説明

バルーンカテーテル

【課題】高い耐圧性を備え、かつ、末梢の血管内にも容易に進めることができる末梢到達性にも優れた医療用バルーンおよびバルーンカテーテルを提供する。
【解決手段】本発明のバルーン800は、補強用の高モジュラス短繊維801とマトリックス樹脂802とからなる複合材料から形成されている。高モジュラス短繊維801の各繊維は、バルーン800中に非整列状態で配置され、バルーン800中にほぼ均等に分散している。短繊維801のうち少なくとも大部分の短繊維801aは、長軸方向に対してほぼ一定の方向に斜めに傾斜して配向している。また、一部の短繊維801bは、短繊維801aとは異なる方向に配向している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、医療用バルーンカテーテルに関する。特に、本発明は、拡張用バルーン式カテーテル(Dilation balloon catheters)、即ち血管などの体腔内に挿入し、狭隘な狭窄部、偏心もしくは蛇行した狭窄部または体腔内分岐部などに、きわめて容易に挿入することが可能であって、狭窄部の拡張を行うための拡張カテーテルに関する。
【背景技術】
【0002】
拡張用のバルーンカテーテルは、体腔内に挿入されるカテーテル内外管と、そのカテーテル管に接合される筒状のバルーンとを有する。この筒状のバルーンは,拡張に充分な耐圧性を有すると共に、血管内の通過性の高いバランスが求められ続けている。即ち、高耐圧でありながら、きわめて狭い狭窄部、偏心した狭窄部あるいは蛇行した狭窄部などでも当該狭窄部を傷つけることなく容易に挿入させることができる特性が望まれ,これまでに数多くのポリマーからなるバルーンが提案されている。
【0003】
先ず、各種熱可塑性ポリマーからなるバルーンカテーテルを挙げることが出来る。これらの熱可塑性ポリマーには、ポリエチレン及びイオノマーと、低分子ポリスチレン及び任意にポリプロピレンと混合されたエチレン−ブチレン−スチレン・ブロック・コポリマー(Ethylene-butylene-styrene block copolymers)、前記のポリマーのエチレン及びブチレンをブタジエンまたはイソプレンと置換した類似する混合材、ポリ塩化ビニル、ポリウレタン、(コ)ポリエステル、ポリアミド及びポリアミドエラストマー、熱可塑性ゴム、シリコンポリカーボネート・コポリマー、エチレンビニル・アセテート・コポリマーとが含まれている。 カテーテルを形成する材料の選択肢の1つとして、近年、熱可塑性ポリイミドのバルーンも提案されている (例えば、特許文献1)。
しかしながら、近年は更に高いバルーンの耐圧性を有するバルーンカテーテルが求められている。
【0004】
バルーンの高強度化、従って高耐圧の目的で、長繊維(フィラメント)をそのまま或いは織り編みなどの構造体を用いて樹脂と複合化した材料を使用することも公知である。
【0005】
例えば特許文献1には、ヤーンの形態の他に、平織物,朱子織物、綾織物、バスケット織物、編組体(ブレード)、ワインディングが提案されている。しかしながら、このような長繊維やその構造体では、一般にヤーン内部の各単繊維間への樹脂含浸が不安定となり、未含浸部分が欠陥になることが多い。とくにマルチフィラメントを使用する場合には未含浸欠陥が発生することが多い。加えて、バルーン状に繊維構造体を形成する工程が必要であり、細径バルーンの場合にはしばしば製作上の均一性や歩留まりが低い欠点が挙げられる。
【0006】
一方、特許文献2には、短繊維状の補強体をマトリックスポリマー中に配設して補強したバルーンを備えるバルーンカテーテルが開示されている。これは、溶融状態で液晶を形成する全芳香族ポリエステル等の補強用樹脂を、マトリックス樹脂とブレンドしながら押出シリンダー内で溶融させ、ダイス吐出ノズルから押し出される際の剪断配向によって溶融状態の補強用樹脂を押出方向等に細長い形状とし、水槽冷却で固化させることにより、溶融前は粒子状であった補強用樹脂を、溶融状態の剪断により髭状(パルプ状)の形態でマトリックス樹脂中に配設せしめる方法を提案している。この髭状ポリマーの分散形態は、通常の押出のドラフト比を上げることによっても達成することが出来るが、更にダイスのマンドレル又はアウトダイを回転させることによって、チューブ円周方向にも配向させることが出来ることも開示している。
【0007】
しかし、本公報に開示された押出方法によれば、所定個のダイス吐出ノズルから補強用樹脂を吐出しながら回転の力および剪断の力を与えることにより、髭状(パルプ状)の形態でマトリックス樹脂中に補強用樹脂が配設されるため、これらの髭状(パルプ状)の補強体は、ダイス吐出ノズルの数に対応した数の列を有した整列状態をなす。よって、列と列の間の部分においては、補強体が全く配設されないため補強効果に乏しくなったり、簡単にピンホールや裂けが発生し得るという問題がある。また、当該分野の技術に精通して当業者であれば容易に想到するように、上記のように溶融状態からの吐出のみにては、補強材として充分な効果を期待できないことが多い。一方、熱処理によって、当該補強材の結晶化度を高めるには、高い処理温度が必要となり、マトリックス樹脂側が劣化したり、溶融変形することが多い。マトリックス樹脂を耐えうる温度にまで液晶ポリマーの成形や結晶化可能な温度を低減した化学構造の液晶ポリマーは、補強材としては最早充分な剛性を有していないことが多い。
【0008】
【特許文献1】特表平9−507148号公報
【特許文献2】米国特許公開第2001/43998号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明の目的は、補強効果の高い医療用バルーンカテーテルを提供することにある。また、本発明の目的は、高い耐圧性を備え、かつ、末梢の血管内にも容易に進めることができる末梢到達性にも優れた医療用バルーンおよびバルーンカテーテルを提供することにある。
【課題を解決するための手段】
【0010】
上述した課題は、下記(1)〜(6)の本発明により達成される。
(1) 補強用の高モジュラス短繊維とマトリックス樹脂とからなる複合材料から形成されたバルーンを有するバルーンカテーテルにおいて、
該高モジュラス短繊維の各繊維は、前記バルーン中に非整列状態で配置され、前記バルーン中にほぼ均等に分散しており、
前記複合材料は、前記高モジュラス短繊維と前記マトリックス材料とを混合する際に超音波振動を施すことにより前記高モジュラス短繊維を前記マトリックス樹脂中に分散させていることを特徴とするバルーンカテーテル。
(2) 前記高モジュラス短繊維の少なくとも大部分は、バルーンの長軸方向に対してほぼ一定の方向に斜めに傾斜して配向していることを特徴とする上記(1)に記載のバルーンカテーテル。
(3) 前記高モジュラス短繊維の一部は、前記方向とは異なる方向に斜めに傾斜して配向していることを特徴とする上記(2)に記載のバルーンカテーテル。
(4) 前記高モジュラス短繊維が、炭素繊維,高モジュラス有機繊維、高モジュラスホイスカー、カーボンナノチューブ、高モジュラス無機繊維あるいは金属繊維からなる群から選ばれる少なくとも一つの短繊維によって補強された複合材料からなる上記(1)〜(3)のいずれかに記載のバルーンカテーテル。
(5) 前記高モジュラス短繊維がナノカーボンチューブである上記(4)に記載のバルーンカテーテル。
(6) 前記高モジュラス短繊維は、前記マトリックス材料との密着性を向上する表面改質処理が施されている上記(1)〜(5)のいずれかに記載のバルーンカテーテル。
【発明の効果】
【0011】
本発明のバルーンカテーテルは、補強用の高モジュラス短繊維とマトリックス樹脂とからなる複合材料から形成されたバルーンを有するカテーテルであって、該高モジュラス短繊維の各繊維は、前記バルーン中に非整列状態で配置され、前記バルーン中にほぼ均等に分散していることを特徴とする。
【0012】
したがって、バルーンがその全体にわたって高モジュラス短繊維により補強されるため、バルーン全体の強度が向上し、ピンホールや裂けの発生が少なく耐圧性にすぐれたバルーンおよびバルーンカテーテルとなる。かつ、バルーンの柔軟性(可撓性)も十分であり、血管内の通過性(末梢到達性)にも優れるバルーン
カテーテルを提供できる。
【0013】
また、高モジュラス短繊維の少なくとも大部分がバルーンの長軸方向に対してほぼ一定の方向に斜めに傾斜して配向している場合には、補強用短繊維がバルーンの縦方向および周方向の両方に配向した形態となり、バルーンのフープ強度および縦方向(長軸方向)の強度の両方が向上する。
【0014】
さらに、高モジュラス短繊維のうち一部の短繊維が、大部分の短繊維とは異なる方向へ、バルーンの長軸方向に対して斜めに傾斜して配向している場合には、大部分の短繊維による補強方向とは異なる方向にも一部の短繊維によってバルーンが補強されるので、バルーンの耐圧性をより向上することが可能となる。
【0015】
また、前記高モジュラス短繊維において、前記マトリックス樹脂との密着性を向上する表面改質処理が施されている場合には、各短繊維の間にマトリックス樹脂を十分に含浸でき、バルーンの補強効果が高まる。
【0016】
特に、前記複合材料が、前記高モジュラス短繊維とマトリックス樹脂とを混合する際に超音波振動を施すことにより、前記高モジュラス短繊維を前記マトリックス樹脂中に分散させた材料からなる場合には、短繊維がマトリックス樹脂中により均等に分散されており、このため、バルーン全体にわたっての補強効果がより高くなり、バルーンの強度がより向上する。
【図面の簡単な説明】
【0017】
【図1】本発明のバルーンカテーテルにおけるバルーンの態様例を示す平面図である。
【図2】本発明の積層管状体共押出成形用ダイの態様例を示す概略断面図である。
【図3】本発明の押出成形ダイを含む積層管状体押出成形ライン例を模式的に説明する図である。
【図4】本発明のバルーンの製造装置の一例を示す図面である。
【発明を実施するための最良の形態】
【0018】
以下、本発明の好適実施例について図面を用いて詳細に説明する。
【0019】
一般的にバルーンを先端に有するカテーテルを使用して脈管系内に形成された狭窄を拡張・開放する血管形成術において使用されるカテーテルは、1つまたは複数の内腔を有するオーバー・ザ・ワイヤ式(Over-the-wire)またはノン・オーバー・ザ・ワイヤ式がある。類似するカテーテルをステントの配置に使用可能である。本明細書中では、これら全てのカテーテルをバルーンカテーテルと総称する。
【0020】
図1は、本発明のバルーンカテーテルにおけるバルーンの態様例を示す平面図である。図2は、本発明の積層管状体共押出成形用ダイの態様例を示す概略断面図である。図3は、本発明の押出成形ダイを含む積層管状体押出成形ライン例を模式的に説明する図である。図4は、本発明のバルーンの製造装置の一例を示す図面である。
【0021】
本発明のバルーンカテーテルにおけるバルーン800は、図1に示すように、補強用の高モジュラス短繊維801とマトリックス樹脂802とからなる複合材料からなるバルーンである。そして、高モジュラス短繊維801の各繊維は、バルーン800中にほぼ均等に分散している。そして、高モジュラス短繊維801の各繊維は、バルーン800の全体にわたって整列状態に並んだ配置ではなく、非整列状態で配置されている。このため、特定の弱い部分が形成されることなく、バルーンのどの部分においても十分に補強されておりピンホールや裂けが生じにくい、高耐圧性のバルーンが得られる。
【0022】
補強用短繊維801の繊維長は、特に限定されるものではないが、各繊維間へのマトリックス樹脂802の含浸が十分となるという観点から、5mm以下であることが好ましく、より好ましくは3mm以下、特に好ましくは1mm以下である。また、各短繊維801のアスペクト比(繊維径に対する繊維長の割合)は、特に限定されるものではないが、十分な補強効果を得られるという観点から、10倍以上であることが好ましく、より好ましくは30倍以上、更に好ましくは100倍以上である。
【0023】
高モジュラス短繊維801は、図1に示すように、少なくともその大部分の繊維2aがバルーンの長軸方向に対してほぼ一定の方向に斜めに傾斜して配向していることが好ましい。これにより、補強用短繊維801がバルーンの縦方向および周方向の両方に配向した形態となり、バルーンのフープ強度および縦方向(長軸方向)の強度の両方が向上する。
【0024】
また、図1に示す構成においては、高モジュラス短繊維801のうち一部の短繊維801bは、前記短繊維801aとは異なる方向へ、バルーン800の長軸方向に対して斜めに傾斜して配向している。これにより、短繊維801aによる補強方向とは異なる方向にも短繊維801bによりバルーン800が補強されるので、バルーン800の耐圧性をより向上することが可能となる。なお、本発明は、上記した短繊維801bが存在するものに限定されるものではなく、短繊維801aの全てがほぼ同じ方向に配向していても差し支えない。また、短繊維801がバルーンの長軸方向(縦方向)のみに実質的に配向したものであっても差し支えない。この縦配向により、万一バルーンが裂けた場合にも、縦方向に裂けるので、破裂したバルーンが血管内に脱落することを回避出来る。
【0025】
本発明に用いられる短繊維801としては、例えば次のようなものが挙げられ
る。
(1)炭素繊維系:炭素短繊維、炭素ホイスカー、ナノカーボンチューブ等
(2)その他の無機短繊維系:チタン酸カリウム短繊維、シリコンカーバイト、短繊維(SiC繊維)およびそのホイスカー、アルミナ短繊維、ガラス短繊維等
(3)有機繊維系:商品名「エコノール」,「ベクトラ」,「XYDAR」,「NOVACCURATE」として知られる、ポリーp―ヒドロキシベンゾエート共重合体等の液晶ポリエステル短繊維、商品名「ケブラー」,「アレンカ」,「テクノーラ」として知られる、ポリーp―フェニレンテレフタルアミド若しくはその共重合体等のアラミド短繊維又はそのパルプ、ポリーp―フェニレンベンゾビスオキサゾール、ポリーp―フェニレンベンゾビスチアゾール或いはそれらの共重合体等の全芳香族ポリマー短繊維、商品名「テクミロン」,「ダイニーマ」,「スペクトラ」として知られる高モジュラスポリエチレン短繊維、「テナックS D」という商品名で知られるポリオキシメチレン短繊維(ポリアセタール繊維)或いはそのホイスカー、ポリビニルアルコール短繊維等
(4)金属短繊維系:ボロン短繊維、チタン合金短繊維、スチール短繊維、アルミ合金短繊維等
カーボンナノチューブは、グラファイト・黒鉛、ダイヤモンド、フラーレンに次ぐ新しい炭素の形で、炭素原子が六角形に結合した網の目が円筒状に丸まった構造を持つ新素材である。円筒が一重だけの単層ナノチューブ(直径約1ナノメートル)と、円筒が何層も重なった多層ナノチューブ(直径数ナノメートル〜数十ナノメートル)がある。長さは数十マイクロメートルにもなり、補強繊維としてのアスペクト比は充分な値である。このようなカーボンナノチューブについては、例えば、経済産業省の炭素系高機能材料技術プロジェクトにおいて大量合成技術の研究が進められており、当プロジェクトの試験装置で製造したナノチューブを入手可能である。
【0026】
マトリックス樹脂802の構成材料としては、ある程度の可撓性を有する一般的なプラスチックである熱可塑性樹脂や、ゴムなどの熱硬化性樹脂または熱架橋性樹脂を用いる事が出来る。具体的には、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステルやそれらをハードセグメントとしたポリエステルエラストマー、ポリエチレン、ポリプロピレンのようなポリオレフィンおよびポリオレフィンエラストマー、メタロセン触媒を用いた共重合体ポリオレフィン、ポリ塩化ビニル、PVDC、PVDFなどのビニル系ポリマー、ナイロンを含むポリアミドおよびポリアミドエラストマー(PAE)、ポリイミド、ポリスチレン、SEBS樹脂、ポリウレタン、ポリウレタンエラストマー、ABS樹脂、アクリル樹脂、ポリアリレート、ポリカーボネート、ポリオキシメチレン(POM)、ポリビニルアルコール(PVA)、フッ素樹脂(ETFE、PFA、PTFE)、エチレン−酢酸ビニルケン化物、エチレン−コポリ−ビニルアルコール、エチレンビニルアセテーテート、カルボキシメチルセルロース、メチルセルロース、セルロースアセテート、ビニルポリスルホン、液晶ポリマー(LCP)、ポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンオキサイド(PPO)、ポリフェニレンスルフィド(PPS)などの各種熱可塑性樹脂やその高分子誘導体のほか、加硫ゴム、シリコン樹脂、エポキシ樹脂、二液反応性ポリウレタン樹脂などの熱硬化または架橋性樹脂が挙げられる。さらに、上記の熱可塑性樹脂及び熱硬化・架橋性樹脂のうちいずれかを含むポリマーアロイも利用可能であり、成形材料として溶媒に樹脂を溶解した樹脂溶液を用いても良い。
【0027】
さらに、短繊維801のマトリックス樹脂802との密着性を向上させるために、表面構造を物理的/物理化学的/化学的に改質することが好ましい。代表的な表面処理(表面改質)の例は、ガラス繊維のシランカップリング剤による表面処理や、チタンカップリング剤による表面処理が挙げられる。
【0028】
前記2種類のカップリング剤に加えて、以下に挙げる各種の表面処理剤を単独或いは複合させて繊維表面とマトリックス樹脂との密着性,接着性を向上させることも可能である。
(1)高級脂肪酸:ステアリン酸,オレイン酸など
(2)高級脂肪酸エステル,アミド
(3)高級脂肪酸金属塩:ステアリン酸カルシウム,同マグネシウム,同亜鉛など
(4)高級アルコール
(5)各種ワックス:低分子量ポリエチレン,同ポリプロピレンなど
(6)極性ポリオレフィン:無水マレイン酸グラフトポリオレフィン,酸―プロピレンコポリマー,クロルスルホン化ポリオレフィンなど
これら表面改質剤は、予め繊維表面に処理を施してからマトリックス樹脂へ配合分散する場合と、短繊維とマトリックス樹脂の複合化の過程で同時に添加される場合がある。補強短繊維801とマトリックス樹脂802との組み合わせにより、当該技術分野の専門技術者であれば、効果の高い表面改質剤を提案することが出来る。
【0029】
本発明においては、短繊維801がマトリックス樹脂802中にほぼ均等に分散した複合材料の作製は、以下のように行うことができる。
【0030】
マトリックス樹脂802が溶融可能な熱可塑性樹脂の場合は、公知のコンパウンディング手法の中から、目的に応じた手法を選定することが出来る。混練機としては、一軸・二軸のスクリュー式混練機,ゴムロール,石臼タイプの混練機などを挙げることが出来る。
【0031】
また、補強繊維とマトリックス樹脂の混合方式に、近年in situ 重合が好ましく使用されるようになってきている。とくにナノカーボンチューブのような微細な補強短繊維には特に好ましく使用することが出来る。
【0032】
具体的にはマトリックス樹脂802の重合反応前、あるいは重合中であってもマトリックス樹脂(若しくはその前駆物質:モノマー、熱硬化樹脂の主剤/硬化剤など)3の粘度が低い状態で補強短繊維801を分散させることにより、分散性を大幅に改善することが可能である。この方法は、溶融状態でコンパウンディングするのみでは分散性が不充分な場合に特に有効である。
【0033】
また、短繊維801のマトリックス樹脂802への分散性をより向上するには、以下のような超音波震蕩法を用いることが好ましい。即ち、補強短繊維とマトリックス樹脂とを混合している工程で、超音波による振動をこれらの混合物に一定時間加え、部分的に凝集している補強短繊維間をほぐして拡げつつ、マトリックス樹脂を短繊維の間に浸透させる方法である。
【0034】
この方法は、マトリックス樹脂が溶融状態であっても適用可能である。しかし、より好ましくは、マトリックス樹脂を適切な溶剤に溶かし、その樹脂溶液に補強短繊維を混合し、攪拌翼を併用、あるいは超音波震蕩のみにて補強短繊維間に樹脂溶液を浸透・分散させる方法を挙げることが出来る。
【0035】
また、マトリックス樹脂が溶液重合によって製造される場合には、重合開始の前、重合中、あるいは重合後に、補強短繊維を配合し超音波をかける方法も好ましく実施出来る。
【0036】
以上のような方法を適用することにより、マトリックス樹脂802中に短繊維801をほぼ均等に分散した複合材料を得ることができ、図1に示すように短繊維がバルーン中にランダムに分散したバルーンを得ることができる。また、このようにほぼ均等に分散させることにより、補強短繊維801とマトリックス樹脂802との界面接着力が向上する。したがって、バルーンの補強効果がより高くなる。
【0037】
マトリックス樹脂溶液に補強短繊維を分散させた後は、通常の工程に従って、脱溶媒、洗浄、乾燥、造粒などの取出工程を経て、補強短繊維801がマトリックス樹脂802中に良好に分散した複合材料の樹脂ペレット若しくはパウダーを得ることが出来る。
【0038】
マトリックス樹脂802が熱可塑性樹脂の場合は、短繊維801を含有する複合材料の樹脂ペレット若しくはパウダーを上述のよう作製したあと、常法の押出成形法あるいは以下に示す回転押出し成形法により、バルーンに成形するための元チューブを作製できる。押出時に引き落としをかけることにより、短繊維801が縦方向に配向した元チューブを作製できる。また、回転押出し成形法により、短繊維801が周方向および縦方向の両方に配向した元チューブを作製できる。そして、この元チューブを常法の二軸延伸ブロー成形にしたがい、本発明のバルーン800を作製することができる。
【0039】
図2は、本発明の積層管状体共押出成形用ダイ1の3層積層態様例を示す概略断面図である。
【0040】
本発明の押出成形用ダイ1は、多層材料を共押出して管状体を成形するためのものであって、ダイ本体10と、該ダイ本体10内に貫通して配置されたマンドレル11と、ダイ本体10の押出方向下流側先端に、かつ上記マンドレル11と同心に配置されたダイス13とを含み、上記マンドレル11および上記ダイス13の少なくとも一方が、押出方向を軸方向として回転可能に構成されてなる回転サーキュラーダイである。本発明では、マンドレル11およびダイス13のいずれかまたは両方を回転させてもよいが、以下には主として、単純にマンドレル11のみを回転させる態様(本明細書では以下回転ポイント方式ともいう)を例にとって説明する。
【0041】
図2に示すダイ本体10は、ポリマー入口101a〜101cと、押出方向下流に単一の合流部103と、内部に、各ポリマー入口101a〜101cから管状に展開した後、漸次縮径して合流部103にそれぞれ独立に連通し、かつ該合流部103において合流する管状の分岐路102a〜102cを有する。内部にこのようなマニホールド構造を有するダイ本体10は、たとえば複数の部材10a〜10dの組み立てにより構成することができる。
【0042】
マンドレル11は、軸方向の内部空隙113を有する中空構造であり、上記合流部103よりも押出方向下流側先端に突出した円筒状の外周面111aを有するポリマー接触部(以下回転ポイントともいう)111を有する。
【0043】
ダイ本体10内を貫通し、マンドレル11を回転させるための駆動部3(図3)に接続されたマンドレル11のシャフト112部分すなわちポイント111を除く部分は、ポリマー流と接触しない。
【0044】
ダイス13は、内部にマンドレル11の外周面111aよりも大径の内周面130aにより形成される円筒状空間130を有し、該円筒状空間130の少なくとも押出方向上流端130bがダイ本体10の上記合流部端103aと同径で連通する。
【0045】
マンドレル11の回転ポイント外周面111aと上記ダイス13の内周面130aとにより、上記ダイス13の空間130内には、横断面環状に形成された空隙よりなる合流ポリマーの流路14、すなわちサーキュラーダイのダイス・ポイントポリマー合流路が形成される。
【0046】
本発明の好ましいダイス13内の流路14は、上記分岐路102a〜102cが漸次縮径しながら合流した合流部103に、さらに漸次縮径するテーパ流路141をもつ態様が望ましい。
【0047】
具体的には上記マンドレル11の外周面111aおよび/または上記ダイス13の内周面130aが、上記ダイ本体10の上記合流部103から下流方向に漸次縮径し、すなわちマンドレルのテーパ部111bおよび/またはダイステーパ部130cとにより流路断面積が漸次低減されたテーパ流路141が形成され、かつ該テーパ流路141下流の押出流路142とからなる態様が好ましい。この押出流路142の径は、ほぼ口金131の内径であり、最終目標管状体形状に近い寸法および形状である。
【0048】
ダイス13は、その口金131部分が、ダイスホルダー151でダイ本体1に固定されている。
【0049】
マンドレル11のシャフト112は、ポリマー漏れを防ぐ軸シール152によりダイ本体10の他端に保持されている。
【0050】
次に、上記本発明の押出成形ダイを用いて積層管状体を成形する方法を説明する。なお以下の各図中、図1または互いの図と同一符号は、同一または相当部分を示し、その重複説明を省略する。
【0051】
図3は、本発明の上記回転ポイント式態様のダイ1を用いて積層管状体を製造するための押出成形ラインを模式的に説明する図であり、主として熱可塑性ポリマー材料からなる3層積層チューブを製造する態様について説明する。
【0052】
ダイ1以外の個々の装置については、市販品を使用することができ、必要に応じて押出機シリンダー、スクリューなどを、耐腐食性材料、耐磨耗性材料等の特別な金属材料・材質で形成することも適宜に変更できる範囲のうちである。また管状体生産の目的に応じて押出機の大きさあるいは可塑化の能力等スペックを適宜に選択すればよい。
【0053】
図3には、3台の押出機2a、2b、2cを用いて3層管状体を製造する態様例を示す。なおたとえば2種のポリマーから3層共押出して3層積層管状体を製造する場合には、押出機を3台使用して、3層それぞれを別々の押出機からの材料で形成することもでき、また内外層が同一材料である場合には、押出機を2台使用して、一つの押出機から内外層材料を供給し、中間層材料を別の押出機から供給することもできる。
【0054】
内外層材料を同一ポリマーで形成する場合であっても、押出機を3台使用し、各層別々の押出機から材料を供給する方が、ポリマーを所望量分配して内層および外層をそれぞれ所望厚みに調整することが容易であり好ましい。
【0055】
上記各押出機2a〜2c内の各材料は、それぞれアダプター21a〜21cを介して、ポリマー入口101a〜101cからダイ1内に圧入される。またギアポンプ22a、22b、22cは、あってもなくてもよいが、製品の寸法精度を要求される場合はあったほうが好ましい。
【0056】
ダイ1を構成する上記マンドレル11のシャフト112基端は、駆動部3に接続されている。
【0057】
ダイ1内に圧入されたポリマーは、ダイ1内で積層管状体に賦形され、ダイ1から連続的に押出される。口金151から押出された積層管状体4は、凝固槽5で固化した後、引き取り機6により連続的に引き取られ、レーザー外径測定器61により寸法測定した後、巻き取り機(または裁断機)62などにより集積される。
【0058】
凝固槽5の方式は、押出された積層管状体を形成する材料が熱可塑性ポリマーであるか溶媒を用いたポリマー溶液あるいは熱硬化性ポリマーであるかによっても異なるが、冷却による固化、薬剤による固化または加熱による固化の方式などを採用することができる。
【0059】
熱可塑性ポリマーの場合には、水冷による固化が一般的であり水槽が用いられる。水槽を使用する場合には、管状体の真円度を良くするために、必ずしも必要ではないが、低圧サイジングや真空水槽等の補助装置を用いることもできる。これらのうちでも低圧サイジングの併用が好ましい。
【0060】
また管状体の押出成形では、芯材7として、銅線などの固体芯材、液体または気体などを用いることができる。
【0061】
固体の芯材7を用いれば、上記口金151から押出され、賦形されたばかりの柔らかく変形しやすいポリマーの内径を容易に維持することができるが、安価である事と芯金抜去の手間がないことから、芯材に空気や窒素ガスが用いられる事が多い。
【0062】
芯材供給方法および駆動部3の接続配置、および駆動部3から回転ポイント111に回転伝達する方法は、芯材の種類あるいは供給方法等により適宜選択することができる。
【0063】
駆動部3から回転ポイント111に回転伝達する方法は、芯材の種類により、通常ダイレクトカップリング方式またはオフセットカップリング方式を採用することができる。
【0064】
上述した回転押出成形により、短繊維801の少なくとも大部分が回転方向および長軸方向の両方に対して外力を受けながらバルーン材料が押出されるため、得られた元チューブに含浸されている短繊維801は、少なくともその大部分が元チューブの長手方向に対して斜めの方向に配向する。このような元チューブを定法のブロー成形することにより、図1に示すように短繊維801が斜めに配向したバルーンが得られる。
【0065】
一方、マトリックス樹脂802として熱硬化性樹脂あるいは溶液成形タイプの樹脂を使用する場合には、例えば図4に示すバルーン成形装置9を用いて本発明のバルーン1を作製することができる。
【0066】
バルーン成形装置9は、内芯901と、回転軸体902を備えるものである。内芯901は、作製するバルーン1の形状に対応した形状のものである。内芯901の外側に、短繊維2とマトリックス樹脂3からなる液状の複合材料を塗布し、当該材料を固化することによりバルーン1が成形される。回転軸体902は、内芯901と同軸に設けられ、内心901を貫通している。
【0067】
内芯901は、成形されたバルーン1を損なうことなくバルーン1内から除去される必要がある。よって、内芯901の形成材料としては、水溶性ポリマー(例えば、ポリビニルアルコール樹脂)、あるいは、成形されたバルーン1が損なわれない程度の温度で溶融除去可能な材質(例えば、エチレン−酢酸ビニル共重合体(EVA)、ポリエチレン、ポリプロピレン等)を挙げることが出来る。このうち、上記水溶性ポリマーが特に好ましい。
【0068】
このようなバルーン成形装置9を用いてバルーン1を作製する際には、まず、必要量の補強短繊維801を含有した熱硬化性樹脂あるいは溶液成形タイプの液状樹脂を内芯901の外面に塗布する。なお、溶液成形タイプの樹脂としてポリイミドを採用する場合において、樹脂液がポリアミック酸である場合には、引き続きイミド環への閉環反応が必要であるので、ピリジンなどの閉環助剤を含有した無水酢酸などの中に、液状樹脂を塗布した内芯901を所定時間浸漬する。
【0069】
しかる後に、図4に示すように、内芯902の長軸(中心軸線)方向が重力の方向と一致するようにバルーン成形装置9を保持し、内芯901の長軸 (中心軸線)を中心にして回転軸体902を内芯901の周方向に回転させる。これにより、内芯901に塗布された液状樹脂中の短繊維801が、重力によってバルーンの長軸方向に配向するとともに、回転軸体902の回転力をうけてバルーンの周方向にも配向する。なお、回転軸体902の回転速度、回転時間は、短繊維801が所定方向に十分配向する程度に適宜設定される。
【0070】
なお、重力の代わりに、内芯901を上記のように周方向に回転して短繊維801をバルーンの周方向に配向させた後に、上記長軸方向と直交する軸線を中心として内芯901を回転させることにより、短繊維801をバルーンの長軸方向に配向させることも可能である。
以上のようにして短繊維801を所定の方向に配向させたあと、内芯901の外面に塗布した液状樹脂を固化させることにより、内芯901上にバルーン1が成形される。そして、このバルーン1内から内芯901を抜去し、バルーン1を得る。内芯901が水溶性ポリマーから形成されている場合は、水洗により内芯901をバルーン1から除去できる。
【実施例】
【0071】
次に本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0072】
(実施例1)
<繊維配合ポリアミドエラストマー樹脂の調製>
二軸混練機を用いて、チタンカップリング剤で表面処理した炭素短繊維(内径:7μm、平均長さ:6mm、アスペクト比:約850)とポリアミドエラストマー樹脂を220℃で押出・ホットカットすることにより、コンパウンドされたペレットを得た。炭素短繊維の配合量は、ポリアミドエラストマー全量に対して18重量%とした。コンパウンディングにより、繊維長は短くなったが、平均長は400〜500μmであり、アスペクト比は60以上であった。
【0073】
<3層チューブの押出成形>
図2に示す回転押出し成形機を用いて、外層および内層がポリアミドエラストマー樹脂、中間層が上記の繊維配合ポリアミドエラストマー樹脂からなるバルーン元チューブを作製した。上記材料を3台の押出機にそれぞれ投入し、成形温度200℃±5℃として押出機およびダイの温度設定し本発明の回転ダイに圧入して管状体成形を行なった。バルーン元チューブサイズ:外径×内径、0.5×1.0mmのチューブを成形した。各層の寸法は外径×内径で外層厚み0.1mm、中間層厚み0.05mm、内層厚み0.1mmに設定した。この時のチューブ引取速度は毎分12mとし、押出時のポイントの回転数は100rpmとした。
以上のようにして、非常にきれいな三層構造を有するチューブを得ることが出来た。
【0074】
<バルーン成形>
上記で得られた積層元チューブを、バルーン成形金型を使用して定法の二軸延伸ブロー成形によりバルーン(外径:3.0mmφ)に成形した。これを定法にしたがい、PTCAバルーンカテーテルに組み立てた。
【0075】
(比較例1)
比較対照の目的で、中層として炭素短繊維をコンパウンディングしていないポリアミドエラストマーを用いたこと以外は、上記実施例1と同様にして三層チューブを成形して、φ3.0mmのバルーンを作製し、PTCAバルーンカテーテルを組み立てた。
【0076】
<バルーン耐圧と性状>
上記実施例1および比較例1のバルーン耐圧強度の測定を行ったところ、比較例1のバルーンカテーテルでは、耐圧強度が18気圧であったのに対し、実施例1のバルーンカテーテルは23気圧以上の加圧にも耐えるものであった。かつ、バルーンの可撓性は十分に保持されていた。なお、耐圧強度の測定は、窒素ボンベからの内圧供給により、チューブの破裂する圧力を測定することにより行った。これにより、炭素短繊維による補強効果によって、バルーンの耐圧強度が格段に向上したことが確認された。
【0077】
(実施例2)
<繊維配合ポリイミド樹脂の調製>
熱可塑性ポリイミド[商標名オーラム(AURUM);三井東圧化学(株)]に対して、ナノカーボンチューブ(外径:7μm、長さ:約80μm、複層)を15重量%配合した。配合方法は、同ポリイミドの前駆体であるポリアミック酸の溶液重合工程に於いてナノカーボンチューブを添加配合し、ポリイミド環の形成後に、重合段階でナノカーボンチューブが配合された樹脂として取り出した。
【0078】
このカーボンナノチューブ配合熱可塑性ポリイミド樹脂を常法どおり押出成形により、肉厚0.025mmのバルーン成形用元チューブを作製した。なお、押出成形時のダイ及びチップ断面積ドローダウン比(Die and tip cross-sectional area drawdown ratios)は8:1とした。
<バルーン成形>
上記で得られた元チューブを、バルーン成形金型を使用して定法の二軸延伸ブロー成形によりバルーン(外径:3.0mmφ)に成形した。これを定法にしたがい、PTCAバルーンカテーテルに組み立てた。
【0079】
(比較例2)
比較対照の目的で、カーボンナノチューブを配合していない熱可塑性ポリイミド樹脂を用いたこと以外は、上記実施例2と同様にして元チューブを成形して、φ3.0mmのバルーンを作製し、PTCAバルーンカテーテルを組み立てた。
【0080】
<バルーン耐圧と性状>
上記実施例2および比較例2のバルーン耐圧強度の測定を行ったところ、比較例2のバルーンカテーテルでは、耐圧強度が25気圧であったのに対し、実施例2のバルーンカテーテルは35気圧以上の加圧にも耐えるものであった。かつ、バルーンの可撓性は十分に保持されていた。なお、耐圧強度の測定は、窒素ボンベからの内圧供給により、チューブの破裂する圧力を測定することにより行った。これにより、ナノカーボンチューブによる補強効果によって、バルーンの耐圧強度が格段に向上したことが確認された。
【0081】
(実施例3)
<繊維配合ポリウレタン樹脂の調製>
ポリウレタン(商標名「パンデックス」、大日本インキ化学工業株式会社製)をテトラハイドロフランに20%濃度に溶解し、これに炭素短繊維(内径:7μm、平均長さ:6mm、アスペクト比:約850)を混合し、30℃でゆっくりと攪拌しながら、市販の超音波発振装置(メーカー:超音波工業株式会社、商品名:モデルCM−121)を用いて、周波数38KHz、出力600Wにて超音波を60分間、照射した。
【0082】
<バルーン用チューブの成形>
上記のように超音波震蕩処理を行った短繊維配合ポリウレタン溶液中に、ポリテトラフルオロエチレン(PTFE)を被覆した外径1mmの金属線を浸漬し、この金属線をゆっくりと引き上げ、60℃で2時間乾燥させた。この操作を数回繰り返したあと、金属線を引き抜き、厚さ約300μm(PTFE層の厚さ:150μm)、長さ約200mmの二層チューブを得た。
【0083】
<バルーン成形>
上記で得られた積層元チューブを、バルーン成形金型を使用して定法の二軸延伸ブロー成形によりバルーン(外径:3.0mmφ)に成形した。これを定法にしたがい、PTCAバルーンカテーテルに組み立てた。
【0084】
(比較例3)
比較対照の目的で、超音波震蕩処理を行わない繊維配合ポリウレタンを用いたこと以外は上記実施例3と同様にしてチューブを成形して、φ3.0mmのバルーンを作製し、PTCAバルーンカテーテルを組み立てた。
【0085】
<バルーン耐圧と性状>
上記実施例3および比較例3のバルーン耐圧強度の測定を行ったところ、比較例3のバルーンカテーテルでは、耐圧強度が18気圧であったのに対し、実施例3のバルーンカテーテルは23気圧以上の加圧にも耐えるものであった。かつ、バルーンの可撓性は十分に保持されていた。なお、耐圧強度の測定は、窒素ボンベからの内圧供給により、チューブの破裂する圧力を測定することにより行った。これにより、炭素短繊維による補強効果によって、バルーンの耐圧強度が格段に向上したことが確認された。

【特許請求の範囲】
【請求項1】
補強用の高モジュラス短繊維とマトリックス樹脂とからなる複合材料から形成されたバルーンを有するバルーンカテーテルにおいて、
該高モジュラス短繊維の各繊維は、前記バルーン中に非整列状態で配置され、前記バルーン中にほぼ均等に分散しており、
前記複合材料は、前記高モジュラス短繊維と前記マトリックス材料とを混合する際に超音波振動を施すことにより前記高モジュラス短繊維を前記マトリックス樹脂中に分散させていることを特徴とするバルーンカテーテル。
【請求項2】
前記高モジュラス短繊維の少なくとも大部分は、バルーンの長軸方向に対してほぼ一定の方向に斜めに傾斜して配向していることを特徴とする請求項1に記載のバルーンカテーテル。
【請求項3】
前記高モジュラス短繊維の一部は、前記方向とは異なる方向に斜めに傾斜して配向していることを特徴とする請求項2に記載のバルーンカテーテル。
【請求項4】
前記高モジュラス短繊維が、炭素繊維,高モジュラス有機繊維、高モジュラスホイスカー、カーボンナノチューブ、高モジュラス無機繊維あるいは金属繊維からなる群から選ばれる少なくとも一つの短繊維によって補強された複合材料からなる請求項1〜3のいずれかに記載のバルーンカテーテル。
【請求項5】
前記高モジュラス短繊維がナノカーボンチューブである請求項4に記載のバルーンカテーテル。
【請求項6】
前記高モジュラス短繊維は、前記マトリックス材料との密着性を向上する表面改質処理が施されている請求項1〜5のいずれかに記載のバルーンカテーテル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−254836(P2009−254836A)
【公開日】平成21年11月5日(2009.11.5)
【国際特許分類】
【出願番号】特願2009−136786(P2009−136786)
【出願日】平成21年6月8日(2009.6.8)
【分割の表示】特願2002−226923(P2002−226923)の分割
【原出願日】平成14年8月5日(2002.8.5)
【出願人】(000109543)テルモ株式会社 (2,232)
【Fターム(参考)】