説明

ニッケル水素二次電池

【課題】正極活物質の利用率を向上させつつ、放電時、その作動電圧の低下を抑制することができるニッケル水素二次電池を提供する。
【解決手段】ニッケル水素二次電池は正極24及び負極26を備え、正極24は水酸化ニッケル粒子36の正極活物質粉末と、正極活物質粉末中に分布された正極添加材であって、Y、Yb、Er及びこれら元素の化合物よりなる群から選ばれた少なくとも1種を含む正極添加材38とを有し、負極26は、水素吸蔵合金の粉末44と、この水素吸蔵合金の粉末44中に分布された負極添加材であって、Bi、In及びこれら元素の化合物よりなる群から選ばれた少なくとも1種を含む負極添加材46とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ニッケル水素二次電池に関する。
【背景技術】
【0002】
ニッケル水素二次電池は、ニッケルカドミウム二次電池に比べて高容量で、且つ環境安全性にも優れているという点から、各種のポータブル機器やハイブリッド電気自動車等、さまざまな用途に使用されるようになっている。このように、さまざまな用途が見出されたことによりニッケル水素二次電池の更なる高容量化への要求が高まっている。
【0003】
ニッケル水素二次電池の正極容量及び負極容量は、正極板に含まれる水酸化ニッケル粒子及び負極板に含まれる水素吸蔵合金粒子の量によってそれぞれ決定される。一般に、二次電池にあっては、その過充電時、正極板で発生した酸素ガスを負極板で還元して、二次電池の内圧上昇を防止するため、正極容量よりも負極容量の方を大きく設定することが行われている。このため、ニッケル水素二次電池の電池容量は正極容量により規定される。ここで、ニッケル水素二次電池の容量を増やすには、正極の水酸化ニッケル粒子(正極活物質)の量を増やす必要があるが、電池の内部容積は一定であるため、正極活物質の量を増やすにも限界がある。そこで、更なる電池の高容量化を図るためには、正極活物質の利用率を高めることが考えられる。この正極活物質の利用率は、通常、二次電池に充電反応により充電された電力をどの程度放電できるかによって決定される。つまり、同じ量の正極活物質の使用でもより多く放電できれば、正極活物質の利用率は高くなり、その二次電池は高容量となる。
【0004】
ここで、正極活物質の利用率を高めたニッケル水素二次電池としては、例えば、特許文献1のニッケル水素二次電池が知られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10−012238号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、ニッケル水素二次電池の場合、その正極にて、水酸化ニッケルNi(OH)(放電生成物)が酸化され、オキシ水酸化ニッケル(NiOOH)(充電生成物)が生成されることにより充電が行われる。このオキシ水酸化ニッケルには、β型(β−NiOOH)とγ型(γ−NiOOH)とがあり、γ型は、β型が生成された後に生成され、β型に比べて正極の単位質量当たりの容量を高くすることが知られている。それ故、正極活物質の利用率を高くしたニッケル水素二次電池は、γ−NiOOHが生成されるところまで充電がなされていると考えられる。
【0007】
しかしながら、γ−NiOOHは、β−NiOOHに比べて放電性が低く、二次電池の放電時に、その作動電圧の低下を招くといった不具合を生じることがある。この不具合は、二次電池の放電率を高くした場合や、放電時、二次電池の雰囲気温度が低い場合などに、より顕著に生じる。
【0008】
本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、高容量化を図る一方、特に低温雰囲気下での二次電池の放電時、その作動電圧の低下を抑制することができるニッケル水素二次電池を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明者等は、ニッケル水素二次電池の正極活物質の利用率を向上させることに伴う電池の作動電圧の低下を抑制する手段を鋭意検討した。本発明者等は、この検討過程で、負極にBi、In及びこれら元素のそれぞれの化合物のうち少なくとも1種を含ませることにより、電池の作動電圧が向上することを見出し、本発明に想到した。
【0010】
すなわち、本発明の一態様によれば、容器内に電極群がアルカリ電解液とともに密閉状態で収容され、前記電極群がセパレータ、正極及び負極からなるニッケル水素二次電池において、前記正極は、水酸化ニッケルからなる正極活物質粉末と、前記正極活物質粉末中に分布され、Y、Yb、Er及びこれら元素のそれぞれの化合物よりなる群から選ばれた少なくとも1種を含む正極添加材とを有し、前記負極は、水素吸蔵合金の粉末と、前記水素吸蔵合金の粉末中に分布され、Bi、In及びこれら元素のそれぞれの化合物よりなる群から選ばれた少なくとも1種を含む負極添加材とを有することを特徴とするニッケル水素二次電池が提供される(請求項1)。
【0011】
好ましくは、前記正極活物質粉末の表面は、コバルト及びコバルト化合物よりなる群から選ばれた少なくとも1種により被覆されている構成とする(請求項2)。
【0012】
より好ましくは、前記負極添加材の含有量は、前記水素吸蔵合金100重量部に対して0.3〜1.5重量部の範囲にある構成とする(請求項3)。
【0013】
また、前記水素吸蔵合金は、一般式:Ln1−xMgNiy−a−bAlにて表される組成を有し、前記式中、Lnは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y,Zr及びTiよりなる群から選ばれた少なくとも1種の元素を表し、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれた少なくとも1種の元素を表し、添字a、b、x、yは、それぞれ0.05≦a≦0.30、0≦b≦0.50、0.05≦x≦0.30、2.8≦y≦3.9を満たす数を表す構成とすることが好ましい(請求項4)。
【0014】
更に、前記水素吸蔵合金が、CeNi型の結晶構造を有している構成とすることが好ましい(請求項5)。
【発明の効果】
【0015】
本発明に係るニッケル水素二次電池においては、正極にY、Yb、Er及びこれら元素のそれぞれの化合物よりなる群から選ばれる少なくとも1種を含む正極添加材と、負極にBi、In及びこれら元素のそれぞれの化合物よりなる群から選ばれる少なくとも1種を含む負極添加材とを含んでいる。前記正極添加材は、正極活物質の利用率向上に寄与し、前記負極添加材は、正極活物質の利用率向上効果を維持しつつ電池の作動電圧の向上に寄与することから、得られるニッケル水素二次電池は、正極活物質の利用率、電池の作動電圧がともに高く、その工業的価値は極めて高い。
【図面の簡単な説明】
【0016】
【図1】本発明の一実施形態に係るニッケル水素二次電池を部分的に破断して示した斜視図である。
【図2】正極活物質粒子の表面を導電剤で被覆した正極合剤を含むニッケル水素二次電池を部分的に破断して示した斜視図である。
【発明を実施するための形態】
【0017】
以下、本発明に係るニッケル水素二次電池(以下、単に電池と称する)を、図面を参照して説明する。
本発明が適用される電池としては特に限定されないが、例えば、図1に示すAAサイズの円筒型電池2に本発明を適用した場合を例に説明する。
【0018】
図1に示すように、電池2は、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10の底壁は導電性を有し、負極端子として機能する。外装缶10の開口内には、導電性を有する円板形状の蓋板14及びこの蓋板14を囲むリング形状の絶縁パッキン12が配置され、絶縁パッキン12は外装缶10の開口縁をかしめ加工することにより外装缶10の開口縁に固定されている。即ち、蓋板14及び絶縁パッキン12は互いに協働して外装缶10の開口を気密に閉塞している。
【0019】
しかしながら、蓋板14は中央にガス抜き孔16を有し、そして、蓋板14の外面上にはガス抜き孔16を塞ぐゴム製の弁体18が配置されている。更に、蓋板14の外面上には、弁体18を覆うようにしてフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に向けて押圧している。従って、通常時、ガス抜き孔16は弁体18によって気密に閉じられている。一方、外装缶10内にガスが発生し、その内圧が高まれば、弁体18は内圧によって圧縮され、ガス抜き孔16を開き、この結果、外装缶10内からガス抜き孔16及び正極端子20を介してガスが放出される。つまり、ガス抜き孔16、弁体18及び正極端子20は電池のための安全弁を形成している。
【0020】
外装缶10には、電極群22が収容されている。この電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、これらは正極24と負極26の間にセパレータ28が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ28を介して正極24及び負極26が互い重ね合わされている。電極群22の最外周は負極26の一部(最外周部)により形成され、外装缶10の内周壁と接触している。即ち、負極26と外装缶10とは互いに電気的に接続されている。
【0021】
そして、外装缶10内には、電極群22の一端と蓋板14との間に正極リード30が配置され、正極リード30の両端は正極24の内端及び蓋板14にそれぞれ接続されている。従って、蓋板14の正極端子20と正極24とは、正極リード30及び蓋板14を介して互いに電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。
【0022】
更に、外装缶10内には、所定量のアルカリ電解液(図示せず)で満たされており、このアルカリ電解液はセパレータ28に含浸され、正極24と負極26との間での充放電反応を進行させる。なお、アルカリ電解液の種類としては、特に限定されないが、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができ、またアルカリ電解液の濃度についても特には限定されず、例えば、8N(規定度)のものを用いることができる。
【0023】
セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。
【0024】
正極24は、多孔質構造を有する導電性の正極基板と、正極基板の空孔内に保持された正極合剤とからなる。
このような正極基板としては、例えば、ニッケルめっきが施された網状、スポンジ状若しくは繊維状の金属体を用いることができる。
【0025】
正極合剤は、図1中円Q内に概略的に示されているが、正極活物質粒子36と、正極添加材38とを含む。更に、正極合剤は必要に応じて導電剤40及び結着剤42を含むことができ、この結着剤42は正極活物質粒子36、正極添加材38及び導電剤40を互いに結着させると同時に正極合剤を正極基板に結着させる働きをなす。
正極活物質粒子36は、水酸化ニッケル粒子又は高次水酸化ニッケル粒子である。なお、これら水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を含む固溶体の形態をなすものであってもよい。
【0026】
正極添加材38は、Y、Yb、Er及びこれら元素のそれぞれの化合物の群から選ばれた少なくとも1種を含んでいる。この正極添加材38は粒子状をなし、正極活物質粒子36間に分布されている。ここで、Y、Yb及びErのそれぞれの化合物としては、酸化イットリウム、酸化イッテリビウム、酸化エルビウム、炭酸イットリウム、炭酸イッテリビウム、炭酸エルビウム、フッ化イットリウム、フッ化イッテリビウム、フッ化エルビウム等が挙げられる。この正極添加材38は、正極活物質の導電性の低下を抑え且つ正極活物質の利用率の向上に寄与する。
【0027】
導電剤40としては、例えば、コバルト酸化物(CoO)やコバルト水酸化物(Co(OH))などのコバルト化合物及びコバルト(Co)から選択された1種又は2種以上を用いることができる。この導電剤40は、必要に応じて正極合剤に添加されるものであり、添加される形態としては、粉末の形態のほか、正極活物質38の表面を覆う被覆の形態で正極合剤に含まれていてもよい。
【0028】
正極合剤の結着剤42としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFE(ポリテトラフルオロエチレン)ディスパージョン、HPC(ヒドロキシプロピルセルロース)ディスパージョンなどを用いることができる。
【0029】
正極24は、例えば以下のようにして製造することができる。
まず、水酸化ニッケル粒子36からなる正極活物質粉末、正極添加材38、水、そして、必要に応じて導電剤40及び結着剤42を含むペーストを調製する。ペーストは例えばスポンジ状のニッケル製金属体に充填され、乾燥させられる。乾燥後、水酸化ニッケル粒子等が充填された金属体は、ロール圧延されてから裁断され、正極24が作製される。
【0030】
負極26は、帯状をなす導電性の負極基板(芯体)を有し、この負極基板に負極合剤が保持されている。
負極基板は、貫通孔が分布されたシート状の金属材からなり、例えば、パンチングメタルシートや、金属粉末を型成形して焼結した焼結基板を用いることができる。負極合剤は、負極基板の貫通孔内に充填されるばかりでなく、負極基板の両面上にも層状にして保持されている。
【0031】
負極合剤は、図1中円R内に概略的に示されているが、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子44と、放電時における電池の作動電圧低下を抑制する負極添加材46とを含む。負極合剤は必要に応じて導電助剤47及び結着剤48を更に含むことでき、結着剤48は水素吸蔵合金粒子44、負極添加材46及び導電助剤47を互いに結着させると同時に負極合剤を負極基板に結着させる働きをなす。ここで、結着剤48としては親水性若しくは疎水性のポリマー等を用いることができ、導電助剤47としては、カーボンブラックや黒鉛を用いることができる。
【0032】
水素吸蔵合金粒子44における水素吸蔵合金の組成は自由に選択できるが、一般式:
Ln1−xMgNiy−a−bAl ・・・(I)
で表されるものを用いるのが好ましい。
【0033】
ただし、一般式(I)中、Lnは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y,Zr及びTiよりなる群から選ばれた少なくとも1種の元素を表し、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれた少なくとも1種の元素を表し、添字a、b、x、yは、それぞれ0.05≦a≦0.30、0≦b≦0.50、0.05≦x≦0.30、2.8≦y≦3.9を満たす数を表す。
【0034】
一般式(I)で示される水素吸蔵合金は、組成によりCaCu型、PrCo19型、PuNi型及びCeNi型等の結晶構造を有しているが、更に好ましくは、CeNi型構造を有するのが好ましい。この理由は、結晶構造が異なると、合金の微粉化の挙動が異なるためであり、CaCu型よりPrCo19型やPuNi型の方が微粉化が起こりにくく、CeNi型では更に微粉化が起こりにくい。微粉化が起こると添加材が存在しない新たな面が生じるため、添加材の効果が薄れるが、微粉化が起こりにくいと添加材の存在する面積の相対的な割合が高くなるためである。
【0035】
水素吸蔵合金粒子44は、例えば以下のようにして得られる。
まず、所定の組成となるよう金属原材料を秤量して混合し、この混合物を例えば誘導溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施す。この後、インゴットを粉砕し、篩分けにより所望粒径に分級して、水素吸蔵合金粒子44が得られる。
【0036】
負極添加材46は、Bi、In及びこれら元素のそれぞれの化合物よりなる群から選ばれる少なくとも1種を含んでいる。この負極添加材46は粒子状をなし、水素吸蔵合金粒子44間に分布している。ここで、Bi及びInのそれぞれの化合物としては、酸化ビスマス、酸化インジウム、炭酸ビスマス、炭酸インジウム、フッ化ビスマス、フッ化インジウム等が挙げられる。
【0037】
前述したように正極への充電量の増加は電池の作動電圧の低下といった弊害を生じさせるが、このような弊害は負極添加材46が電池の作動電圧の低下を抑制し、作動電圧を高める働きをなすことで解消される。ここで、負極合剤中の負極添加材の含有量が水素吸蔵合金100重量部に対して0.3重量部より少ないと、室温(25℃)での使用時、低温(−10℃)での使用時ともに電池の作動電圧の向上は認められない。一方、負極添加材の含有量が水素吸蔵合金100重量部に対して1.5重量部を超えると、低温(−10℃)での使用時、電池の作動電圧は低下してしまう。よって、作動電圧の向上効果を発揮させるには,負極添加材の含有量を、水素吸蔵合金100重量部に対して0.3〜1.5重量部の範囲に設定することが好ましい。
【0038】
負極26は、例えば以下のようにして製造することができる。
まず、水素吸蔵合金粒子44からなる水素吸蔵合金粉末、負極添加材46、必要に応じて導電助剤、結着剤48及び水を混練してペースト(負極用)を調製する。得られたペーストは負極基板に塗着され、乾燥させられる。乾燥後、水素吸蔵合金粒子44等が付着した負極基板はロール圧延及び裁断され、これにより負極26が作製される。
【実施例】
【0039】
1.電池の製造
実施例1
(1)正極の作製
ニッケルに対して亜鉛3重量%、コバルト1重量%となるように、硫酸ニッケル、硫酸亜鉛及び硫酸コバルトの混合水溶液を攪拌しながら、この混合水溶液に水酸化ナトリウム水溶液を徐々に添加して反応させ、ここでの反応中、pHを13〜14に安定させて水酸化ニッケルの複合粒子を析出させた。
得られた複合粒子を10倍の量の純水で3回洗浄した後、脱水、乾燥することにより、正極活物質36としての水酸化ニッケル粒子を作製した。
【0040】
次に、作成した水酸化ニッケル粒子100重量部に、10重量部の水酸化コバルト(導電剤40)、0.5重量部の酸化イットリウム(正極添加材38)及び40重量部のHPC(ヒドロキシプロピルセルロース(結着剤42))のディスバージョン液を混合して正極活物質スラリーを調製し、この正極活物質スラリーを正極基板としての発泡ニッケルシートに塗着・充填した。水酸化ニッケル粒子が付着した発泡ニッケルシートを乾燥後、ロール圧延して裁断し、正極を得た。ここで、得られた正極中の正極合剤は、図1中円Qに示すように、正極添加材38と粉末状の導電剤40とが正極活物質36間に存在する態様をなしている。
【0041】
(2)水素吸蔵合金及び負極の作製
先ず、60重量%のランタン、20重量%のセリウム、5重量%のプラセオジム、15重量%のネオジムを含む希土類成分を調製した。得られた希土類成分、ニッケル、コバルト、マンガン、アルミニウムを秤量して、これらがモル比で1.00:3.80:0.70:0.25:0.35の割合となる混合物を調製した。得られた混合物は、誘導溶解炉で溶解され、インゴットとされた。次いで、このインゴットに対し、温度1000℃のアルゴン雰囲気下にて10時間加熱する熱処理を施し、その組成が(La0.60Ce0.20Pr0.05Nd0.15)Ni3.80Co0.70Mn0.25Al0.35となる水素吸蔵合金のインゴットを得た。この後、このインゴットを不活性雰囲気中で機械的に粉砕して篩分けし、400メッシュ〜200メッシュの間に残る水素吸蔵合金粒子からなる粉末を選別した。得られた水素吸蔵合金の粉末に対しレーザ回折・散乱式粒度分布測定装置によりその粒度分布を測定した結果、水素吸蔵合金の粉末の重量積分50%にあたる粒子はその平均粒径が30μm、最大粒径が45μmであった。
【0042】
得られた水素吸蔵合金の粉末100重量部に対し、ポリアクリル酸ナトリウム0.4重量部、カルボキシメチルセルロース0.1重量部、酸化ビスマス0.3重量部、スチレンブタジエンゴム(SBR)のディスバージョン(固形分50重量%)1.0重量部(固形分換算)、カーボンブラック1.0重量部、および水30重量部を添加して混練し、スラリーを調製した。
【0043】
このスラリーを負極基板としての鉄製の孔あき板の両面に均等、且つ、厚さが一定となるように塗布した。なお、この孔あき板は60μmの厚みを有し、その表面にはニッケルめっきが施されている。
スラリーの乾燥後、水素吸蔵合金の粉末が付着した孔あき板を更にロール圧延して裁断し、負極1枚あたりの水素吸蔵合金量が9.0gとなるAAサイズ用の負極を作成した。
【0044】
(3)ニッケル水素二次電池の組み立て
得られた正極24及び負極26をこれらの間にセパレータ28を挟んだ状態で渦巻状に巻回し、電極群22を作製した。ここでの電極群22の作製に使用したセパレータ28はポリプロピレン繊維製不織布から成り、その厚みは0.1mm(目付量40g/m2)であった。
有底円筒形状の外装缶10内に上記電極群22を収納するとともに、リチウム、カリウムを含有した30重量%の水酸化ナトリウム水溶液から成るアルカリ電解液を注液した。この後、蓋板14等で外装缶10の開口を塞ぎ、公称容量が2000mAhのAAサイズの密閉型ニッケル水素二次電池2を組み立てた。このニッケル水素二次電池を電池Aと称す。
【0045】
実施例2
負極に添加する酸化ビスマスの量を0.5重量部にしたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池B)を組み立てた。
【0046】
実施例3
負極に添加する酸化ビスマスの量を1.0重量部にしたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池C)を組み立てた。
【0047】
実施例4
負極に添加する酸化ビスマスの量を2.0重量部にしたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池D)を組み立てた。
【0048】
実施例5
正極に酸化イットリウムの代わりに酸化イッテルビウムを添加したこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池G)を組み立てた。
【0049】
実施例6
正極に酸化イットリウムの代わりに酸化エルビウムを添加したこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池H)を組み立てた。
【0050】
実施例7
負極に酸化ビスマスの代わりに酸化インジウムを添加したこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池I)を組み立てた。
【0051】
実施例8
水素吸蔵合金の組成を(La0.3Nd0.3Sm0.4)0.85Mg0.15Ni3.55Al0.25にしたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池K)を組み立てた。
【0052】
実施例9
水素吸蔵合金の組成を(La0.3Nd0.3Sm0.4)0.85Mg0.15Ni2.92Al0.10にしたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池L)を組み立てた。
【0053】
実施例10
水素吸蔵合金の組成を(La0.3Nd0.3Sm0.4)0.85Mg0.15Ni3.35Al0.20にしたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池M)を組み立てた。
【0054】
実施例11
図2中円S内に示すように、正極合剤中の正極活物質36の表面が導電剤50で被覆されていること以外は実施例1の電池Aと同様なニッケル水素二次電池(電池N)を組み立てた。
【0055】
より詳しくは、正極の作製において、前記混合水溶液中に水酸化ニッケルを析出させた後、この水酸化ニッケルが析出した前記混合水溶液中に、その反応中のpHを9〜10に維持しながら硫酸コバルト水溶液を加えた。これにより、主成分が水酸化ニッケルである球状水酸化物の粒子を核とし、この核の表面に水酸化コバルトが析出した複合粒子を得た。なお、この水酸化コバルトは、球状水酸化物の粒子に対して10重量%の割合で析出させた。次いで、この複合粒子を10倍の量の純水で3回洗浄した後、脱水、乾燥することにより、コバルト被覆層(導電剤50)を有する被覆水酸化ニッケル活物質(正極活物質36)を作製した。そして、ここでは粉末状の導電剤は添加せずに、被覆水酸化ニッケル活物質100重量部に0.5重量部の酸化イットリウム(正極添加材38)及び40重量部のHPC(結着剤42)のディスパージョン液を混合して、正極活物質スラリーを作製したこと以外は、実施例1の電池Aと同様なニッケル水素二次電池を作製した。
【0056】
実施例12
水素吸蔵合金の組成を(La0.3Nd0.3Sm0.4)0.85Mg0.15Ni3.35Al0.20にしたこと以外は実施例11の電池Nと同様なニッケル水素二次電池(電池P)を組み立てた。
【0057】
比較例1
負極に酸化ビスマスを添加しないこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池E)を組み立てた。
【0058】
比較例2
正極に酸化イットリウムを添加しないこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池F)を組み立てた。
【0059】
比較例3
水素吸蔵合金の組成を(La0.3Nd0.3Sm0.4)0.85Mg0.15Ni3.55Al0.25にしたこと、そして、負極に酸化ビスマスを添加しないこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池J)を組み立てた。
【0060】
比較例4
負極に酸化ビスマスを添加しないこと以外は実施例11の電池Nと同様なニッケル水素二次電池(電池O)を組み立てた。
【0061】
2.ニッケル水素二次電池及び水素吸蔵合金の評価方法
(1)初期活性化処理
電池A〜電池Pに対し、温度25°Cの下にて、0.1Cの充電電流で16時間の充電を行った後に、0.2Cの放電電流で電池電圧が0.5Vになるまで放電させる初期活性化処理を2回繰り返した。
【0062】
(2)正極活物質の利用率
初期活性化処理済みの電池A〜電池Pに対し、25℃の雰囲気下にて、1.0Cの電流で1時間充電し、その後、同一の雰囲気下にて0.2Cの電流で電池電圧が0.8Vになるまで放電させたときの電池の放電容量を測定した。このときの放電容量を実測放電容量とする。一方、正極に含まれる全活物質の量から求められる放電容量を理論容量とする。そして、(II)式で示される正極活物質の利用率を求めた。
【0063】
正極活物質の利用率=(実測容量/理論容量)×100 ・・・(II)
そして、各電池の正極活物質の利用率は、比較例1の電池での利用率を100としたときの指数で表1に示した。
【0064】
(3)作動電圧
初期活性化処理済みの電池A〜電池Pに対し、25℃の雰囲気下にて、1.0Cの電流で1時間充電し、その後、同一の雰囲気下にて4.0Cの電流で電池電圧が0.8Vになるまで放電させたときの電池の放電容量を測定する一方、全放電時間の中間時点での電池の電圧を4C放電時の作動電圧として求めた。これらの結果を、比較例1での4C放電時の作動電圧を減算項とした差(単位:mV)でもって表1に示した。
【0065】
更に、各電池について、25℃の雰囲気下にて、1.0Cの電流で1時間充電し、その後、−10℃の雰囲気下にて1.0Cの電流で電池電圧が0.8Vになるまで放電し、低温での電池放電容量を測定する一方、全放電時間の中間時点での電池の電圧を−10℃放電時の作動電圧として求めた。これらの結果を、比較例1での−10℃放電時の作動電圧を減算項とした差(単位:mV)でもって表1に示した。
【0066】
(4)水素吸蔵合金の結晶構造
前述した粉砕直後の水素吸蔵合金はその一部の粉末が取り分けられており、この取り分けた合金粉末に対してX線回折測定(XRD測定)を行った。測定には株式会社リガク製(平行ビームX線回折装置)の装置を用い、ここでの測定仕様は、X線源:CuKα、管電圧:50kV、管電流:300mA、スキャンスピード:1°/min、試料の回転速度:60rpmであった。測定結果のプロファイルに基づき、水素吸蔵合金の結晶構造を特定した。その特定結果を表1に併せて示した。
【0067】
【表1】

【0068】
3.評価結果
表1から次のことが明らかである。
(1)負極に酸化ビスマスを添加した実施例1〜4(電池A〜D)と負極に酸化ビスマスの添加がない比較例1(電池E)とを比較すると、実施例1〜4と比較例1との間には正極活物質の利用率に差は無いが、4C放電時及び−10℃放電時の作動電圧に関してみたとき、実施例1〜4は比較例1に比べて、両方の作動電圧は何れも高い。このことは、電池の放電時、両方の作動電圧の低下が抑制されていることを意味する。
【0069】
(2)また、実施例1〜4(電池A〜D)を互いに比較すると、上述の作動電圧の低下を抑制する効果は負極への酸化ビスマスの添加量により変化することが分かる。具体的には、その添加量が0.3重量部を超えると、4C放電時及び−10℃放電時の作動電圧の双方に関して、これら作動電圧の低下を抑制する効果が現れるが、添加量が2重量部になると、−10℃放電時の作動電圧の低下を抑制する効果は現れず、逆に、その作動電圧の低下は一層促進されていることがわかる。このことから、酸化ビスマスの添加量は、正極活物質100重量部に対し、0.3〜1.5重量部の範囲、より好ましくは、0.3〜1.0重量部の範囲に設定するのが好ましい。
【0070】
(3)更に、正極に酸化イットリウムが添加された実施例1(電池A)と正極に酸化イットリウムが添加されていない比較例2(電池F)とを比較すると、比較例2(電池F)では実施例1(電池A)に比べて正極活物質の利用率、即ち、電池の高容量化が大きく低下すると同時に、前述した両作動電圧低下の抑制効果もあまり達成されないことがわかる。
正極及び負極への添加材が上述の相乗効果を発揮するメカニズムについては明確になっていないものの、負極への酸化ビスマスの添加により前記両方の作動電圧低下の抑制を図る場合、正極にも酸化イットリウムを添加することで、両方の作動電圧低下の更なる抑制を達成できることがわかる。
【0071】
(4)実施例1(電池A)、実施例5(電池G)及び実施例6(電池H)を互いに比較すれば、酸化イットリウムの代わりに酸化イッテルビウム又は酸化エルビウムを正極添加材として添加しても、酸化イットリウムの場合と同様に正極活物質の利用率の向上と同時に、両作動電圧低下を抑制できることがわかる。
【0072】
(5)実施例1(電池A)と実施例7(電池I)との比較から、負極添加材としての酸化ビスマス及び酸化インジウムは共に、両方の作動電圧低下の抑制効果は得られるが、ここでの抑制効果に関し、酸化インジウムの添加は酸化ビスマスの添加に及ばないことがわかる。
【0073】
(6)また、負極の水素吸蔵合金がCaCu型結晶構造の組成を有する実施例1(電池A)とその水素吸蔵合金がPrCo19型結晶構造の組成を有する実施例8(電池K)との比較から、実施例8(電池K)は実施例1(電池A)に比べて−10℃放電時における作動電圧低下の抑制に優れていることがわかる。ここで、比較例3(電池J)はその水素吸蔵合金が実施例8(電池K)での場合と同一組成で且つ同一結晶構造を有するものの、負極添加材の添加を受けておらず、上述した両方の作動電圧低下の抑制を達成していない。このことから、上記した両方の作動電圧低下の抑制効果は、水素吸蔵合金を組成や結晶構造を変更して得られるものではなく、特定の結晶構造を持つ水素吸蔵合金と負極添加材としての酸化ビスマスの添加との組み合わせにより、より大きく達成されることがわかる。
【0074】
(7)実施例8(電池K)、実施例9(電池L)、実施例10(電池M)の水素吸蔵合金の結晶構造に着目すれば、水素吸蔵合金の結晶構造がPuNi型である実施例9はPrCo19型の実施例8に比べて、両方の作動電圧低下の抑制効果はやや劣り、一方、CeNi型である実施例10は実施例8に比べて、両方の作動電圧低下の抑制に更に優れていることがわかる。このことから、水素吸蔵合金の結晶構造が両方の作動電圧低下の抑制に大きく影響することがわかり、CeNi型が両方の作動電圧低下の抑制に最も寄与することがわかる。
【0075】
(8)実施例1(電池A)、実施例11(電池N)及び比較例4(電池O)を導電剤の添加形態に着目して比較すると、正極合剤中に導電剤としてのコバルト化合物を粉末の形態で添加した実施例1に比べ、正極合剤の正極活物質、即ち、水酸化ニッケル粒子の表面に導電剤としてのコバルト化合物を被覆した実施例11及び比較例4では正極活物質の利用率の向上が認められる。
【0076】
このことから、正極活物質の利用率向上には、導電剤としてのコバルト化合物を正極活物質である水酸化ニッケル粒子の表面に被覆することが有効であるとわかる。ここで、比較例4の場合、正極活物質の利用率は向上しているものの、両方の作動電圧低下は一層進んでいる。これは、前述したように充電時、正極にγ−NiOOHの生成が促進されたことで、正極の放電性が低下したことに起因するものと考えられる。
【0077】
これに対し、比較例4とは負極に酸化ビスマスを添加した点のみで異なる実施例11は、γ−NiOOHの生成に起因した放電性の低下に拘わらず、両方の作動電圧低下の抑制を図ることができ、正極活物質の利用率の向上と両方の作動電圧低下の抑制とを両立させていることがわかる。
【0078】
(9)実施例12(電池P)は、正極活物質の利用率の向上と同時に、4C放電時及び−10℃放電時での両方の作動電圧低下の抑制を達成できるから、実施例12の構成は前記利用率の向上と作動電圧低下の抑制との両立を図るうえで最適であることがわかる。具体的には、実施例12(電池P)の場合正極は、コバルト化合物が被覆された水酸化ニッケル粒子と、正極添加材として酸化イットリウムとを含み、負極は、CeNi型の結晶構造を有する組成の水素吸蔵合金と、負極添加材としての酸化ビスマスとを含んでいる。
本発明は、上記した一実施形態及び実施例に限定されるものではなく、種々の変形が可能であり、例えば、ニッケル水素二次電池は、角形電池であってもよく、機械的な構造は格別限定されることはない。また、前述の各実施例において、水素吸蔵合金の結晶構造は、CaCu5型、PuNi3型、Pr5Co19型、Ce2Ni7型に限らず、CeNi型、GdCo型、CeCo19型等であってもよい。
【符号の説明】
【0079】
2 ニッケル水素二次電池
24 正極
26 負極
36 水酸化ニッケル粒子
38 正極添加材
40 導電剤
42 結着剤
44 水素吸蔵合金粒子
46 負極添加材
48 結着剤
50 導電剤

【特許請求の範囲】
【請求項1】
容器内に電極群がアルカリ電解液とともに密閉状態で収容され、前記電極群がセパレータ、正極及び負極からなるニッケル水素二次電池において、
前記正極は、
水酸化ニッケルからなる正極活物質粉末と、
前記正極活物質粉末中に分布され、Y、Yb、Er及びこれら元素のそれぞれの化合物よりなる群から選ばれた少なくとも1種を含む正極添加材と
を有し、
前記負極は、
水素吸蔵合金の粉末と、
前記水素吸蔵合金の粉末中に分布され、Bi、In及びこれら元素のそれぞれの化合物よりなる群から選ばれた少なくとも1種を含む負極添加材と
を有する
ことを特徴とするニッケル水素二次電池。
【請求項2】
前記正極活物質粉末の表面は、コバルト及びコバルト化合物よりなる群から選ばれた少なくとも1種により被覆されていることを特徴とする請求項1に記載のニッケル水素二次電池。
【請求項3】
前記負極添加材の含有量は、前記水素吸蔵合金100重量部に対して0.3〜1.5重量部の範囲にあることを特徴とする請求項1又は2に記載のニッケル水素二次電池。
【請求項4】
前記水素吸蔵合金は、
一般式:
Ln1−xMgNiy−a−bAl
にて表される組成を有し、
前記式中、
Lnは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y,Zr及びTiよりなる群から選ばれた少なくとも1種の元素を表し、
Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれた少なくとも1種の元素を表し、
添字a、b、x、yは、それぞれ0.05≦a≦0.30、0≦b≦0.50、0.05≦x≦0.30、2.8≦y≦3.9を満たす数を表す
ことを特徴とする請求項1〜3の何れかに記載のニッケル水素二次電池。
【請求項5】
前記水素吸蔵合金が、
CeNi型の結晶構造を有していることを特徴とする請求項1〜4の何れかに記載のニッケル水素二次電池。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−74299(P2012−74299A)
【公開日】平成24年4月12日(2012.4.12)
【国際特許分類】
【出願番号】特願2010−219492(P2010−219492)
【出願日】平成22年9月29日(2010.9.29)
【出願人】(510206213)FDKトワイセル株式会社 (36)
【Fターム(参考)】