説明

バチルス・ベレツェンシス種の菌株AH2の純粋培養物と、植物病原菌を生物学的に制御する生物学的制御用生物

【課題】 植物病原菌の生物学的制御用の殺菌剤を作り出すこと。
【解決手段】 この殺菌剤は、バチルス属ベレゼンシス種のAH2菌を含む。この菌はスペイン微生物株保護機関(CECT)で、その委託番号がCECT‐7221として寄託されている。この菌は、植物病原菌に対し、高い抗菌作用があり、様々なメカニズムにより植物の成長を促す特性を有する。本発明の菌は、大気温度において良好な安定性を有し、植物病原菌が引き起こす病気の治療に効果があり、植物の成長を促す。前記菌は、リン酸塩を溶融し、インドール-3-酢酸(indole-3-acetic)と親鉄剤(siderophores)とを生成し、唯一の窒素源として1-アミノシクロプロパン-1-カルボキシル酸(ACC)内で生育できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はバチルス・ベレツェンシス(Bacillus velezensis)種の菌株AH2の純粋培養物と、植物病原菌(phytopathogenic fungi)の生物学的制御用生物に関する。
【背景技術】
【0002】
集約生産プロセスと有機農業プロセスを開発し促進するニーズと重要性は長い間認識されてきた。それは、農業における化学農薬の無差別的使用に代わるものとして、又化学農薬の有害作用を減らすものとして期待されているからである。病虫害(pests and diseases)を生物学的に制御する微生物と、商業用の作物の肥料用の微生物からの生物学的製造方法(biopreparations)の利用は、最も有望な代替物の一つである。更に、これらの生物学的製造は、持続可能な農業モデルにおいて重要な役割を果たすが、それは再利用可能な資源から生成される可能性があるからである(Altieri, 1997)。
【0003】
この生物学的に制御する生物の主要な利点は、自然のメカニズムに依存して、環境に優しく、無公害で、エコ的な代替物であり、抵抗力を増す病原菌の危険性を大幅に減らすことができる点にある。それらは、その作用時に、選択的であるが故に、他の有益な有機体に悪影響を及ぼすことが少なく、多くの場合、これらはエコ・システム(生態系)に貢献し、植物の生長を促し、農業生産をより持続可能にしながら、同時に人間の健康に対する悪影響をほぼ最小にする。実際には、全ての病原菌は、ある程度は、拮抗する生物(antagonist organisms)の影響を受ける。多くの場合、本発明は目的とする生物は、自然の中の病原体の有機体(病原菌)の繁殖を抑えるのに、最も重要な役目を担う。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第7087424号明細書
【特許文献2】ヨーロッパ特許第1647188号明細書
【特許文献3】スペイン特許第2234417号明細書
【0005】
植物の病気を引き起こす有機体(病原菌)の中で、最も最重要なものは、植物に寄生する菌即ち植物病原菌(phytopathogenic fungi)である。これらは、ボトリチス菌(Botrytis)、フィチウム菌(Pythium)、リゾクトニア菌(Rhizoctonia)、アルタナリア菌(Alternaria)、フザリウム菌(Fusarium)、疫病菌(Phytophthora)、ティエラビオプシス菌(Thielaviopsis)、ボトリオスフェリア菌(Botryosphaeria)である。これらは土壌中に何年でも生き延びる。
商業的関心を有する生物学的制御剤(agents for biological control)の研究においては、一連のファクタを考慮に入れて研究することにより成功することがある。単独接種あるいは混合接種(mixed inocula)で用いられる生物、特定の生物学上の活性度、病原体に対する行動メカニズムと、使用される生成システムとその安定性が、考慮すべきファクタの一例である(Warrior, 2000)。
【0006】
いくつかのメカニズムが、これらの病原体の生物学的制御の現象を説明するために、あげられる。このメカニズムには、例えば、寄生(parasitism)、交差防御(cross-protection)、抗生作用(antibiosis)、競合(competiton)と、抵抗力の誘導(induction of resistance)といったものである(Shoda, 2000, Walsh et al.. 2001)。
【0007】
最も研究された生態的分野(eclological niches)の1つは、根圏(rhizosphere:土壌中で植物の根の影響が及ぶ範囲)であった。これは、植物と他の有機体との間のこれまで確立された関係に起因する(Warrior, 2000)。根圏にある微生物は、様々な病気を制御するために、化学農薬(chemical pesticides)に変わるものとして、1980年代以来研究されてきている。根圏の微生物は、土壌中に多量に分布していることと、植物の根にコロニーを形成することと、様々に有益な化合物を生成できることと、多数の病原体の拮抗物質(antagonists)となること等により、病原菌の生物学的制御に特に適したものである。(Anjaiah et al., 1998; Hill et al., 1994; Maurhofer et al., 1991; Rodriguez, and Pfender. 1997; Ross et al., 2000 and Thomashow et al., 1997.)
【0008】
中でも、根圏の微生物は、微生物により引き起こされる病原菌の生物学的制御剤として幅広く研究されているが、真菌(fungus)で形成される群である。この研究は、ボトリチス菌(Botrytis)、フザリウム菌(Fusarium)、フィチウム菌(Pythium)、疫病菌(Phytophthora)、リゾクトニア菌(Rhizoctonia)、スクレロティニア菌(Sclerotinia)、ペニシリウム菌(Penicillium)、マクロフォミナ菌(Macrophomina)等に属する病原菌の制御(control of pathogenic fungi)に、有効に利用されている(Whipps and Lumsden, 2001, McQuilken et al., 2001 Jones and Whipps, 2002, among others.)。その様々な代謝(変態)により、微生物群は生物学的制御に有効な様々な物質を生成できる。これらの理由により、この目的あった真菌(fungus)に基づいた菌株(strain)と生成物の数は、益々多くなり、そして変化に富んだものとなる(Cook et al., 1996, Whipps, 1997, Fravel et al., 1998, EPA USA 2006. US Pat 6,306,386 and US Pat 6,890,530 among others.)。病原菌に対し生物学的制御を行うメカニズムは、複雑であるが、それらの複数の菌の添加や相乗効果の結果であることは、知られている。中でもこれらは、栄養分と空間の競合であり、胞子の発芽(germination of the spore)を阻止(fungistasis:殺菌作用)する物質を生成する能力、あるいは細胞を死滅させる能力(antibiosis:抗生作用)と、土壌の酸性化による根圏の変化(modification)で、これにより病原体の繁殖を阻止する。生物学的制御は、病原体と生物的制御剤(parasitism: 寄生)の間の直接的相互作用の結果であり、これは、加水分解性の酵素(hydrolytic enzymes)、例えば、キチナーザ(chitinases)、グルカナーゼ(glucanases)、又は加水分解性酵素と毒性代謝物(toxic metabolites)との共同活動による(Benitez, et al., 2004)。
【0009】
病原体の生物学的制御を行うために、植物生長促進リゾバクテリア(PGPR:plant growth-promoting rhizobacteria)の使用が、幅広く研究されてきた。この種のバクテリア(微生物)の主要な特異性は、その保護作用に加えて、植物の根にコロニーを形成する(colonize the root of plant)高い能力を有する点と、植物に対し高い生長促進力(growth-stimulating power)を有する点である。これらのバクテリアは、従来の保護作用に加えて、作物の健全性を改善し、植物は病原体の攻撃に対し大きな抵抗性を有するようになる。このバクテリアの群は、植物病原菌(phytopathogenic fungi)が引き起こす病気に対し使用される。この植物病原菌は、例えば、リゾクトニア菌(Rhizoctonia)、フザリウム菌(Fusarium)、フィチウム(Pythium)、ティエラビオプシス菌(Thielaviopsis)、ペニシリウム菌(Penicillium)、アルタナリア菌(Alternaria)、ボトリチス菌(Botrytis)属である(Emmert and Handelsman, 1999, Ligon, et al., 2000, Cavaglieri, et al., 2004 and Roberts, et al., 2005, US Pat 7,118,739, among others)。
【0010】
シュードモナス菌(Pseudomonas genus)は、長年に渡りいきつかの研究対象であり、根圏の中で最も活性で支配的な菌の一つである(Geels and Schippers, 1983, de Freitas and Germida 1991, de la Cruz et al., 1992, Ligon, et al., 2000, 特許文献1)。複数の菌が様々な抗生機能(antibiotics)を生成する。この抗生機能(物質)は、植物病害の減少と抑制に深く関与する。この現象に重要な役目を担う他のファクタは、親鉄機能/親鉄剤(siderophores)の生成である。これは、鉄分を供給することにより植物の生長に寄与する。この作用効果は、シュードモナス菌の種類で広く見られる。しかし、その生長の間、菌が抵抗構造を生成することができないことは、この菌の菌株(strain of genus)で得られた生物調製(生成)の安定性と有効性を、ある程度制限してしまう。
【0011】
バチルス属(Bacillus genus)の菌(株)は幅広く研究されているが、上記の意味で広い可能性を秘めているからである。このバチルス属菌の特徴は、あらゆる種類の土壌にそして至る所にあるという事実である。更に、高い熱許容性と、液状媒体内での速い生長と、抵抗性の胞子の形成という特徴を有し、長期期間生存することができる。これら全ての特徴は、生物的制御剤としての潜在可能性をバチルス属菌株に与える。米国環境保護庁(EPA:The United States Environmental Protection Agency)は、この菌族の10種類以上の属を、生物農薬(biopesticides)特に生物殺菌剤(biofungicides)として、登録している(EPA 2006)。この菌の菌株による植物病原菌の生物制御に関連する主なメカニズムは、特に、抗生物質、親鉄剤、表面活性剤、加水分解酵素、チキナーゼの生成を含む。(Utkhede, 1984, Acea et al., 1988, Stanghellini and Miller 1996, Shoda 2000, Banat et al., 2000, Zhang, et al., 2001, Ruiz-Garcia et al., 2005, US Pat 7,087,424 (特許文献1)and EP1647188(特許文献2).)
【0012】
他のバクテリア属も生物的制御剤として研究されて来た。これらのバクテリア属は、エンテロバクター(Enterobacter)、アルカリゲネス(Alcaligenes)、ステノトロフォモナス(Stenotropyhomonas)、ストレプトミセス(Streptomyces)属を含む(McClure, et al., 1998, Brewster et al., 1997, Sabaratnam and Traquair, 2002, Cavaglieri et al., 2004 and others.)。
【0013】
生物調製生成物(biopreparation product)の物理的形態は、最も考慮に入れなけらばならない非常に重要なファクタである。その必要とされることは、これらの微生物が非活性状態で生存し、代謝的に活性(metabolically active)であることである(Fernandez, 1995)。後者は、農業のバイオテクノロジーにおいて最重要課題の一つである。それは、微生物細胞(microbial cells)は、長期に渡って生存するだけではなく、ある環境下で生き延びることができ、意図した機能を発揮できなければならないからである。
【0014】
胞子形成微生物(sporogenic microorganisms)に関しては、その調製に関し大きな柔軟性がある。その理由は、これらの有機体(胞子形成微生物)は、長期に渡り生き延びることができ、好ましい条件が再度確立されると生長し増殖することができるからである。細胞固定化(Cell immobilization)技術は、遊離細胞(free cells)に関して一連の利点がある。この利点は、その実際的な応用に対し非常に魅力的であり(Fernandez, 1995, Vassileva et al., 1998a and 1998b, among others)、環境保護的なバイオテクノロジーに対し、特に魅力的である。固定化した細胞の使用は、微生物の作用を改善し、汚染問題を引き起こすことなく、非常に魅力的な新生成物(novel products)を生成することができる(Bellota et al., 1994, Nunez, 1998, Fonseca, 1998, Spanish Pat. ES2234417(特許文献3).)。
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明の目的は、植物病原菌の生物学的制御用の生成物を作り出すことである。これは、バチルス属ベレゼンシス種(Bacillus velezensis;Ruiz-Garcia et al., 2005)の菌株AH2の新たな分離株の生菌細胞(viable cells)により形成される。前記の生物学的制御用の生成物は、高い抗真菌活性(antifungal activity)、特に様々な植物性病原菌に対し高い抗真菌活性を有し、様々なメカニズムにより植物の生長を促す機能を有する。この生成物は、発酵培養液(formented broth)から調製される。この発酵培養液は、攪拌し浸漬した培養(stirred submerged culture)の手段により得られ、その調製に直接用いられる。この調製物は、周囲温度で6ヶ月以上高い活性度を維持する。その調製物を得るのに用いられるバチルス属ベレゼンシス種の菌株AH2は、本発明の更なる目的である。
【0016】
本発明の目的は、植物病原菌の生物学的制御用の生成物(生物)を作り出すことである。これは、バチルス属ベレゼンシス種の菌株AH2の新たな分離株の生菌細胞(viable cells)により調製される。前記菌株は、ムルシア地方(Region of Murcia:スペイン南東部、地中海に臨む地方)の土壌から分離された。この分離物(菌株)の主要な特徴は、経済的作物の病気を引き起こす様々な病原菌(例えば、ボトリチス菌、フィチウム菌、リゾクトニア菌、アルタナリア菌、フザリウム菌、疫病菌、ティエラビオプシス菌、ボトリオスフェリア菌属)に対し高い抗真菌活性を有する点である。これに加えて、様々なメカニズムにより植物の生長を促す機能も有する。この様な微生物は、スペイン微生物株保護機関(the Spanish Type Culture Collection(CECT))に寄託されている。その寄託番号(the accession number)は、CECT−7221である。この菌株は、本発明者が特定し、CECTの識別が更に請求されている。CECTにおける種同定0(species identification 0)が、16SrRNAの遺伝子の直接的なPCR増幅の手段により実行され、部分的なシーケンス付け(partial sequencing)(両方向からの読みとり)とこのシーケンスの解析とが実行され、この菌株は、最終的にバチルス属ベレゼンシス種であると結論づけられた。植物病原菌の生物的制御と植物の生長を促す生成物は、主な活性要素として培養体の生育し得る胞子(viable spores)を含む液調製物(liquid formulation)からなる。
【0017】
微生物であるバチルス属ベレゼンシス種の菌株(Bacillus velezensis strain AH2 CECT-7221)とその変異体(mutants)が本発明の目的である。これは、植物性細胞の除去後ニュートリエント寒天媒体(Nutrient Agar medium; 英国Oxoid社製)内での分離ステップと、様々な植物病原菌に対する拮抗機能(antagonist capacity)による選択ステップの組合せからなる。その選択ステップは植物の生長を促す機能も考慮に入れて行った(Fernandez 2004)。病原菌の成長を阻止する抑制機能は、ポテトデキストロース寒天媒体(PDA:Potato Dextrose Agar medium (Oxoid))内の試験管内での生物学的検定法(in vitro bioassays)で決定した。菌株AH2が、これらの生物学的検定法の手段により、全てのテストされた分離物から選択された。これは、様々な植物病原菌(例えば、ボトリチス菌、フィチウム菌、リゾクトニア菌、アルタナリア菌、フザリウム菌、疫病菌、ティエラビオプシス菌、ボトリオスフェリア菌属)の生長を阻止する高い能力を有するという観点から、行われた。植物の生長促進力は、研究室での生物学的検定法により立証された。これは、Bashan et al., 1986、Fernandez 1995、Bashan 1998に記載された方法で行った。植物の生長を促進するその機能は、その後、温室内検定(greenhouse bioassays)の手段で立証した(Villaverde et al. 2004)。更に、その機能は、菌がリン酸塩を可溶化できること(solubilizing phosphates)と、インドール-3-酢酸(indole-3-acetic acid)と、他の植物生長促進物質(plant growth-promoting substances)と、親鉄剤(siderophores)が生成できることにより立証された。酵素1-アミノシクロプロパン-1-カルボキシレート デアミナーゼ(enzyme 1-aminocyclopropane-1-carboxylate deaminase)の存在は、唯一の窒素源(sole nitrogen source)として1-アミノシクロプロパン-1-カルボキシル酸(1-aminocyclopropane-1-carboxylic acid (ACC))の媒体内での生長を介して、決定された。こららの全ての活動は、植物の生長を促す機能を確証した(Villaverde et al., 2004)。
【課題を解決するための手段】
【0018】
同様に、植物病原菌により引き起こされる病気の治療用の生成物を得るプロセスを提案することも本発明の目的である。この本発明のプロセスは、以下のステップからなる。
(a)適宜の培養媒体内で、水中での発酵作用により、バチルス属ベレゼンシス種(Bacillus velezensis)の菌株AH2を生長させ胞子形成させるステップ。
このステップにおいて、細胞の数は、1ミリリットル当たり10のコロニー形成単位(CFU.mL-1)のオーダに、達した。
(b)他の成分(components)を、細胞を有する発酵した培養液に添加することにより調製物を準備するステップ。
【0019】
かくして生成された生物は、大きな損失もなく、少なくとも6ヶ月間30℃を超えない温度で、良好な安定性と細胞の活性を維持する。この調製物の抗真菌機能と植物の生長促進活機能は、6ヶ月以上に渡り認証され、最初の特性を維持した。様々な植物病原菌が引き起こす病気の治療の有効性と、温室内検定におけるその適用による植物の生長促進が認められた。植物病原菌と特にボトリチス・シネレア(Botrytis Cinerea:仏・ソーテルヌ村特有のブドウカビ・貴腐カビ)の処理の有効性が、現場分析(field assays)での認証で認められた。
【図面の簡単な説明】
【0020】
【図1】テストした病原体に対する試験管内での拮抗機能の分析結果を示す図。
【図2】実験用温室内で鉢植えのキュウリで行った、バチルス種の菌株AH2とBiopron PMC3との比較を示す図。
【発明を実施するための形態】
【0021】
バチルス属ベレゼンシス種(Bacillus velezensis)の菌株AH2の増殖
バチルス属ベレゼンシス種(Bacillus velezensis)の菌株AH2の保存した分離株のアンプル(ampoule)を取り出し、PDA媒体プレート上に接種し、30℃で72時間培養し、活性化した。接種材料(inoculum)をこのプレートから準備して、発酵槽(fermenter)に入れた。白金耳(loop)で取り出した培養の一部を、1000ミリリットルの三角フラスコ(Erlenmeyer flask)内で、100ミリリットルのポテト・デキストロース培養液(Potato Dextrose(PD)Broth)媒体で接種し、攪拌しながら30℃で16時間培養した。その三角フラスコの内容物を3リットルのブラウン・バイオテック社製のビオスタット装置(登録商標:Braun Biotech, BIOSTA) のB発酵槽内で、PD媒体と共に接種した後、2リットルの最終容積を得た。この発酵(fermentation)は、600r.p.m.の攪拌速度で、1v.v.m.(2L.min-1)の曝気(エアレーション)と、30℃の温度で24時間、行った。そのpHは、自由に変わり、その終了時にはその値は5.5以下であった。最終濃度は2×10cells.mL-1で、約80%の胞子形成(sporulation)が達成された。指数増殖期(exponential phase)の特定の生長率は、0.40h−1であった。生長の様々なフェーズが、培養の最初の14時間で展開され、その後、胞子形成プロセス(sporulation process)が、24時間以内に発生した。
【0022】
発酵が終了すると、2リットルの発酵した培養液(broth)が取り出され、プロピオン酸(propionic acid)、ソルビン酸(sorbic acid)、アスコルビン酸(ascorbic acid)が、それぞれ0.5%、0.1%、0.2%で、追加された。
【0023】
ニュートリエント寒天培地(Nutrient Agar medium)中の細胞の活性度は、この生成物に対し、周期的に測定され、細胞を30℃未満の温度で6ヶ月保存した後も、80%以上の活性度を得ていることを確認した。
【0024】
この製造方法により生成された本発明の生成物の抗真菌機能と植物生長促進機能に関する全ての分析を実行したが、満足度の高い結果が得られた。
【0025】
試験管内の拮抗作用分析
この分析は、ペトリ皿(Petri dishes)上で行った。病原体を、PDAプレート上で、25℃の温度で、48‐72時間培養した。直径約1cmの片を取り出し、この片をPDA媒体を有するプレートの中心に置いた。このプレートを、その端部に、バチルス属ベレゼンシス種(Bacillus velezensis)の菌株AH2を白金耳で接種した。その後、それを28℃で、48‐72時間、抑制(inhibition)が観測されるまで、培養した。ボトリオスファエリア 種(Botryosphaeria sp.)での分析の場合には、それを更に攪拌したPD媒体中で培養し、それを遠心分離して、上澄み液が、同一プレート内で1cmのウェル(wells)内に添加され、無細胞の発酵液の抗真菌の機能を決定した。
【0026】
図1に示すように、テストされた植物病原菌内に、強い菌生育抑制活性度(fungal groth inhibitory activity)があることが判る。
【0027】
更に、ボトリオスファエリア種(Botryosphaeria sp.)の場合、培養物の上澄み液で行った分析では、次の事が示された。バチルス属の他の多くの菌株の発生と共に、バクテリアが細胞外の抗真菌活性(exocellar antifungal acitity)を有することが示された。
【0028】
植物の生長促進分析
植物の生長を促進する機能を実証するために、実験用の温室状態で植木鉢のキュウリで実験を行った。Probelte S.A.社(出願人)のBiopron PMC3製品を正の制御(possitive control)として用いた。この正の制御は様々な作物の植物生長を促進する確認された作用を与える。
この分析結果を図2に示す。
【0029】
図2から判るように、全生重さ(Total fresh weight)のかなりの増加があり、かつ葉の部分と根も同様である。これらの値は全生重さよりも低いが、それらは統計的に差はなく、Biopron PMC3製品を用いた場合でも95%の確度が得られた。図2から分かるように、それらは、コントロール(市販の化学製品を使用する)の値とは異なる。この分析は、トマトやレタス等の他の作物でも行われたが、同様な結果が得られた。これにより、Probelte S.A.社の研究所で単離されたバチルス属ベレゼンシス種(Bacillus velezensis)の菌株AH2の植物の生長促進作用が実証された。
【0030】
生成状態における効果の分析
分析の基準:AFSマザロン・トマト2006(AFS Mazarron Tomato 2006)
製品の商品名:AFS
作物:アマデオ・トマト(リコペルシコン・エスカレンタム・ミル(Amadeo Tomato; Lycopersicon esculentum Mill)
条件: 温室生産、局所散水
栽植様式:1m×0.6m
栽植密度:1ヘクタール(ha)当たり約16600本
土壌の種類:ローム性砂(Loamy sand)
活性成分:バチルス属ベレゼンシス種(Bacillus velezensis)の菌株AH2、10CFU/mL
製品の総称的用法:殺菌剤(Fungicide)
調製の種類:可溶化液(Soluble liquid)
適用モード:葉部散布(Leaf spraying)
分析の対象病原体:ボトリチス・シネレア(Botrytis Cinerea)
基準製品:カーベル(Karbel)(R.O.P.M.F.(Official Registry of Plant Proteciton Products and Materila ;No.23506/14(25%;カルベンダジム25%+ジェトフェンカルブ25%(1g/LProbelte S.A.社)
【0031】
分析すべきテーマ
テーマ 名前 ドーズ量 活性成分
No.1 コントロール
No.2 AFS 15(mL/L.) Bacillus velezensis 108CFU/mL
No.3 TRL 5(mL/L.) Trichoderma Harzianum+T. viride 108CFU/mL
No.4 AFS 5(L/ha) カーベル(Karbel)
No.5 KARBEL 1(g/L) 25% Carbendezime + 25% Diethofencarb
4回繰り返す完全な乱塊法(randomized block)による分析を行った。要素プロット(element plot)のサイズは、各処理に対し全面積の15mと60mであった。
【0032】
葉部散布の手段により、分析中に2回の散布(T1,T2)を行った。その量は、1200L/haの培養液の容積である。最初の散布は植え付けてから2.5ヶ月後であり、2回目の散布は初回の散布から17日後であった。
【0033】
分析の評価を行うために、各プラントが有するトマトの全数を、要素プロットでカウントした。ボトリチス属の病原体でトマトを攻撃し、1‐4の値が、病原体の攻撃強度に依存して与えられ、この値に基づいて害虫の蔓延(感染)の計算を行った。3回の評価をこの分析中に行った。初回の評価V0と処理後の2回の評価V1,V2で終了した。評価V1は、2回の処理後7日後の評価であり、V2は、15日後の評価である。
【0034】
評価V0:病気の症状は観測されなかった。
初回の評価V1(2回の処理の後の1週間(7日)後)
塊 A B C D 平均 総計
テーマ 害虫の蔓延(感染)
コントロール 0.063 0.145 0.083 0.145 0.108 0.433
AFS(15mL/L) 0 0.020 0 0.020 0.01 0.04
TRL(5mL/L) 0 0.020 0.041 0 0.015 0.061
AFS(5L/ha) 0.041 0.041 0.041 0.021 0.035 0.143
KARBEL(1g/L) 0 0.041 0 0.041 0.020 0.082

【0035】
アボット(米国の細菌学者)の有効性(ABBOTT Efficacy)
テーマ 平均 有効性(%)
コントロール 0.108
AFS(15mL/L) 0.01 90.82
TRL(5mL/L) 0.015 85.99
AFS(5L/ha) 0.035 67.16
KARBEL(1g/L) 0.020 81.17
【0036】
ダンカンの多重範囲検定(Duncan's multiple range test)
テーマ 有意差
コントロール b
AFS(15mL/L) to
TRL(5mL/L) to
AFS(5L/ha) b
KARBEL(1g/L) to
【0037】
2回の評価V2(2回の処理の後の15日後)
ブロック A B C D 平均 総計
テーマ 害虫の蔓延(感染)
コントロール 0.166 0.104 0.250 0.250 0.192 0.77
AFS(15mL/L) 0 0.062 0.041 0.041 0.036 0.144
TRL(5mL/L) 0 0.020 0.083 0.062 0.041 0.165
AFS(5L/ha) 0.020 0.083 0.041 0.104 0.062 0.248
KARBEL(1g/L) 0.020 0.083 0.041 0.062 0.051 0.206
【0038】
アボットの有効性(ABBOTT Efficacy)
テーマ 平均 有効性(%)
コントロール 0.192
AFS(15mL/L) 0.036 81.30
TRL(5mL/L) 0.041 78.57
AFS(5L/ha) 0.062 67.79
KARBEL(1g/L) 0.051 73.25
【0039】
ダンカンの多重範囲検定(Duncan's multiple range test)
テーマ 有意差
コントロール b
AFS(15mL/L) a
TRL(5mL/L) a
AFS(5L/ha) a
KARBEL(1g/L) a
【0040】
ここに観測されるように、両方の評価において、15mL/LのAFSの処理により保護が得られた。この保護は、コントロールとして使用された市販の化学製品よりも遥かに効果的であった。全ての時間において、害虫の蔓延(感染)はコントロールより低く、評価された生成物(製品)の有効性は、非常に高かった。この統計分析により、分析された生物学的生成物と、コントロールとして使用された市販の化学製品との間に、大差はなかった。
【0041】
結論:
Mazarron(Murcia地方)で行われた分析においては、ボトリチス・シネレア(Botrytis Cinerea)を制御する葉部散布(Leaf spraying)において、その挙動を将来に渡って観測すると、AFSは、如何なる処理も受けないコントロールに対し良好な活性度を有する。
評価V1においては、90%代の有効性が15mL/Lのドーズ量に対し得られた。
評価V2においては、有効性は70%以上と高く、特にAFSの場合には、80%以上であった。
作物内の病原体の発生率(incidence level)は、処理を行ったコントロール以下に維持された。
両方の評価において、測定したパラメータに基づいて分散分析(variance analysis)を行った結果、ダンカンの多重範囲検定が行われると、研究中の複数のドーズ量の間に99%の信頼性で差は存在しないが、未処理のコントロールに対しては、差が存在する。
毒性の兆候は、高いドーズ量の作物でも観測されない。
それ故に、15mL/Lのドーズ量のAFSは、トマト内のボトリチス・シネレアの生物学的制御に対し適した調製物である。
【0042】
本明細書において、「菌」「菌株」「有機体」「微生物」「生成物」「生物」は、特に記載のないかぎり、同意義に解釈できる。「種」と「属」も、特に記載のない限り同意義である。「病原菌」とは、本発明の菌がその繁殖を阻止しようとする目的物である。
【0043】
以上の説明は、本発明の一実施例に関するもので、この技術分野の当業者であれば、本発明の種々の変形例を考え得るが、それらはいずれも本発明の技術的範囲に包含される。特許請求の範囲の構成要素の後に記載した括弧内の番号は、図面の部品番号に対応し、発明の容易なる理解の為に付したものであり、発明を限定的に解釈するために用いてはならない。また、同一番号でも明細書と特許請求の範囲の部品名は必ずしも同一ではない。これは上記した理由による。用語「又は」に関して、例えば「A又はB」は、「Aのみ」、「Bのみ」ならず、「AとBの両方」を選択することも含む。特に記載のない限り、装置又は手段の数は、単数か複数かを問わない。
【符号の説明】
【0044】
図1
左上から:ボトリチス菌、フィチウム菌、リゾクトニア菌
右上から:フザリウム菌、疫病菌、ボトリオスフェリア菌
図2
バチルス種の菌株AH2とBiopron PMC3との比較
横軸:処理、コントロール、Biopron PMC3、AH2
凡例:PFV:葉の生重量
PFR:根の生重量
PFT:全生重量



【特許請求の範囲】
【請求項1】
バチルス属ベレゼンシス種のAH2と称する菌とその変異体の純粋培養物において、
前記培養物は、特に植物病原菌に対し高い抗真菌活性を有し、拮抗物質を生成し、植物の生長を促進する作用を有し、
前記菌は、リン酸塩を溶融し、インドール-3-酢酸(indole-3-acetic)と親鉄剤(siderophores)とを生成し、唯一の窒素源として1-アミノシクロプロパン-1-カルボキシル酸(ACC: 1-aminocyclepropane-1-carboxylic acid )内で生育でき、
前記菌は、スペイン微生物株保護機関(CECT:Spanich Type Culture Collection)で、その委託番号がCECT‐7221として寄託されている
ことを特徴とするバチルス属ベレゼンシス種のAH2と称する菌とその変異体の純粋培養物。
【請求項2】
バチルス属ベレゼンシス種のAH2(CECT‐7221)の生菌細胞を含む
ことを特徴とする植物病原菌を生物学的制御をし植物の生長を促す生成物。
【請求項3】
前記生菌細胞は、胞子の形態である
ことを特徴とする請求項2記載の生成物。
【請求項4】
前記生菌細胞は、浸漬した発酵プロセスにより得られ、
前記プロセスでは、前記胞子の濃度が10CFU/mL以上である
ことを特徴とする請求項2又は3記載の生成物。
【請求項5】
全胞子濃度が、10CFU/mL以上である
ことを特徴とする請求項2又は3記載の生成物。
【請求項6】
前記生菌細胞に加えて、有機物による培養液の上澄み液と、抗真菌活性を有する物質を含む
ことを特徴とする請求項2−5のいずれかに記載の生成物。
【請求項7】
前記生成物は、大気温度で、6ヶ月以上の安定性を有する
ことを特徴とする請求項2記載の生成物。
【請求項8】
前記安定性は、微生物増殖の抑制物質の使用により、確保される
ことを特徴とする請求項6記載の生成物。
【請求項9】
前記微生物増殖の抑制物質は、保存剤として使用される有機酸から選択される
ことを特徴とする請求項6−8のいずれかに記載の生成物。
【請求項10】
前記生成物は、葉部散布手段で散布した場合、高い活性度を有する
ことを特徴とする請求項2−9のいずれかに記載の生成物。



【図1】
image rotate

【図2】
image rotate


【公表番号】特表2010−521960(P2010−521960A)
【公表日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2009−554050(P2009−554050)
【出願日】平成20年2月27日(2008.2.27)
【国際出願番号】PCT/ES2008/000109
【国際公開番号】WO2008/113873
【国際公開日】平成20年9月25日(2008.9.25)
【出願人】(509263423)プロベルテ,エス.エー. (1)
【Fターム(参考)】