説明

ハイブリッド式建設機械及びこれに用いるカップリング装置

【課題】電動システムの故障等によって、電動モータのトルクが発生できない場合でも作業ができ、老朽化等によって電動システムが修復不能であっても、引き続き安全に使用可能なハイブリッド式建設機械及びこれに用いるカップリング装置を提供する。
【解決手段】油圧モータと電動モータと減速機構との駆動軸を結合した旋回駆動装置と、電動モータと油圧モータのトルクの合計で旋回体の駆動を行う油圧電動複合旋回モードと、油圧モータのみのトルクで旋回体の駆動を行う油圧単独旋回モードとの切替えを行う制御装置と、パワーコントロールユニットあるいは蓄電デバイスが故障した場合、除去される前記電動モータと同じ取り合い機構を備え、除去された前記旋回電動モータの代替用の連結手段として、前記取り合い機構を介して、前記油圧モータと前記減速機構とに結合可能に装設されるカップリング装置とを備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハイブリッド式建設機械及びこれに用いるカップリング装置に係り、特に油圧ショベル等の旋回体を有するハイブリッド式建設機械及びこれに用いるカップリング装置に関する。
【背景技術】
【0002】
例えば油圧ショベルのような建設機械においては、動力源として、ガソリン、軽油等の燃料を用い、エンジンによって油圧ポンプを駆動して油圧を発生することにより油圧モータ、油圧シリンダといった油圧アクチュエータを駆動する。油圧アクチュエータは、小型軽量で大出力が可能であり、建設機械のアクチュエータとして広く用いられている。
【0003】
一方で、近年、電動モータ及び蓄電デバイス(バッテリや電気二重層キャパシタ等)を用いることにより、油圧アクチュエータのみを用いた従来の建設機械よりエネルギ効率を高め、省エネルギ化を図った建設機械が提案されている(例えば、特許文献1参照)。
【0004】
電動モータ(電動アクチュエータ)は油圧アクチュエータに比べてエネルギ効率が良い、制動時の運動エネルギを電気エネルギとして回生できる(油圧アクチュエータの場合は熱にして放出)といった、エネルギ的に優れた特徴がある。
【0005】
例えば、特許文献1に示される従来技術では、旋回体の駆動アクチュエータとして電動モータを搭載した油圧ショベルの実施の形態が示されている。油圧ショベルの旋回体を走行体に対して旋回駆動するアクチュエータ(従来は油圧モータを使用)は、使用頻度が高く、作業において起動停止、加速減速を頻繁に繰り返す。
【0006】
このとき、減速時(制動時)における旋回体の運動エネルギは、油圧アクチュエータの場合は油圧回路上で熱として捨てられるが、電動モータの場合は電気エネルギとしての回生が見込めることから、省エネルギ化が図れる。
【0007】
また、油圧モータと電動モータを両方搭載し、合計トルクにより旋回体を駆動する建設機械が提案されている(例えば、特許文献2及び特許文献3参照)。
【0008】
特許文献2では、旋回体駆動用油圧モータに電動モータが直結され、操作レバーの操作量によってコントローラが電動モータに出力トルクを指令する油圧建設機械のエネルギ回生装置が開示されている。減速(制動)時においては、電動モータが旋回体の運動エネルギを回生し、電気エネルギとしてバッテリに蓄電する。
【0009】
特許文献3では、旋回駆動用油圧モータのイン側とアウト側の差圧を用いて、電動モータへのトルク指令値を算出し、油圧モータと電動モータとの出力トルク配分を行うハイブリッド型建設機械が開示されている。
【0010】
特許文献2及び3の従来技術は、いずれも、旋回駆動用アクチュエータとして、電動モータと油圧モータを併用することによって、従来の油圧アクチュエータ駆動の建設機械に慣れたオペレータにも違和感なく操作できると共に、簡単かつ実用化が容易な構成で省エネルギ化を図っている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2001−16704号公報
【特許文献2】特開2004−124381号公報
【特許文献3】特開2008−63888号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
特許文献1記載のハイブリッド式油圧ショベルでは、減速時(制動時)における旋回体の運動エネルギは、電動モータによって電気エネルギとして回生されるため、省エネルギの観点から効果的である。
【0013】
一方で、電気系の故障が生じると、電動モータへの電力供給が断たれるので、旋回体の旋回動作ができなくなる虞がある。油圧ショベルは過酷な環境で長い年月使用されるため、電気系の故障が起きると、それ以上の機械の継続使用ができなくなる虞がある。
【0014】
特許文献2及び3記載のハイブリッド式油圧ショベルでは、旋回装置に油圧モータと電動モータを両方搭載しているため、万一、電気系の問題が生じても、油圧モータ単独にてある程度の動作を行える可能性がある。
【0015】
しかし、旋回駆動に要する全体トルクのうち、電動モータが一定のトルクを受け持っているために、インバータ、モータ等の電気系の問題や、蓄電デバイスのエネルギ不足や過充電状態等、何らかの理由で電動モータのトルクを発生できない場合には、旋回体を駆動するための全体トルクが不足し、正常時と同じように起動・停止することができなくなる可能性がある。
【0016】
また、一般に高出カモータとして使用される永久磁石同期モータでは、トルクを出力しない状態でロータ部が強制的に回転させられると、発電作用により、電動モータ端子部に誘起電圧が生じる。このような状態で建設機械を運転していて、電動モータ、インバータ、蓄電装置等の電動システムに何らかの故障が生じた場合には、上述した誘起電圧が故障箇所により短絡され、不測の短絡電流が発生する虞がある。この結果、例えばインバータを構成するIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)などの素子が壊れたり、電動システムの一部が過熱して性能を落とす可能性がある。
上述したこれらの特許文献では、電気系が故障したときの旋回体に対する具体的な稼働方法等については、明確に記載されていない。
【0017】
本発明は上述の事柄に基づいてなされたもので、その目的は、旋回体の駆動に油圧モータと電動モータとを用いたハイブリッド式建設機械において、電動モータ、インバータ、蓄電装置等の電動システムの故障等によって、電動モータのトルクが発生できない事態が発生した場合でも、旋回体を駆動して作業を行うことができ、特に、老朽化等によって電動システムが修復不能であっても、引き続き安全に使用可能なハイブリッド式建設機械及びこれに用いるカップリング装置を提供するものである。
【課題を解決するための手段】
【0018】
上記の目的を達成するために、第1の発明は、原動機と、前記原動機により駆動される油圧ポンプと、旋回体と、前記旋回体駆動用の電動モータと、前記電動モータを駆動するパワーコントロールユニットと、前記油圧ポンプにより駆動される前記旋回体駆動用の油圧モータと、前記電動モータと前記油圧モータとの動力を前記旋回体に伝達する減速機構と、前記電動モータに接続された蓄電デバイスと、前記旋回体の駆動を指令する旋回用の操作レバー装置とを備えたハイブリッド式建設機械において、前記油圧モータと前記電動モータと前記減速機構との駆動軸を結合した旋回駆動装置と、前記旋回用の操作レバー装置が操作されたときに前記電動モータと前記油圧モータの両方を駆動して、前記電動モータと前記油圧モータのトルクの合計で前記旋回体の駆動を行う油圧電動複合旋回モードと、前記旋回用の操作レバー装置が操作されたときに前記油圧モータのみを駆動して、前記油圧モータのみのトルクで前記旋回体の駆動を行う油圧単独旋回モードとの切替えを行う制御装置と、前記パワーコントロールユニットあるいは前記蓄電デバイスが故障した場合、除去される前記電動モータと同じ取り合い機構を備え、除去された前記旋回電動モータの代替用の連結手段として、前記取り合い機構を介して、前記油圧モータと前記減速機構とに結合可能に装設されるカップリング装置とを備えたものとする。
【0019】
また、第2の発明は、第1の発明において、前記カップリング装置は、前記油圧モータと前記減速機構とに連結されるカップリングハウジングと、前記カップリングハウジング内に回転可能に支持され、前記油圧モータの回転軸と前記減速機構の回転軸とを結合するカップリングシャフトとを備えたことを特徴とする。
【0020】
更に、第3の発明は、原動機と、前記原動機により駆動される油圧ポンプと、旋回体と、前記旋回体駆動用の電動モータと、前記電動モータを駆動するパワーコントロールユニットと、前記油圧ポンプにより駆動される前記旋回体駆動用の油圧モータと、前記電動モータと前記油圧モータとの動力を前記旋回体に伝達する減速機構と、前記電動モータに接続された蓄電デバイスと、前記旋回体の駆動を指令する旋回用の操作レバー装置と、前記油圧モータと前記電動モータと前記減速機構との駆動軸を結合した旋回駆動装置と、前記旋回用の操作レバー装置が操作されたときに前記電動モータと前記油圧モータの両方を駆動して、前記電動モータと前記油圧モータのトルクの合計で前記旋回体の駆動を行う油圧電動複合旋回モードと、前記旋回用の操作レバー装置が操作されたときに前記油圧モータのみを駆動して、前記油圧モータのみのトルクで前記旋回体の駆動を行う油圧単独旋回モードとの切替えを行う制御装置とを備えたハイブリッド式建設機械のカップリング装置であって、前記カップリング装置は、前記パワーコントロールユニットあるいは前記蓄電デバイスが故障した場合、除去される前記電動モータの代替用連結手段として前記旋回駆動装置に設けられ、前記油圧モータと前記減速機構とを結合可能とすることを特徴とする。
【0021】
また、第4の発明は、第3の発明において、前記油圧モータと前記減速機構とに連結されるカップリングハウジングと、前記カップリングハウジング内に回転可能に支持され、前記油圧モータの回転軸と前記減速機構の回転軸とを結合するカップリングシャフトとを備えたことを特徴とする。
【発明の効果】
【0022】
本発明によれば、旋回体の駆動に油圧モータと電動モータとを用いたハイブリッド式建設機械において、電動モータ、インバータ、蓄電装置等の電動システムが故障して電動モータのトルクが発生できない場合であっても、油圧モータ単独で旋回体を駆動して作業を行うことができる。更に、老朽化により電動システムが修理不能になっても、旋回電動モータと同様の回転体構造をもち、磁石やコイルを内蔵しないカップリング装置を旋回電動モータと交換することにより、油圧モータ単独で旋回体を駆動して機械の稼動を継続することができる。
【図面の簡単な説明】
【0023】
【図1】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態を示す側面図である。
【図2】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態を構成する電動・油圧機器のシステム構成図である。
【図3】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態のシステム構成及び制御ブロック図である。
【図4】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回油圧システムの構成を示す油圧回路図である。
【図5】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における油圧ポンプのトルク制御特性を示す特性図である。
【図6】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回用スプールのメータイン開口面積特性及びブリードオフ開口面積特性を示す特性図である。
【図7】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回用スプールのメータアウト開口面積特性を示す特性図である。
【図8】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における油圧パイロット信号(操作パイロット圧)に対する旋回用スプール61のメータイン絞りとセンタバイパスカット弁63との合成開口面積特性を示す特性図である
【図9】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における油圧電動複合旋回モードでの旋回駆動時における油圧パイロット信号(パイロット圧)、メータイン圧力(M/I圧)、旋回電動モータのアシストトルク、旋回体の回転速度(旋回速度)の時系列波形を示す特性図である。
【図10】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における油圧パイロット信号(操作パイロット圧)に対する旋回用スプール61のメータアウト開口面積特性を示す特性図である。
【図11】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における油圧電動複合旋回モードでの旋回停止時における油圧パイロット信号(パイロット圧)、メータアウト圧力(M/O圧)、旋回電動モータのアシストトルク、旋回体の回転速度(旋回速度)の時系列波形を示す特性図である。
【図12】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回用の可変オーバーロードリリーフ弁のリリーフ圧特性を示す特性図である
【図13】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態におけるアシスト発電モータを取り外し、旋回電動モータをカップリング装置に交換した後のシステム構成及び制御ブロック図である。
【図14】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回駆動装置を一部断面で示す側面図である。
【図15】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回電動モータをカップリング装置に交換した後の旋回駆動装置の一例を一部断面で示す側面図である。
【図16】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回電動モータをカップリング装置に交換した後の旋回駆動装置の他の例を一部断面で示す側面図である。
【図17】本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回発電モータを取り外し、アダプタを用いて油圧モータと減速機を接続した後の旋回駆動装置を一部断面で示す側面図である。
【発明を実施するための形態】
【0024】
以下、建設機械として油圧ショベルを例にとって本発明の実施の形態を図面を用いて説明する。なお、本発明は、旋回体を備えた建設機械全般(作業機械を含む)に適用が可能であり、本発明の適用は油圧ショベルに限定されるものではない。例えば、本発明は旋回体を備えたクレーン車等、その他の建設機械にも適用可能である。図1は本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態を示す側面図、図2は本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態を構成する電動・油圧機器のシステム構成図、図3は本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態のシステム構成及び制御ブロック図である。
【0025】
図1において、ハイブリッド式油圧ショベルは走行体10と、走行体10上に旋回可能に設けた旋回体20及びショベル機構30を備えている。
【0026】
走行体10は、左右一対のクローラフレーム12a,12b(図1では片側のみを示す)にそれぞれ架け渡されたクローラ11a,11b及び、各クローラ11a,11bを独立して駆動制御する一対の走行用油圧モータ13、14及びその減速機構等で構成されている。
【0027】
旋回体20は、旋回フレーム21と、旋回フレーム21上に設けられた、原動機としてのエンジン22と、エンジン22により駆動されるアシスト発電モータ23と、旋回電動モータ25及び旋回油圧モータ27と、アシスト発電モータ23及び旋回電動モータ25に接続される電気二重層キャパシタ24と、旋回電動モータ25と旋回油圧モータ27の回転を減速する減速機構26等から構成され、旋回電動モータ25と旋回油圧モータ27の駆動力が減速機構26を介して伝達され、その駆動力により走行体10に対して旋回体20(旋回フレーム21)を旋回駆動させる。
【0028】
また、旋回体20にはショベル機構(フロント装置)30が搭載されている。ショベル機構30は、旋回フレーム21に俯仰動可能に設けたブーム31と、ブーム31を駆動するためのブームシリンダ32と、ブーム31の先端部近傍に回転自在に軸支されたアーム33と、アーム33を駆動するためのアームシリンダ34と、アーム33の先端に回転可能に軸支されたバケット35と、バケット35を駆動するためのバケットシリンダ36等で構成されている。
【0029】
さらに、旋回体20の旋回フレーム21上には、上述した走行用油圧モータ13,14、旋回油圧モータ27、ブームシリンダ32、アークシリンダ34、バケットシリンダ36等の油圧アクチュエータを駆動するための油圧システム40が搭載されている。油圧システム40は、油圧を発生する油圧源となる油圧ポンプ41(図2)及び各アクチュエータを駆動制御するためのコントロールバルブ42(図2)を含み、油圧ポンプ41はエンジン22によって駆動される。
【0030】
次に、油圧ショベルの電動・油圧機器のシステム構成について概略説明する。図2に示すように、エンジン22の駆動力は油圧ポンプ41に伝達されている。コントロールバルブ42は、旋回用の操作レバー装置72(図3参照)からの旋回操作指令(油圧パイロット信号)に応じて、旋回油圧モータ27に供給される圧油の流量と方向を制御する。またコントロールバルブ42は、旋回以外の操作レバー装置73(図3参照)からの操作指令(油圧パイロット信号)に応じて、ブームシリンダ32、アームシリンダ34、バケットシリンダ36及び走行用油圧モータ13,14に供給される圧油の流量と方向を制御する。
【0031】
電動システムは、上述したアシスト発電モータ23、キャパシタ24及び旋回電動モータ25と、パワーコントロールユニット55及びメインコンタクタ56等から構成されている。パワーコントロールユニット55はチョッパ51、インバータ52,53、平滑コンデンサ54等を有し、メインコンタクタ56はメインリレー57、突入電流防止回路58等を有している。
【0032】
キャパシタ24からの直流電力はチョッパ51によって所定の母線電圧に昇圧されて、旋回電動モータ25を駆動するためのインバータ52、アシスト発電モータ23を駆動するためのインバータ53に入力される。平滑コンデンサ54は、母線電圧を安定化させるために設けられている。旋回電動モータ25と旋回油圧モータ27の回転軸は結合されており、減速機構26を介して旋回体20を駆動する。アシスト発電モータ23及び旋回電動モータ25の駆動状態(力行しているか回生しているか)によって、キャパシタ24は充放電されることになる。
【0033】
コントローラ80は、旋回操作指令信号や、圧力信号及び回転速度信号等(後述)を用いて、コントロールバルブ42、パワーコントロールユニット55に対する制御指令を生成し、旋回油圧モータ27を用いる油圧単独旋回モード、旋回油圧モータ27と旋回電動モータ25とを用いる油圧電動複合旋回モードの切り替え、各モードの旋回制御、電動システムの異常監視、エネルギマネジメント等の制御を行う。
【0034】
次に、本発明による旋回制御を行うのに必要なデバイスや制御手段、制御信号等を図3を用いてさらに詳細に説明する。
油圧ショベルは、エンジン22を始動するためのイグニッションキー70と、作業中止時にパイロット圧遮断弁76をONにして油圧システムの作動を不能とするゲートロックレバー装置71とを備えている。また、油圧ショベルは、上述したコントローラ80と、コントローラ80の入出力に係わる油圧・電気変換装置74a,74bL,74bR、電気・油圧変換装置75a,75b,75c,75d及び油圧単独旋回モード固定スイッチ77を備え、これらは旋回制御システムを構成する。油圧・電気変換装置74a,74bL,74bRはそれぞれ例えば圧力センサであり、電気・油圧変換装置75a,75b,75c,75dは例えば電磁比例減圧弁である。
【0035】
コントローラ80は、異常監視・異常処理制御ブロック81、エネルギマネジメント制御ブロック82、油圧電動複合旋回制御ブロック83、油圧単独旋回制御ブロック84、制御切替ブロック85等からなる。
【0036】
全体システムに異常がなく、旋回電動モータ25が駆動可能な状態では、コントローラ80は油圧電動複合旋回モードを選択する。このとき制御切替ブロック85は油圧電動複合旋回制御ブロック83を選択しており、油圧電動複合旋回制御ブロック83によって旋回アクチュエータ動作が制御される。旋回操作レバー装置72の入力によって発生される油圧パイロット信号は油圧・電気変換装置74aによって電気信号に変換され、油圧電動複合旋回制御ブロック83に入力される。旋回油圧モータ27の作動圧は油圧・電気変換装置74bL,74bRによって電気信号に変換され、油圧電動複合旋回制御ブロック83に入力される。パワーコントロールユニット55内の電動モータ駆動用のインバータから出力される旋回モータ速度信号も油圧電動複合旋回制御ブロック83に入力される。
【0037】
油圧電動複合旋回制御ブロック83は、旋回操作レバー装置72からの油圧パイロット信号と、旋回油圧モータ27の作動圧信号及び旋回モータ速度信号に基づいて所定の演算を行って旋回電動モータ25の指令トルクを計算し、パワーコントロールユニット55にトルク指令EAを出力する。この結果、旋回電動モータ25が駆動する。同時に、旋回電動モータ25が出力するトルク分、油圧ポンプ41の出力トルク及び旋回油圧モータ27の出力トルクを減少させる減トルク指令EB,ECを電気・油圧変換装置75a,75bに出力する。
【0038】
一方、旋回操作レバー装置72の入力によって発生される油圧パイロット信号はコントロールバルブ42にも入力される。これにより、旋回用スプール61(図4参照)が中立位置からA位置もしくはC位置に切り換えられ油圧ポンプ41の吐出油が旋回油圧モータ27に供給され、旋回油圧モータ27も同時に駆動する。
【0039】
旋回電動モータ25が加速時に消費するエネルギと減速時に回生するエネルギの差によって、キャパシタ24の蓄電量が増減することになる。これを制御するのがエネルギマネジメント制御ブロック82であり、上述したキャパシタ24の電圧・電流・温度の検出信号を入力し、アシスト発電モータ23に発電またはアシスト指令EDを出すことにより、キャパシタ24の蓄電量を所定の範囲に保つ制御を行う。
【0040】
パワーコントロールユニット55、旋回電動モータ25、キャパシタ24等の電動システムに故障、異常、警告状態が発生した場合や、キャパシタ24の蓄電量が所定の範囲外になった場合は、異常監視・異常処理制御ブロック81及びエネルギマネジメント制御ブロック82が制御切替ブロック85を切り替えて油圧単独旋回制御ブロック84を選択し、油圧電動複合旋回モードから油圧単独旋回モードへの切替えを行う。基本的に旋回の油圧システムは、旋回電動モータ25と協調して動作するようマッチングされているので、油圧単独旋回制御ブロック84は、旋回駆動特性補正指令EEと旋回パイロット圧補正指令EFをそれぞれ電気・油圧変換装置75c,75dに出力し、旋回油圧モータ27の駆動トルクを増加させる補正と旋回油圧モータ27の制動トルクを増加させる補正を行うことにより、旋回電動モータ25のトルクが無くても旋回操作性が損なわれないような制御を行う。
【0041】
油圧単独旋回モード固定スイッチ77は、電動システムの故障時や、特定のアタッチメント装着時など、何らかの理由で、油圧単独旋回モードに固定したい場合に使用するものであり、固定スイッチ77がON位置に操作されると、切替え制御ブロック85は油圧単独旋回制御ブロック84を選択するように固定される。
【0042】
次に、旋回油圧システムの詳細について図4乃至図12を用いて説明する。図4は本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回油圧システムの構成を示す油圧回路図である。図4において、図1乃至図3に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
図3のコントロールバルブ42はアクチュエータごとにスプールと呼ばれる弁部品を備え、操作レバー装置72,73からの指令(油圧パイロット信号)に応じて対応するスプールが変位することで開口面積が変化し、各油路を通過する圧油の流量が変化する。図4に示す旋回油圧システムは、旋回用スプールのみを含むものである。
【0043】
旋回油圧システムは、旋回油圧モータ27の最大出力トルクが第1トルクとなる第1モードと、旋回油圧モータ27の最大出力トルクが第1トルクより大きな第2トルクとなる第2モードとに変更可能である。以下にその詳細を説明する。
【0044】
図4において、旋回油圧システムは、前述した油圧ポンプ41及び旋回油圧モータ27と、旋回用スプール61と、旋回用の可変オーバーロードリリーフ弁62a,62bと、旋回補助弁としてのセンタバイパスカット弁63とを備えている。
【0045】
油圧ポンプ41は可変容量ポンプであり、トルク制御部64aを備えたレギュレータ64を備え、レギュレータ64を動作させることで油圧ポンプ41の傾転角が変わって油圧ポンプ41の容量が変わり、油圧ポンプ41の吐出流量と出力トルクが変わる。図3の油圧電動複合旋回制御ブロック83から電気・油圧変換装置75aに減トルク指令EBが出力されると、電気・油圧変換装置75aは対応する制御圧力をレギュレータ64のトルク制御部64aに出力し、トルク制御部64aは、旋回電動モータ25が出力するトルク分、油圧ポンプ41の最大出力トルクが減少するようトルク制御部64aの設定を変更する。
【0046】
油圧ポンプ41のトルク制御特性を図5に示す。横軸は油圧ポンプ41の吐出圧力、縦軸は油圧ポンプ41の容量を示している。
【0047】
油圧電動複合旋回モードが選択され、電気・油圧変換装置75aに減トルク指令EBが出力されているときは、電気・油圧変換装置75aは制御圧力を発生しており、このときトルク制御部64aの設定は、実線PTSより最大出力トルクが減少した実線PTの特性にある(第1モード)。油圧単独旋回モードが選択され、電気・油圧変換装置75aに減トルク指令EBが出力されていないときは、トルク制御部64aは実線PTSの特性に変化し(第2モード)、油圧ポンプ41の最大出力トルクは、斜線で示す面積分、増加する。
【0048】
図4に戻り、旋回用スプール61はA,B,Cの3位置を持ち、操作レバー装置72からの旋回操作指令(油圧パイロット信号)を受けて中立位置BからA位置又はC位置に連続的に切り替わる。
【0049】
操作レバー装置72はパイロット油圧源29からの圧力をレバー操作量に応じて減圧する減圧弁を内蔵し、レバー操作量に応じた圧力(油圧パイロット信号)を旋回用スプール61の左右いずれかの圧力室に与える。
【0050】
旋回用スプール61が中立位置Bにあるときは、油圧ポンプ41から吐出される圧油はブリードオフ絞りを通り、更にセンタバイパスカット弁63を通ってタンクへ戻る。旋回用スプール61がレバー操作量に応じた圧力(油圧パイロット信号)を受けてA位置に切り替わると、油圧ポンプ41からの圧油はA位置のメータイン絞りを通って旋回油圧モータ27の右側に送られ、旋回油圧モータ27からの戻り油はA位置のメータアウト絞りを通ってタンクに戻り、旋回油圧モータ27は一方向に回転する。逆に、旋回用スプール61がレバー操作量に応じた圧力(油圧パイロット信号)を受けてC位置に切り替わると、油圧ポンプ41からの圧油はC位置のメータイン絞りを通って旋回油圧モータ27の左側に送られ、旋回油圧モータ27からの戻り油はC位置のメータアウト絞りを通ってタンクに戻り、旋回油圧モータ27はA位置の場合とは逆方向に回転する。
【0051】
旋回用スプール61がB位置とA位置の中間に位置しているときは、油圧ポンプ41からの圧油はブリードオフ絞りとメータイン絞りに分配される。このとき、メータイン絞りの入側にはブリードオフ絞りの開口面積とセンタバイパスカット弁63の開口面積に応じた圧力が立ち、その圧力で旋回油圧モータ27に圧油が供給され、その圧力(ブリードオフ絞りの開口面積)に応じた作動トルクが与えられる。また、旋回油圧モータ27からの排出油はそのときのメータアウト絞りの開口面積に応じた抵抗を受けて背圧が立ち、メータアウト絞りの開口面積に応じた制動トルクが発生する。B位置とC位置の中間においても同様である。
【0052】
操作レバー装置72の操作レバーを中立位置に戻し、旋回用スプール61を中立位置Bに戻したとき、旋回体20は慣性体であるため、旋回油圧モータ27はその慣性で回転を続けようとする。このとき、旋回油圧モータ27からの排出油の圧力(背圧)が旋回用の可変オーバーロードリリーフ弁62a又は62bの設定圧力を超えようとするときは、オーバーロードリリーフ弁62a又は62bが作動して圧油の一部をタンクに逃がすことで背圧の上昇を制限し、オーバーロードリリーフ弁62a又は62bの設定圧力に応じた制動トルクを発生する。
【0053】
図6は、本発明のハイブリッド式建設機械及びこれに用いるカップリング装置の一実施の形態における旋回用スプール61のメータイン開口面積特性及びブリードオフ開口面積特性を示す特性図であり、図7は同メータアウト開口面積特性を示す特性図である。
【0054】
図6において、実線MIがメータイン開口面積特性であり、実線MBがブリードオフ開口面積特性であり、いずれも本実施の形態のものである。二点鎖線MB0は、電動モータを用いない、従来の油圧ショベルにおいて良好な操作性を確保できるブリードオフ開口面積特性である。本実施の形態のブリードオフ開口面積特性MBは、制御域開始点及び終点は従来のものと同一であるが、中間領域では従来のものに比べて開き勝手(大きな開口面積となるよう)に設計されている。
【0055】
図7において、実線MOが本実施の形態のメータアウト開口面積特性であり、二点鎖線MO0が電動モータを用いない、従来の油圧ショベルにおいて良好な操作性を確保できるメータアウト開口面積特性である。本実施の形態のメータアウト開口面積特性MOは、制御域開始点及び終点は従来のものと同一であるが、中間領域では従来のものに比べて開き勝手(大きな開口面積となるよう)に設計されている。
【0056】
図8は、油圧パイロット信号(操作パイロット圧)に対する旋回用スプール61のメータイン絞りとセンタバイパスカット弁63との合成開口面積特性を示す図である。
【0057】
油圧電動複合旋回モードが選択されているときは、旋回駆動特性補正指令EEは出力されていないため、センタバイパスカット弁63は図示の開位置にあり、旋回用スプール61のメータイン絞りとセンタバイパスカット弁63との合成開口面積特性は、図6のブリードオフ開口面積特性MBのみによって決まる点線MBCの特性となる(第1モード)。
【0058】
油圧単独旋回モードが選択されたときは、前述したように電気・油圧変換装置75cに旋回駆動特性補正指令EEが出力され、電気・油圧変換装置75cは対応する制御圧力をセンタバイパスカット弁63の受圧部に出力し、センタバイパスカット弁63は図示右側の絞り位置に切り換えられる。このセンタバイパスカット弁63の切り換えにより、旋回用スプール61の油圧パイロット信号に対する旋回用スプール61のメータイン絞りとセンタバイパスカット弁63との合成開口面積特性は点線MBCの特性よりも合成開口面積が小さい実線MBSの特性に変更される(第2モード)。この実線MBSの合成開口面積特性は従来の油圧ショベルにおいて良好な操作性を確保できるブリードオフ開口面積特性と同等である。
【0059】
図9は、油圧電動複合旋回モードでの旋回駆動時における油圧パイロット信号(パイロット圧)、メータイン圧力(M/I圧)、旋回電動モータ25のアシストトルク、旋回体20の回転速度(旋回速度)の時系列波形を示す特性図である。パイロット圧0、旋回停止状態から時間T=T1〜T4でパイロット圧最大までランプ状に油圧パイロット信号を増加させた場合の例である。
【0060】
油圧電動複合旋回モードが選択されているときは、図8の点線MBCで示したように旋回用スプール61のメータイン絞りとセンタバイパスカット弁63との合成開口面積特性は図6のブリードオフ開口面積特性MBのみによって決まる特性となるため、従来に比べてブリードオフ絞りの開口面積が大きい分、本実施の形態の方がメータイン圧力(M/I)は低くなる。メータイン圧力は旋回油圧モータ27の作動トルク(加速トルク)に相当するので、メータイン圧力が低くなった分だけ加速トルクを旋回電動モータ25により付与する必要がある。図8では力行側のアシストトルクを正としている。本実施の形態では、旋回電動モータ25のアシストトルクと旋回用スプール61によって発生するメータイン圧力に由来する加速トルクの合計値が、従来型の油圧ショベルで発生する加速トルクと概等しくなるように制御する。これにより旋回体20の旋回速度は従来型の油圧ショベルと同等の加速フィーリングを有することが可能となる。
【0061】
一方、油圧単独旋回モードが選択されたときは、旋回用スプール61のメータイン絞りとセンタバイパスカット弁63との合成開口面積特性は、図8の点線MBCよりも合成開口面積が小さいから実線MBSの特性に変更されるため、旋回用スプール61によって発生するメータイン圧力は、図9に示す従来の油圧ショベルで得られる実線のメータイン圧力まで上昇し、旋回用スプール61によって発生するメータイン圧力に由来する加速トルクが、従来型の油圧ショベルで発生する加速トルクと概等しくなるように制御される。これにより旋回体20の旋回速度は従来型の油圧ショベルと同等の加速フィーリングを有することが可能となる。
【0062】
また、旋回油圧モータ27単独で旋回可能であるということは、旋回油圧モータ27の最大出力トルクの方が、旋回電動モータ25の最大出力トルクよりも大きいということである。このことは、油圧電動複合旋回モードにおいて、万一、旋回電動モータ25が意図しない動きをしたとしても油圧回路が正常ならば、それほど危険な動きにならないことを意味し、本発明は安全性においても有利である。
【0063】
図10は、油圧パイロット信号(操作パイロット圧)に対する旋回用スプール61のメータアウト開口面積特性を示す特性図である。
【0064】
油圧電動複合旋回モードが選択されているときは、旋回パイロット圧補正指令EFは出力されていないため、旋回用スプール61のメータアウト開口面積特性は図7のメータアウト開口面積特性MOと同様の変化を示す点線MOCの特性となる(第1モード)。
【0065】
油圧単独旋回モードが選択されたときは、前述したように図3の電気・油圧変換装置75d(図4の電気・油圧変換装置75dL,75dR)旋回パイロット圧補正指令EFが出力され、電気・油圧変換装置75dは操作レバー装置72で生成された油圧パイロット信号(操作パイロット圧)を減圧補正する。この油圧パイロット信号の補正により、旋回用スプール61の油圧パイロット信号に対するメータアウト開口面積特性は、図10の点線MOCの特性に対し中間領域における開口面積が減少した実線MOSの特性に変更される(第2モード)。この実線MOSの開口面積特性は従来の油圧ショベルにおいて良好な操作性を確保できるメータアウト開口面積特性と同等である。
【0066】
図11は、油圧電動複合旋回モードでの旋回制動停止時における油圧パイロット信号(パイロット圧)、メータアウト圧力(M/O圧)、旋回電動モータ25のアシストトルク、旋回体20の回転速度(旋回速度)の時系列波形を示す特性図である。パイロット圧最大、最高旋回速度から時間T=T5〜T9でパイロット圧0までランプ状に油圧パイロット信号を低減させた場合の例である。
【0067】
油圧単独旋回モードが選択されているときは、図10の点線MOCで示したように旋回用スプール61の油圧パイロット信号に対するメータアウト開口面積特性は図7のメータアウト開口面積特性MOと同様に変化する特性となるため、図7に示したように従来に比べてメータアウト絞りの開口面積が大きい分、本実施の形態の方がメータアウト圧力(M/O圧)は低くなる。メータアウト圧力はブレーキトルク(制動トルク)に相当するので、メータアウト圧力が低くなった分だけブレーキトルクを電動モータ25により付与する必要がある。図11では回生側のアシストトルクを負としている。本実施の形態では、旋回電動モータ25のアシストトルクと旋回用スプール61によって発生するメータアウト圧力に由来するブレーキトルクの合計値が従来型の油圧ショベルで発生するブレーキトルクと概等しくなるように制御する。これにより旋回体20の旋回速度は従来型の油圧ショベル同等の減速フィーリングを有することが可能となる。
【0068】
一方、油圧単独旋回モードが選択されたときは、旋回用スプール61の油圧パイロット信号に対するメータアウト開口面積特性は、図11の点線MOCの特性に対し中間領域における開口面積が減少した実線MOSの特性に変更されるため、旋回用スプール61によって発生するメータアウト圧力は、図11に示す従来の油圧ショベルで得られる実線のメータアウト圧力まで上昇し、旋回用スプール61によって発生するメータアウト圧力に由来するブレーキトルクが、従来型の油圧ショベルで発生するブレーキトルクと概等しくなるように制御され、旋回体20の旋回速度は従来型の油圧ショベル同等の減速フィーリングを有することが可能となる。
【0069】
図12は、旋回用の可変オーバーロードリリーフ弁62a,62bのリリーフ圧特性を示す図である。
【0070】
油圧電動複合旋回モードが選択され、図3の電気・油圧変換装置75b(図4の電・油圧変換装置75bL,75bR)に減トルク指令ECが出力されているときは、電気・油圧変換装置75bは制御圧力を生成し、その制御圧力が可変オーバーロードリリーフ弁62a,62bの設定圧力減少側に作用し、可変オーバーロードリリーフ弁62a,62bのリリーフ特性はリリーフ圧がPmax1である実線SRの特性となる(第1モード)。油圧単独旋回モードが選択され、電気・油圧変換装置75b(図4の電気・油圧変換装置75bL,75bR)に減トルク指令ECが出力されていないときは、電気・油圧変換装置75bは制御圧力を生成しないため、可変オーバーロードリリーフ弁62a,62bのリリーフ特性は、リリーフ圧がPmax1からPmax2に上昇した実線SRSの特性となり(第2モード)、制動トルクは、リリーフ圧が高くなった分、増加する。
【0071】
これにより油圧電動複合旋回モードが選択されたときは、可変オーバーロードリリーフ弁62a,62bのリリーフ圧はPmax2より低いPmax1に設定されるため、操作レバー装置72の操作レバーを中立位置に戻したときに、旋回油圧モータ27からの排出油の圧力(背圧)は可変オーバーロードリリーフ弁62a,62bの低めの設定圧力であるPmax1まで上昇し、旋回電動モータ25のアシストトルクと可変オーバーロードリリーフ弁62a又は62bによって発生する背圧に由来するブレーキトルクの合計値が従来型の油圧ショベルで発生するブレーキトルクと概等しくなるように制御され、旋回体20の旋回速度は従来型の油圧ショベル同等の減速フィーリングを有することが可能となる。
【0072】
また、油圧単独旋回モードが選択されたときは、可変オーバーロードリリーフ弁62a,62bのリリーフ圧はPmax1より高いPmax2に設定されるため、操作レバー装置72の操作レバーを中立位置に戻した場合に、旋回油圧モータ27からの排出油の圧力(背圧)は可変オーバーロードリリーフ弁62a,62bの高めの設定圧力であるPmax2まで上昇し、可変オーバーロードリリーフ弁62a又は62bによって発生する背圧に由来するブレーキトルクが、従来型の油圧ショベルで発生するブレーキトルクと概等しくなるように制御され、旋回体20の旋回速度は従来型の油圧ショベル同等の減速フィーリングを有することが可能となる。
【0073】
次に、本発明のハイブリッド式建設機械の一実施の形態の油圧ショベルにおけるアシスト発電モータ23を取り外し、旋回電動モータ25をカップリング装置等に交換した後のシステムについて図13乃至図17を用いて説明する。図13は本発明のハイブリッド式建設機械の一実施の形態におけるアシスト発電モータを取り外し、旋回電動モータをカップリング装置に交換した後のシステム構成及び制御ブロック図、図14は本発明のハイブリッド式建設機械の一実施の形態における旋回駆動装置を一部断面で示す側面図、図15は本発明のハイブリッド式建設機械の一実施の形態における旋回電動モータをカップリング装置に交換した後の旋回駆動装置の一例を一部断面で示す側面図、図16は本発明のハイブリッド式建設機械の一実施の形態における旋回電動モータをカップリング装置に交換した後の旋回駆動装置の他の例を一部断面で示す側面図、図17は本発明のハイブリッド式建設機械の一実施の形態における旋回発電モータを取り外し、アダプタを用いて油圧モータと減速機を接続した後の旋回駆動装置を一部断面で示す側面図である。図13乃至図17において、図1乃至図12に示す符号と同符号のものは、同一部分であるので、その詳細な説明は省略する。
【0074】
上述したハイブリッド式油圧ショベルにおいて、パワーコントロールユニットやキャパシタに修理が必要なレベルの不具合が生じた場合の対応について考察する。これらのユニットは電気・電子部品を含むため、長年の使用によって何らかの不具合を生じさせる可能性が高い。これらの部品に不具合が生じた場合は、部品ごと交換することが一般的に行われている。
【0075】
ところで、油圧ショベルは先進国のみならず過酷な環境や未開の地で長年、例えば20年以上使用される場合も考えられる。このような場合であって、メーカの修理対応期間を過ぎた後に、上述した部品の不具合が生じたとしても、油圧ショベルは継続して使用できることが望ましい。しかし、特定の電気・電子部品を長年にわたって供給し続けることは、メーカにとって非常に困難である。また、これらの特定部品を長年にわたって管理保管することは、ユーザにとって非常に困難である。
【0076】
本実施の形態においては、このような状況に鑑みて、図3に示した2種のモータ25,23を除去して図13に示すような制御システムを構成したものである。アシスト発電モータ23は、本実施の形態においては、油圧ポンプ41のポートに取り付けるように構成されているので、これをブランクフランジ等でふさぐことにより特に問題なく除去可能である。
【0077】
旋回電動モータ25は、図14に示すように、旋回油圧モータ27とギヤハウジング90の間に挟み込まれた構成となっているが、旋回電動モータ25は、後述するカップリング装置120等と交換可能になっている。
【0078】
まず、本実施の形態における旋回駆動装置を図14を用いて説明する。図14に示す本発明の実施の形態である油圧ショベルの旋回駆動装置は、旋回油圧モータ27と遊星歯車の減速機構26を内蔵したギヤハウジング90との間に旋回電動モータ25を挟み込んだ構成となっている。旋回電動モータ25は、シャフト100、ロータ101、ステータコイル102、冷却水路103、上部ベアリング104、下部ベアリング105等からなっている。シャフト100の上部では、油圧モータ27のモータ軸端106が挿入、結合され、シャフト100の下部の電動モータ軸端107は、ギヤハウジング90内の遊星歯車の減速機構26に結合されている。旋回油圧モータ27と旋回電動モータ25とはボルト110によって結合されている。
【0079】
さらに、ギヤハウジング90は、ボルト111によってシャフトハウジング91に固定され、これら全体が旋回体20の下部の旋回フレーム21に固定されている。なお、図14において、環状の内輪92は走行体10の上面に複数のボルトで固定されている。この内輪92の内側には駆動ピニオン95と噛み合う内歯歯車が設けられている。環状の外輪93は旋回フレーム21の下面に複数のボルトで固定され内輪92の外側を囲んで配置されている。ピニオンシャフト94は駆動ピニオン95と旋回油圧モータ27の回転軸とを連結している。
【0080】
このような旋回駆動装置において、例えば、旋回電動モータ25、インバータ55、蓄電装置24等の電動システムが故障して旋回電動モータ25のトルクが発生できない場合、旋回電動モータ25を除去して旋回油圧モータ27の動力を減速機構26に伝達可能とするために、図15に示すように、除去された旋回電動モータ25の代替用の連結手段として、旋回油圧モータ27と減速機構26との間にカップリング装置120が装設される。
【0081】
カップリング装置120は、図15に示すようにカップリングハウジング121と、カップリングハウジング121内に軸受104,105によって回転可能に支持されたカップリングシャフト122とを備えている。カップリングシャフト122の上方端には、油圧モータ27のモータ軸端106が挿入されて連結され、また、カップリングシャフト122の下方端127は、ギヤハウジング90内の遊星歯車の減速機構26に結合されている。
【0082】
また、カップリング装置120は、旋回油圧モータ27と、減速機構26との連結のための取り合い機構として、例えば、カップリングハウジング121の一方側(図15の上方側)には、ボルト110の挿入孔123が設けられている。また、カップリングハウジング121の他方側(図15の下方側)には、ボルト111の挿入孔124が設けられている。
【0083】
上述の構成により、除去される旋回電動モータ25の代替用の連結手段として、カップリング装置120を装設することが可能となる。
【0084】
なお、カップリング装置120は、図16に示すように、旋回油圧モータ27及び減速機構26に対する取り合い機構さえ同じであれば、高さが異なっていても特に問題はない。
【0085】
更に、図17に示すように、旋回油圧モータ27のフランジ径と減速機構26のフランジ径とが相違する場合には、カップリングシャフト122を持たず取付け部の違いを解消するアダプタ125を用いることにより、旋回油圧モータ27と減速機構26とを結合することができる。
【0086】
上述した本発明の一実施の形態によれば、旋回体20の駆動に旋回油圧モータ27と旋回電動モータ25とを用いたハイブリッド式建設機械において、例えば、旋回電動モータ25、インバータ55、蓄電装置24等の電動システムが故障して旋回電動モータ25のトルクが発生できない場合であっても、旋回油圧モータ27単独で旋回体20を駆動して作業を行うことができる。更に老朽化により電動システムが修理不能になっても、旋回電動モータ25と同様の回転体構造をもち、磁石やコイルを内蔵しないカップリング装置120を旋回電動モータ25と交換することにより、旋回油圧モータ27単独で旋回体20を駆動して機械の稼動を継続することができる。
【0087】
また、本発明を油圧ショベルに適用した場合の実施の形態を説明したが、油圧ショベル以外の旋回体を有する建設機械全般に本発明は適用可能である。
【符号の説明】
【0088】
10 走行体
11 クローラ
12 クローラフレーム
13 右走行用油圧モータ
14 左走行用油圧モータ
20 旋回体
21 旋回フレーム
22 エンジン
23 アシスト発電モータ
24 キャパシタ
25 旋回電動モータ
26 減速機構
27 旋回油圧モータ
30 ショベル機構
31 ブーム
33 アーム
35 バケット
40 油圧システム
41 油圧ポンプ
42 コントロールバルブ
51 チョッパ
52 旋回電動モータ用インバータ
53 アシスト発電モータ用インバータ
54 平滑コンデンサ
55 パワーコントロールユニット
56 メインコンタクタ
57 メインリレー
58 突入電流防止回路
80 コントローラ
81 異常監視・異常処理制御ブロック
82 エネルギマネジメント制御ブロック
83 油圧電動複合旋回制御ブロック
84 油圧単独制御ブロック
85 制御切替ブロック
90 ギヤハウジング
120 カップリング装置
121 カップリングハウジング
122 カップリングシャフト
125 アダプタ

【特許請求の範囲】
【請求項1】
原動機と、前記原動機により駆動される油圧ポンプと、旋回体と、前記旋回体駆動用の電動モータと、前記電動モータを駆動するパワーコントロールユニットと、前記油圧ポンプにより駆動される前記旋回体駆動用の油圧モータと、前記電動モータと前記油圧モータとの動力を前記旋回体に伝達する減速機構と、前記電動モータに接続された蓄電デバイスと、前記旋回体の駆動を指令する旋回用の操作レバー装置とを備えたハイブリッド式建設機械において、
前記油圧モータと前記電動モータと前記減速機構との駆動軸を結合した旋回駆動装置と、
前記旋回用の操作レバー装置が操作されたときに前記電動モータと前記油圧モータの両方を駆動して、前記電動モータと前記油圧モータのトルクの合計で前記旋回体の駆動を行う油圧電動複合旋回モードと、前記旋回用の操作レバー装置が操作されたときに前記油圧モータのみを駆動して、前記油圧モータのみのトルクで前記旋回体の駆動を行う油圧単独旋回モードとの切替えを行う制御装置と、
前記パワーコントロールユニットあるいは前記蓄電デバイスが故障した場合、除去される前記電動モータと同じ取り合い機構を備え、除去された前記旋回電動モータの代替用の連結手段として、前記取り合い機構を介して、前記油圧モータと前記減速機構とに結合可能に装設されるカップリング装置とを備えた
ことを特徴とするハイブリッド式建設機械。
【請求項2】
請求項1記載のハイブリッド式建設機械において、
前記カップリング装置は、前記油圧モータと前記減速機構とに連結されるカップリングハウジングと、前記カップリングハウジング内に回転可能に支持され、前記油圧モータの回転軸と前記減速機構の回転軸とを結合するカップリングシャフトとを備えた
ことを特徴とするハイブリッド式建設機械。
【請求項3】
原動機と、前記原動機により駆動される油圧ポンプと、旋回体と、前記旋回体駆動用の電動モータと、前記電動モータを駆動するパワーコントロールユニットと、前記油圧ポンプにより駆動される前記旋回体駆動用の油圧モータと、前記電動モータと前記油圧モータとの動力を前記旋回体に伝達する減速機構と、前記電動モータに接続された蓄電デバイスと、前記旋回体の駆動を指令する旋回用の操作レバー装置と、
前記油圧モータと前記電動モータと前記減速機構との駆動軸を結合した旋回駆動装置と、
前記旋回用の操作レバー装置が操作されたときに前記電動モータと前記油圧モータの両方を駆動して、前記電動モータと前記油圧モータのトルクの合計で前記旋回体の駆動を行う油圧電動複合旋回モードと、前記旋回用の操作レバー装置が操作されたときに前記油圧モータのみを駆動して、前記油圧モータのみのトルクで前記旋回体の駆動を行う油圧単独旋回モードとの切替えを行う制御装置とを備えたハイブリッド式建設機械のカップリング装置であって、
前記カップリング装置は、前記パワーコントロールユニットあるいは前記蓄電デバイスが故障した場合、除去される前記電動モータの代替用連結手段として前記旋回駆動装置に設けられ、前記油圧モータと前記減速機構とを結合可能とする
ことを特徴とするハイブリッド式建設機械のカップリング装置。
【請求項4】
請求項3記載のハイブリッド式建設機械のカップリング装置において、
前記油圧モータと前記減速機構とに連結されるカップリングハウジングと、前記カップリングハウジング内に回転可能に支持され、前記油圧モータの回転軸と前記減速機構の回転軸とを結合するカップリングシャフトとを備えた
ことを特徴とするハイブリッド式建設機械のカップリング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2013−2119(P2013−2119A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−133595(P2011−133595)
【出願日】平成23年6月15日(2011.6.15)
【出願人】(000005522)日立建機株式会社 (2,611)
【Fターム(参考)】