファイバ301の性能の範囲も広くすることが可能となる。
【0084】
なお、上記実施の形態では、調整電極261を案内体206の外周壁面に巻き付けた態様を説明したが、調整手段260はこれに限定されるわけではない。例えば図5に示すように、案内体206と内壁207との間に筒状の調整電極261が案内体206全体にわたって設けられるものでも良い。これにより、より安定した帯電状態を実現できると考えられる。
【0085】
また、調整電極261誘導電源222とを導線などで結び、誘導電源222により調整電極261に電位を印加してもかまわない。この場合、誘導電源222が調整電源262の機能を併有することとなる。また、調整電極261と誘導電極221とを導線なので結んだり、一体としても同様の効果を奏することが可能となる。
【0086】
なお、上記実施の形態では、原料液300を遠心力を用いて流出させたが、本願発明はこれに限定されるわけではない。例えば、図6に示すように、断面矩形の風洞体209の一壁面を流出孔216が多数設けられた流出体としてのノズルヘッド210を配置し、風洞体209の対向面に誘導電極221を配置して前記流出孔216と誘導電極221間に電位差を持たせることで電界を発生させて前記原料液を帯電させることで、帯電手段202とする。また、風洞体209の開口端の一方には気体流発生手段203を設ける。また、このような放出手段200と所定の間隔を隔てて、風洞体209と同じ断面形状の案内体206を配置してもかまわない。
【0087】
なお、本実施の形態においては、ナノファイバ301が正に帯電し、案内体206の内壁207を負に帯電させる場合を説明したが、本願発明はこれに限定されるものではない。例えば、流出体211を正に帯電させ、原料液300やナノファイバ301を正に帯電させた場合であっても、案内体206の内壁207の材料をレーヨンもしくはレーヨンより正に帯電しやすい材料にし、調整電源262によって内壁207を正の電圧としても良い。この場合、調整電極261には、正の電圧が印加され、内壁207の表面は、正に帯電しており、内壁207の近傍の空気は、正の電荷を帯びた状態になっている。その為、案内体206の内方を搬送されるナノファイバ301は、内壁207とクーロン力による斥力で反発し合う。従って、ナノファイバ301は、内壁207に付着することなく、収集手段110まで搬送されて被堆積部材101上に堆積することなる。
【0088】
以上のように、生成されたナノファイバ301の帯電極性が正もしくは負であっても、調整手段260により内壁207をナノファイバ301の帯電極性と関連することなく正もしくは負の安定した帯電状態に維持することにより、案内体206の内壁207にナノファイバ301が付着することなく、ナノファイバ301を安定した状態で搬送し案内することが可能となる。
【産業上の利用可能性】
【0089】
本願発明は、静電爆発(エレクトロスピニング法)によるナノファイバの製造や、当該ナノファイバを堆積させた不織布等の製造に適用可能である。
【図面の簡単な説明】
【0090】
【図1】本願発明の実施の形態であるナノファイバ製造装置を模式的に示す断面図である。
【図2】放出手段を示す断面図である。
【図3】放出手段を示す斜視図である。
【図4】案内体と調整手段とを示す断面図である。
【図5】調整手段の変形例を示す断面図である。
【図6】放出手段の別態様を示す断面図である。
【符号の説明】
【0091】
100 ナノファイバ製造装置
101 被堆積部材
102 吸引手段
103 フード
104 移送手段
105 送風機
106 溶剤回収装置
110 収集手段
111 供給手段
120 誘引手段
200 放出手段
201 流出手段
202 帯電手段
203 気体流発生手段
204 気体流制御手段
205 加熱手段
206 案内体
207 内壁
208 案内基体
209 風洞体
210 ノズルヘッド
211 流出体
212 回転軸体
213 モータ
215 ベアリング
216 流出孔
217 供給路
221 誘導電極
222 誘導電源
223 接地手段
240 拡散手段
260 調整手段
261 調整電極
262 調整電源
300 原料液
301 ナノファイバ

【特許請求の範囲】
【請求項1】
原料液を空間中で静電爆発させ、ナノファイバを製造するナノファイバ製造装置であって、
前記原料液を空間中に流出させる流出孔を有する流出体と、
前記流出体と所定の間隔を隔てて配置され、前記流出体に電荷を誘導する誘導電極と、
前記流出体と前記誘導電極との間を所定の電圧にする誘導電源と、
前記流出体から流出する前記原料液から製造されるナノファイバを搬送する気体流を発生させる気体流発生手段と、
前記ナノファイバを前記気体流と共に案内する管状の案内体であって、絶縁体からなる内壁を有する案内体と、
前記案内体に接触状態で配置される調整電極と、
前記調整電極を所定の電位とする調整電源と
を備えるナノファイバ製造装置。
【請求項2】
前記案内体の前記内壁は、レーヨンよりも正に帯電しやすい、または、ポリエステルよりも負に帯電しやすい絶縁体からなる請求項1に記載のナノファイバ製造装置。
【請求項3】
前記案内体の前記内壁は、フッ素系樹脂からなる請求項2に記載のナノファイバ製造装置。
【請求項4】
さらに、
前記案内体により案内されるナノファイバを収集する収集手段と、
前記収集手段にナノファイバを誘引する誘引手段と
を備える請求項1に記載のナノファイバ製造装置。
【請求項5】
原料液を空間中で静電爆発させ、ナノファイバを製造するナノファイバ製造方法であって、
前記原料液を空間中に流出させる流出孔を有する流出工程と、
前記原料液に電荷を付与して帯電させる帯電工程と、
静電爆発により空間中で製造されるナノファイバを搬送する気体流を発生させる気体流発生工程と、
気体流により搬送されるナノファイバを案内する案内体の内壁の帯電状態を調整する調整工程と
を含むナノファイバ製造方法。
【請求項6】
さらに、
前記案内体により案内されるナノファイバを収集手段により収集する収集工程と、
前記収集手段にナノファイバを誘引する誘引工程と
を含む請求項5に記載のナノファイバ製造方法。
【請求項7】
前記帯電工程において、原料液に正の電荷を付与した場合、前記調整工程において案内体の内壁を正の帯電状態に調整し、
前記帯電工程において、原料液に負の電荷を付与した場合、前記調整工程において案内体の内壁を負の帯電状態に調整する
請求項5に記載のナノファイバ製造方法。
【請求項8】
さらに、
原料液にレーヨン、または、レーヨンより正に帯電しやすい樹脂が含まれている場合、前記帯電工程において、原料液を正に電荷させ、
原料液にポリエステル、または、ポリエステルより負に帯電しやすい樹脂が含まれている場合、前記帯電工程において、原料液を負に電荷させる
請求項7に記載のナノファイバ製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−24577(P2010−24577A)
【公開日】平成22年2月4日(2010.2.4)
【国際特許分類】
【出願番号】特願2008−187216(P2008−187216)
【出願日】平成20年7月18日(2008.7.18)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成20年度、独立行政法人新エネルギー・産業技術総合開発機構「革新的部材産業創出プログラム/新産業創造高度部材基盤技術開発/先端機能発現型新構造繊維部材基盤技術の開発」にかかる委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】