説明

ビデオ電気光学ディスプレイを駆動する方法

【課題】ビデオ電気光学ディスプレイを駆動する方法の提供。
【解決手段】毎秒10フレームから毎秒20フレームの比較的低いフレームレートを用いるが、許容し得るビデオの質を有するビデオディスプレイが説明される。ディスプレイは、双安定性媒体を用い得、駆動されるとき、各フレームの駆動中に媒体が媒体の光学特性を連続的に変化させるように駆動され得る。ディスプレイは、用いられる駆動電圧においてフレーム期間が電気光学媒体の切り換え時間の50パーセントから200パーセントであるような電気光学媒体を用い得る。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、
(a)米国特許第6,504,524号と、
(b)米国特許第6,512,354号と、
(c)米国特許第6,531,997号と、
(d)米国特許第6,995,550号と、
(e)米国特許第7,012,600号および同第7,312,794号、ならびに米国特許出願公開第2006/0139310号および同第2006/0139311号と、(f)米国特許第7,034,783号と、
(g)米国特許第7,119,772号と、
(h)米国特許第7,193,625号と、
(i)米国特許第7,259,744号と、
(j)米国特許出願公開第2005/0024353号と、
(k)米国特許出願公開第2005/0179642号と、
(l)米国特許出願公開第2005/0212747号と、
(m)米国特許第7,327,511号と、
(n)米国特許出願公開第2005/0152018号と、
(o)米国特許出願公開第2005/0280626号と、
(p)米国特許出願公開第2006/0038772号と、
(q)米国特許出願公開第2006/0262060号と、
(r)米国特許出願公開第2008/0024482号と、
(s)米国特許出願公開第2008/0048969号と
に関する。
【0002】
これらの特許および公開された出願は、以下で「関連特許」として参照され得る。
【0003】
本発明は、ビデオ電気光学ディスプレイ、特に双安定性電気光学ディスプレイを駆動する方法に関係し、そのような方法で用いる装置に関係する。より具体的には、本発明は、ビデオディスプレイに対する駆動方法に関係する。本発明は、特に、独占的にではないが、粒子ベースの電気泳動(electrophoretic)ディスプレイに対して用いるように意図され、一つ以上のタイプの荷電粒子が流体の中に存在し、電界の影響下にある流体を通って動かされ、ディスプレイの見かけを変化させる。
【背景技術】
【0004】
電気光学ディスプレイに関する背景の用語体系および現在の技術水準は、上記米国特許第7,012,600号において詳細に論じられており、さらなる情報を求める読者は参照されたい。したがって、本用語体系および現在の技術水準は、以下に簡潔に要約される。
【0005】
用語「電気光学」は、材料またはディスプレイに適用されるとき、本明細書において、少なくとも一つの光学特性において異なっている第一のディスプレイ状態および第二のディスプレイ状態を有する材料を参照するように、イメージング分野におけるその従来の意味で用いられ、材料は、材料に対する電界の印加によって第一のディスプレイ状態から第二のディスプレイ状態に変化させられる。
【0006】
用語「グレー状態」は、本明細書において、ピクセルの二つの極端な光学的状態の中間の状態を参照するように、イメージング分野におけるその従来の意味で用いられ、必ずしもこれら二つの極端な状態の間の黒白移行を含意しない。用語「黒」および用語「白」は、以下でディスプレイの二つの極端な光学的状態を参照するように用いられ得、厳密には黒および白でない極端な光学的状態を通常は含むものとして理解されるべきである。
【0007】
用語「双安定の」および用語「双安定性」は、本明細書において、少なくとも一つの光学特性において異なっている第一のディスプレイ状態および第二のディスプレイ状態を有するディスプレイ要素を備えているディスプレイを参照するように、当該分野におけるその従来の意味で用いられ、その結果、有限の持続時間のアドレッシングパルスによって任意の所与の要素が駆動された後に、アドレッシングパルスが終了した後で、第一のディスプレイ状態または第二のディスプレイ状態のいずれかを呈するように、その状態は少なくとも数倍(例えば少なくとも4倍)ディスプレイ要素の状態を変化させるのに必要なアドレッシングパルスの最小限の持続時間を持続する。
【0008】
用語「インパルス」は、本明細書において、時間に対する電圧の積分という従来の意味で用いられる。しかしながら、一部の双安定性電気光学媒体は、電荷トランスデューサーとして作用し、そのような媒体によってインパルスの代替の定義、すなわち時間にわたる電流の積分(印加された全電荷に等しい)が用いられ得る。インパルスの適切な定義は、媒体が電圧−時間インパルストランスデューサーとして作用するか、または電荷インパルストランスデューサーとして作用するかに依存して用いられるべきである。
【0009】
以下の議論の多くは、最初のグレーレベルから最後のグレーレベル(それは、最初のグレーレベルと異なっていたり、異ならなかったりする)までの移行を通じて、電気光学ディスプレイの一つ以上のピクセルを駆動する方法に焦点を当てる。用語「波形」は、一つの特定な最初のグレーレベルから特定の最後のグレーレベルへの移行を引き起こすように用いられる時間に対する全電圧の曲線を指すように用いられる。典型的には、そのような波形は、複数の波形要素を備え、これらの要素は、本質的に長方形(すなわち、所与の要素は、ある期間に対してある一定の電圧の印加を包含する)であり、要素は、「パルス」または「駆動パルス」と呼ばれ得る。用語「駆動スキーム」は、特定のディスプレイに対するグレーレベル間のすべての可能な移行を引き起こすのに十分な一組の波形を指す。
【0010】
いくつかのタイプの電気光学ディスプレイが公知であり、例えば、
(a)回転する二色部材ディスプレイ(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、および特許文献9を参照)
(b)エレクトロクロミックディスプレイ(例えば、非特許文献1、非特許文献2、非特許文献3、特許文献10、特許文献11、および特許文献12を参照)
(c)エレクトロウエッティングディスプレイ(非特許文献4および特許文献13を参照)、
(d)複数の荷電粒子が電界の影響下にある流体を通って移動する粒子ベースの電気泳動ディスプレイ(特許文献14、米国特許第5,961,804号、同第6,017,584号、同第6,067,185号、同第6,118,426号、同第6,120,588号、同第6,120,839号、同第6,124,851号、同第6,130,773号、同第6,130,774号、ならびに米国特許出願公開第2002/0060321号、同第2002/0090980号、同第2003/0011560号、同第2003/0102858号、同第2003/0151702号、同第2003/0222315号、同第2004/0014265号、同第2004/0075634号、同第2004/0094422号、同第2004/0105036号、同第2005/0062714号、および同第2005/0270261号、ならびに国際出願公開第WO00/38000号、同第WO00/36560号、同第WO00/67110号、および同第WO01/07961号、ならびに欧州特許第1,099,207Bl号、および同第1,145,072Bl号、ならびに上記米国特許第7,012,600号で論じられているMITおよびE Inkの他の特許および出願を参照)である。
【0011】
いくつかの異なる電気泳動媒体の変形がある。電気泳動媒体は、液体または気体の流体を用い得、例えば気体の流体に関しては、例えば、非特許文献5、米国特許出願公開第2005/0001810号、欧州特許出願第1,462,847号、同第1,482,354号、同第1,484,635号、同第1,500,971号、同第1,501,194号、同第1,536,271号、同第1,542,067号、同第1,577,702号、同第1,577,703号、および同第1,598,694号、ならびに国際出願第WO2004/090626号、同第WO2004/079442号、および同第WO2004/001498号を参照されたい。媒体は、多数の小さなカプセルを備えてカプセル化され得、各カプセル自体は、液体の懸濁媒体中に懸濁している電子泳動的に移動する粒子を含む内部相と、内部相を囲むカプセル壁とを備えている。典型的には、カプセルはそれら自体、高分子結合剤内で保持され、二つの電極の間に位置するコヒーレント層を形成する(上記のMITおよびE Inkの特許および出願を参照されたい)。あるいは、カプセル化された電気泳動媒体内の分離したマイクロカプセルを囲む壁は、連続相によって置き換えられ得、こうすることでいわゆる高分子分散電気泳動ディスプレイを作り、上記ディスプレイにおいて、電気泳動媒体は電気泳動流体の複数の分離した液滴と高分子材料の連続相とを備え、例えば、米国特許第6,866,760号を参照されたい。本出願の目的のため、上記のような高分子分散電気泳動媒体は、カプセル化された電気泳動媒体の亜種として見なされている。別の変形は、いわゆる「マイクロセル電気泳動ディスプレイ」であり、上記ディスプレイにおいて、荷電粒子および流体は、担体媒体、典型的には、高分子膜内に形成された複数の空洞内に保たれる(例えば、米国特許第6,672,921号および同第6,788,449号を参照されたい)。
【0012】
電気泳動媒体は、「シャッターモード」で動作し得、上記モードにおいて、一つのディスプレイの状態は実質的に不透明であり、一つのディスプレイの状態は光透過性である。例えば、特許文献15および特許文献16、ならびに特許文献17、特許文献18、特許文献19、特許文献20、および特許文献21を参照されたい。誘電泳動ディスプレイは、同様のモードで動作し得、米国特許第4,418,346号を参照されたい。他のタイプの電気光学ディスプレイもまた、シャッターモードで動作することが可能であり得る。
【0013】
他のタイプの電気光学材料もまた、本発明において用いられ得る。
【0014】
粒子ベースの電気泳動ディスプレイおよび多くの他の電気光学ディスプレイが双安定であり、従来の液晶(「LC」)ディスプレイと著しい対照を成している。ねじれネマチック(twisted nematic)液晶の作用は双安定ではないが、電圧トランスデューサーとして作用する結果、そのようなディスプレイのピクセルに所与の電界を印加することは、ピクセルにそれ以前に存在するグレーレベルにかかわらず、ピクセルにおいて特定のグレーレベルを生成する。さらには、LCディスプレイは、一方向だけに(非透過性または「暗」から透過性または「明」へ)駆動され、そのより明るい状態からより暗い状態への逆の移行は、電界を低減または排除することによって生み出される。最後に、LCディスプレイのピクセルのグレーレベルは、電界の極性に対して高感度でなく、電界の大きさに対してだけ高感度で、実際に技術的理由で市販のLCディスプレイは、通例、駆動する電界の極性を頻繁な間隔で逆にする。対照的に、双安定性ディスプレイは、最初の近似に対してインパルストランスデューサーとして作用する結果、ピクセルの最後の状態は、印加される電界およびこの電界が印加される時間だけでなく、電界の印加より前のピクセルの状態にも依存する。
【0015】
用いられる電気光学媒体が双安定であろうとなかろうと、高解像度ディスプレイを得るためには、ディスプレイの個々のピクセルは、隣接するピクセルからの干渉なしにアドレス指定可能でなければならない。この目的を達成する一つの方法は、少なくとも一つの非線形要素が各ピクセルに関連づけられるようにして、例えばトランジスターまたはダイオードのような非線形要素の配列を提供すること、「アクティブマトリックス」ディスプレイを作ることである。一つのピクセルをアドレス指定する、アドレス指定電極またはピクセル電極は、関連づけられた非線形要素を介して適切な電圧源に接続される。典型的には、ピクセル電極は本質的には任意であり、トランジスターの供給源に接続され得るが、非線形要素がトランジスターであるとき、ピクセル電極は、トランジスターのドレインに接続され、この構成は、以下の説明において仮定される。従来、高解像度の配列において、任意の特定のピクセルが一つの特定の行と一つの特定の列との交差部分によって一意的に定義されるように、ピクセルは、行と列との二次元の配列で構成されている。各列におけるすべてのトランジスターの供給源が単一の列の電極に接続される一方で、各行におけるすべてのトランジスターのゲートが単一の行の電極に接続される。さらにまた、行への供給源の割り当ておよび列へのゲートの割り当ては、従来のとおりであるが、本質的に任意であり、所望の場合には逆にされ得る。行の電極が行のドライバーに接続され、そのことが任意の所与の瞬間において唯一つの行が選択されること、すなわち、選択された行におけるすべての移行が伝導性であることを本質的に保証するように、選択された行の電極に印加される電圧がある一方で、これらの選択されない行におけるすべてのトランジスターが非伝導性のままであることを保証するように、すべての他の行に印加される電圧がある。列の電極は列のドライバーに接続され、そのことは、さまざまな列の電極に、選択された行におけるピクセルを所望の光学的状態まで駆動するように選択された電圧を加える。(上記電圧は一般的な前面電極と関係しており、一般的な前面電極は、従来は非線形配列から電気光学媒体の対向側に提供され、ディスプレイ全体を横切って延びる)。「線アドレス指定時間」として公知の予め選択された間隔の後に、選択された行が除外され、次の行が選択され、ディスプレイの次の行が書かれるように列ドライバー上の電圧が変化させられる。このプロセスは、ディスプレイ全体が行ごとに書かれるように繰り返される。
【0016】
典型的には、今まで、電気泳動ディスプレイおよび他の双安定性ディスプレイは、およそ100ミリセカンドの更新時間を有し、その結果、そのようなディスプレイは本質的に静止画像に制限され、ビデオを表示する能力がないと仮定されている。近年、電気泳動ディスプレイを切り替えるのに必要なインパルスを低減することに進歩が遂げられ、例えば、Whitesides,T.他,“Towards Video−rate Microencapsulated Dual−Particle Electrophoretic Displays”,SID 04 Digest 133(2004)を参照されたい。そのような低減されたインパルスは、切り換え時間(ディスプレイのピクセルが極端な光学的状態のうちの一つから他の状態へ切り換わるのに必要な時間)または電気泳動ディスプレイの動作電圧を低減するように用いられ得る。切り換え時間および動作電圧は、もちろん、駆動電圧を高くすれば切り換え時間が短くなることで相互に関係している。しかしながら、上記論文でさえ、ビデオレートがほぼ達成され得ることを主張するにすぎず、同論文はグレースケールのディスプレイだけを論じている。カラーディスプレイ上で許容し得るビデオを達成することは、かなりな程度に、より困難である。グレースケールのディスプレイにおいて、ディスプレイの「黒」および「白」の領域における極端な光学的状態まで電気光学媒体を完全には駆動しないことを許容することは可能であり得、そのような不完全な駆動は、ディスプレイのコントラスト比を低減するが、許容し得るピクチャーを依然として生成し得る。しかしながら、ディスプレイの領域の一部分だけが各々の主要な色を表示し得る反射カラーディスプレイの場合、そのような不完全な駆動がディスプレイのコントラスト比だけでなく彩度にも影響するので、電気光学媒体の不完全な駆動を極端な光学的状態まで許容することは、はるかに容易でない。したがって、質の高いビデオ、特に質の高いカラービデオは、現在のところ双安定性電気光学ディスプレイ上では不可能であると、これまで思われている。
【先行技術文献】
【特許文献】
【0017】
【特許文献1】米国特許第5,808,783号明細書
【特許文献2】米国特許第5,777,782号明細書
【特許文献3】米国特許第5,760,761号明細書
【特許文献4】米国特許第6,054,071号明細書
【特許文献5】米国特許第6,055,091号明細書
【特許文献6】米国特許第6,097,531号明細書
【特許文献7】米国特許第6,128,124号明細書
【特許文献8】米国特許第6,137,467号明細書
【特許文献9】米国特許第6,147,791号明細書
【特許文献10】米国特許第6,301,038号明細書
【特許文献11】米国特許第6,870,657号明細書
【特許文献12】米国特許第6,950,220号明細書
【特許文献13】米国特許出願公開第2005/0151709号明細書
【特許文献14】米国特許第5,930,026号明細書
【特許文献15】米国特許第6,130,774号明細書
【特許文献16】米国特許第6,172,798号明細書
【特許文献17】米国特許第5,872,552号明細書
【特許文献18】米国特許第6,144,361号明細書
【特許文献19】米国特許第6,271,823号明細書
【特許文献20】米国特許第6,225,971号明細書
【特許文献21】米国特許第6,184,856号明細書
【非特許文献】
【0018】
【非特許文献1】O’Regan,B.他,Nature 1991,353,737
【非特許文献2】Wood,D.,Information Display,18(3),24(March 2002)
【非特許文献3】Bach,U.他,Adv.Mater.,2002,14(11),845
【非特許文献4】Hayes,R.A.他,“Video−Speed Electronic Paper Based on Electrowetting”,Nature,425,383−385(25 September 2003)
【非特許文献5】Kitamura,T.他,“Electrical toner movement for electronic paper−like display”,IDW Japan,2001,Paper HCSl−1,およびYamaguchi,Y.,他,“Toner display using insulative particles charged triboelectrically”,IDW Japan,2001,Paper AMD4−4)
【発明の概要】
【課題を解決するための手段】
【0019】
一つの局面において、本発明は、毎秒約10フレームから毎秒約20フレームのフレームレートでビデオを表示するように構成された双安定性電気光学ディスプレイを提供し、フレームレートは、例えば、毎秒約13フレームから毎秒約20フレームであり得る。
【0020】
そのような双安定性電気光学ディスプレイは、上記で説明された双安定性電気光学媒体のうちの任意のタイプを使用し得る。こうして、例えばディスプレイは、回転する二色部材ディスプレイまたはエレクトロクロミック材料を備え得る。あるいは、ディスプレイは、流体の中に配置され、電界の影響下にある流体を通り抜ける能力がある複数の荷電粒子をそれ自体で備えている、電気泳動材料を備え得る。荷電粒子および流体は、複数のカプセルまたはマイクロセルの中に封じ込められ得る。あるいは、荷電粒子および流体は、高分子材料を備えている連続相によって囲まれた複数の分離した液滴として存在し得る。流体は、液体または気体であり得る。
【0021】
別の局面において、本発明は、電気光学ディスプレイを駆動する方法を提供し、その方法は、毎秒約10フレームから毎秒約20フレームのフレームレートでディスプレイを駆動することを包含し、ディスプレイに用いられる電気光学媒体は、駆動されるとき、電気光学特性を各フレームの駆動の間ずっと連続的に変化させる。電気光学媒体は、駆動されるとき、その電気光学特性を各フレームの駆動の間ずっと実質的に直線的に変化させる。ディスプレイのフレームレートは、毎秒約13フレームから毎秒約20フレームであり得る。
【0022】
そのような双安定性電気光学ディスプレイは、上記で説明された双安定性電気光学媒体のうちの任意のタイプを使用し得る。
【0023】
別の局面において、本発明は、電気光学媒体を備えている電気光学ディスプレイを駆動する方法を提供し、フレーム期間(ビデオディスプレイへの逐次的な画像の供給と供給との間の期間)は、電気光学媒体の切り換え時間(電気光学媒体を一つの極端な光学的状態から他の状態へ切り換えるのに必要な時間)の約50パーセントから約200パーセントである。フレーム期間は、切り換え時間の約75パーセントから約150パーセントであり得る。電気光学媒体は、双安定であり得るか、またはそうでないことがあり得る。
【0024】
そのような双安定性電気光学ディスプレイは、上記で説明された双安定性電気光学媒体のうちの任意のタイプを使用し得る。
【0025】
本発明のディスプレイは、先行技術の電気光学ディスプレイが用いられている任意の用途において用いられ得る。こうして、例えば、本ディスプレイは、電子ブックリーダー、ポータブルコンピューター、タブレットコンピューター、セルラ電話、スマートカード、標識、時計、棚札(shelf label)およびフラッシュドライブにおいて用いられ得る。
例えば、本願発明は以下の項目を提供する。
(項目1)
双安定性電気光学ディスプレイであって、毎秒10フレームから毎秒20フレームのフレームレートでビデオを表示するように配列されていることを特徴とする、双安定性電気光学ディスプレイ。
(項目2)
毎秒13フレームから毎秒20フレームのフレームレートでビデオを表示するように配列されている、項目1に記載のディスプレイ。
(項目3)
回転する二色部材またはエレクトロクロミック電気光学材料を備えている、項目1に記載のディスプレイ。
(項目4)
電気泳動材料を備えており、該電気泳動材料は、流体の中に配置され、かつ、電界の影響下にある該流体を通って移動する能力がある複数の荷電粒子をそれ自体が備えている、項目1に記載のディスプレイ。
(項目5)
前記荷電粒子および前記流体は、複数のカプセルまたはマイクロセルの中に封じ込められている、項目4に記載のディスプレイ。
(項目6)
前記荷電粒子および前記流体は、高分子材料を備えている連続相によって囲まれた複数の分離した液滴として存在する、項目4に記載のディスプレイ。
(項目7)
前記流体は、気体状である、項目4に記載のディスプレイ。
(項目8)
電気光学ディスプレイを駆動する方法であって、該方法は、該ディスプレイを毎秒10フレームから毎秒20フレームのフレームレートで駆動することを特徴とし、該ディスプレイにおいて用いられる電気光学媒体は、駆動されるとき、該電気光学媒体の電気光学特性を各フレームの該駆動の間ずっと連続的に変化させる、方法。
(項目9)
前記電気光学媒体は、駆動されるとき、該電気光学媒体の電気光学特性を各フレームの該駆動の間ずっと実質的に線形的に変化させる、項目8に記載の方法。
(項目10)
前記フレームレートは、毎秒13フレームから毎秒20フレームのフレームレートである、項目8に記載の方法。
(項目11)
前記電気光学媒体は、回転する二色部材またはエレクトロクロミック媒体を備えている、項目8に記載の方法。
(項目12)
前記電気光学媒体は、電気泳動媒体を備え、該電気泳動媒体は、流体の中に配置され、かつ、電界の影響下にある該流体を通って動く能力がある複数の荷電粒子をそれ自体が備えている、項目8に記載の方法。
(項目13)
前記荷電粒子および前記流体は、複数のカプセルまたはマイクロセルの中に封じ込められている、項目12に記載の方法。
(項目14)
前記荷電粒子および前記流体は、高分子材料を備えている連続相によって囲まれた複数の分離した液滴として存在する、項目12に記載の方法。
(項目15)
前記流体は、気体状である、項目12に記載の方法。
(項目16)
電気光学媒体を備えている電気光学ディスプレイを駆動する方法であって、フレーム期間が電気光学媒体の切り換え時間の50パーセントから200パーセントであることを特徴とする、方法。
(項目17)
前記フレーム期間は、前記切り換え時間の75パーセントから150パーセントである、項目16に記載の方法。
(項目18)
前記電気光学媒体は、双安定性である、項目16に記載の方法。
(項目19)
項目1に記載のディスプレイを特徴とする、電子ブックリーダー、ポータブルコンピューター、タブレットコンピューター、セルラ電話、スマートカード、標識、時計、棚札またはフラッシュドライブ。
【図面の簡単な説明】
【0026】
【図1】添付の図面の図1は、先行技術の液晶ディスプレイの単一のピクセルの光学特性が、ビデオにおける一連の移行の間に時間とともにいかに変化するかを図式的に示すグラフである。
【図2】図2は、図1と同様なグラフであるが、ビデオにおける一連の移行を受ける、本発明の電気泳動ディスプレイのピクセルの光学特性を示している。
【発明を実施するための形態】
【0027】
例えば陰極線管および従来の液晶ディスプレイ上の燐光体のような非双安定性媒体を用いる従来のビデオレートディスプレイは、許容し得るビデオの質を提供するために、毎秒約25フレーム(fps)を超えるフレームレートを必要とする。(インターネットビデオでは15fpsのビデオディスプレイが一般的であるが、顕著なビデオの質の欠如が生じている)。今や非常に驚くべきことに、双安定な、および所定の他の電気光学ディスプレイが25fpsより実質的に低いフレームレートで、約10fpsから約20fpsの範囲で、好ましくは約13fpsから約20fpsの範囲で、良質な画像を生成し得ることがわかっている。経験豊かな観察者は、15fpsで稼動するカプセル化された電気泳動ディスプレイが、約30fpsで稼動する非双安定性ディスプレイによって生成されるビデオと実質的に等しく見えるビデオの質を生成し得ることを確認している。
【0028】
低いフレームレートでのこの意外に高いビデオの質の理由は、現在のところ完全には理解されていないが(そして、本発明は、その現象に対するいかなる具体的な説明によっても限定されないが)、説明の一部分は、双安定性ディスプレイ上の繰り返す画像が、目が逐次的な画像の「ブレンディング」を助けて動きの錯覚を作る方法にあるようである。すべてのビデオディスプレイは、一連のスチル画像をブレンドして動きの錯覚を作る目の能力に依存している。しかしながら、多くのタイプのビデオディスプレイは、実際には、ブレンディングプロセスを妨げる一時的な介入「画像」を挿入する。例えば、機械式フィルム映写機を用いるモーションフィルムディスプレイは、実際、スクリーン上に第一の静止画像を配置し、次いで映写機がフィルムを次のフレームに進ませるとき非常に短い期間の間、空白のスクリーンを表示し、その後に第二の静止画像を表示する。
【0029】
他のタイプのビデオディスプレイ(例えば、陰極線管および非双安定性液晶)は、中間「画像」を挿入しないが、フレーム期間の小部分の間に第一の画像をディスプレイ上に非常に迅速に書くことによって画像を変化させ、次いで第二の画像が書かれる前に、この第一の画像がフレーム期間の残りの部分の間に実質的な量のフェージングを受けることを可能にする。このタイプの挙動は、添付の図面の図1にきわめて図式的に図示されている。
【0030】
図1は、8グレーレベル液晶ディスプレイの単一ピクセルのグレーレベルの時間による変移を図式的に図示し、グレーレベルは、0(黒)から7(白)まで指定される。(実際、市販の液晶ディスプレイは、通常、非常に多くのグレーレベルを有する。)第一のフレームにおいて、液晶は、黒(グレーレベル0、非透過性液晶材料に相当する)から白(グレーレベル7、透過性液晶材料に相当する)まで駆動される。図1における102において示されるように、典型的には、液晶材料は、グレーレベル0からグレーレベル7まで非常に迅速な移行を経て、その後、図1における104に示されるように、残りのフレーム期間の大部分の間ずっと、(例えば)ほぼグレーレベル6までゆるやかな緩和がある。
【0031】
第二のフレームにおいて、ピクセルをグレーレベル3まで変化させることが所望される。液晶が暗闇から光まで一方向だけに駆動されるので、図1の106に示されるように、グレーレベル6からグレーレベル3までの変化は、液晶を横切る電界を適切な低い値まで低減させることによって生み出され、液晶が所望のグレーレベルまで緩和することを可能にする。
【0032】
第三のフレームにおいて、ピクセルをグレーレベル7まで戻すことが所望される。その結果である3〜7のグレーレベルの移行は、0〜7のグレーレベルの移行とほぼ同様であり、108に示されるグレーレベルの非常に迅速な最初の増加を伴い、110に示されるようなほぼグレーレベル6までのゆるやかな緩和が続く。
【0033】
多くのタイプの先行技術のディスプレイ、例えば燐光体を用いる陰極線管は、書き換えが各フレーム期間の小部分のみを占める、同様な書き換えプロセスを用いる。電子ビームが当たる燐光体からの放射の増加は、1ミリセカンド未満で生じ得るのに対し、現代の非双安定性液晶は、約2〜約5ミリセカンドで書き換えられ得る。ピクセルがフレームのより大きな部分の間ずっと同じ光学的状態のままであり、もちろん書き換えと書き換えとの間に生じる任意のフェージングの影響を受けるので、効果は、機械式の映画映写機によって達成される効果と同様であり、一連の固定された画像が逐次的に表示され、逐次的な画像間でのブレンディングは伴わない。
【0034】
さらには、104および110において図示される緩和またはフェージングは、それ自体の問題をもたらす。新しい画像が通常はディスプレイにわたって走査することによって線ごとに書かれるので、書き換え直後に、各線は、順に、ディスプレイの最も暗い部分の一部であることから最も明るい部分であることに向かう。ディスプレイのさまざまな線の明るさのこの連続的な変化は、人間の目によってディスプレイ上の「ちらつき」として知覚される。多くの場合、悩ましいちらつきは、動きの錯覚を与えるために必要なレートよりも高いフレームレートを用いることによってのみ、許容し得るレベルまで低減され得る。例えば、テレビ放送(現在はいくつかの他の技術が使用されているが、本来は陰極線管で見られるように設計された)は、30fpsのフレームレートを用いるが、ディスプレイ上の代替の線のみが各走査時に書き換えられ、線の後半が次の走査時に書き換えられる結果、ディスプレイは毎秒60の「ハーフフレーム」を示す、インターレース技術をもまた用いる。液晶コンピューターモニターは、動きの錯覚を与えるために通常は30fpsで十分であるが、典型的には、ちらつきを回避するために少なくとも60fps(非インターレース)のフレームレートで駆動されなければならない。
【0035】
添付の図面の図2は、図1における移行と同じ0−7−3−7光学移行を受ける電気泳動媒体の光学的状態の変化を図示する。(図1および図2の両方が三つのフレーム期間を示すが、これらのフレーム期間が両方の場合で同じ持続時間であることを含意することは意図されていない。典型的には、電気泳動ディスプレイを書くフレーム期間は、液晶ディスプレイを書き換えるフレーム期間よりも実質的に長い。)図2の202において示されるように、第一のフレーム期間における0−7グレーレベル移行の間、ピクセルの光学的状態が全フレーム期間中、直線的に変化する結果、グレーレベル7は、フレーム期間の最後にやっと到達され、その後のフェージングの機会はなく、ディスプレイが双安定であるので、フェージングはいかなる場合にも生じ得ないことに留意されたい。(図2は、いくらか単純化されすぎている。電気泳動媒体の光学的状態の変化は、必ずしも時間に関して直線的ではない。また、上記「関連出願への参照」セクションで参照された、いくつかの特許および出願において説明されたように、実際にコントローラーを単純かつ安価に保つために、コントローラーは、単一の駆動電圧を適用し得ることのみが可能であり得、コントローラーは、単一の移行の間に繰り返しオフおよびオンにされ得る結果、移行中の光学的状態の変化は、図2に図示される移行よりも断続的であり得る。
【0036】
第二のフレームにおいて、7−3グレーレベル移行が生み出される。光状態からより暗い状態への移行が単に液晶媒体の緩和によってのみ生み出される液晶媒体とは違って、双安定性電気泳動媒体は、両方の方向(すなわち、黒くなる移行および白くなる移行の両方)に駆動される必要があり、よって図2の204に図示されるように、7−3移行はその前の0−7移行とほぼ同様であり、光学的状態は、フレーム期間の大部分の間、本質的に直線的に変化する。しかしながら、図2は、一部の場合において、移行がフレーム期間の全体を占めず、206に示されるように短い期間があり得、206において媒体は、駆動されず、その双安定性に起因して、実質的に同じ光学的状態に単にとどまっている時点をこそ図示する。
【0037】
最後に、第三のフレーム期間において、3−7グレーレベル移行が生み出される。図2の208に図示されるように、この移行は、第一のフレーム期間において生み出される0−7移行と実質的に同様であり、媒体の光学的状態は、フレーム期間の最後にグレーレベル7に達するまで時間とともに単純に滑らかに増加する。
【0038】
図2を図1と比較すると、図2における移行が、図1に示される第一の移行および第三の移行を特徴とする、比較的遅いフェージングが後に続く光学的状態の突然の変化を欠いていることが見られる。その代わり、図2に図示されるように、変化を受けるピクセルは、光学的状態における一連の滑らかな大きく中断されない変化を受ける。さらには、上記「関連出願への参照」セクションで参照された、いくつかのされた、いくつかの特許および出願において論じられたように、双安定性ディスプレイは、逐次的な画像間で変化するピクセルのみを書き換えることによって駆動され得る結果、多くの場合、ディスプレイが書き換えられるとき、ある画像のほとんどのピクセルは変化しない。このタイプの、一つの画像から続く画像への滑らかで連続的な「流れ」は、各フレーム期間の実質的にすべてでない場合にはほとんどの期間の間ずっと変化しない画像のディスプレイと比較して、目に対して滑らかな動きの印象を作ることに、より成功していると考えられている。
【0039】
こうして、双安定性電気光学媒体を用いる本発明のビデオディスプレイは、ディスプレイ上に中間画像を何も書かない。第一の画像は、第二の画像がその上に書かれるまで単に残存する。さらには、逐次的な画像間に双安定性ディスプレイの感知可能なフェージングは存在しないので、双安定性ディスプレイは、本質的にちらつき効果を免れている。
【0040】
図2が電気泳動媒体を駆動することへの参照によって上記で説明されているが、図2に示される滑らかな移行から生じる利点が移行の滑らかさに依存し、用いられる特定の電気光学媒体の性質には依存しないことは、電気光学ディスプレイ技術における当業者にとって明らかである。さらには、図2に示される移行は、電気光学媒体が本用語の通常の意味で双安定であることを必要としない。図2の206に示される期間のような駆動されない期間が存在する(そして、ディスプレイを駆動するために用いられる波形の注意深い制御によって、そのような駆動されない期間を排除することがしばしば可能であり得る)場合でも、そのような駆動されない期間は、フレーム期間のほんの小部分にすぎない持続時間(例えば、およそ25ミリセカンド)を有し、そのような短い駆動されない期間中に媒体の光学的状態に実質的変化がない場合には、依然として本発明の利点が得られる。こうして、第二の局面において、本発明は、電気光学ディスプレイを毎秒約10フレームから約20フレームのフレームレートで駆動する方法を提供し、ディスプレイにおいて用いられる電気光学媒体は、駆動されるとき、その電気光学特性を各フレームの駆動の間ずっと連続的に変化させる。例えば、有機発光ダイオード(OLED)は、印加電圧の変化に対し本質的に瞬間的に(実用的な目的で)反応するので、時間曲線に対する印加電圧の注意深い制御によって、OLEDは、図2に示される電気泳動ディスプレイの挙動を模倣するようにされ得る。
【0041】
光学濃度の変化がフレーム期間の間ずっと連続する、図2に図示される滑らかなタイプの移行を生成するためには、ディスプレイに用いられる駆動電圧と、この駆動電圧でのディスプレイ媒体の切り換え速度と、フレーム期間との間に、制御された関係があるべきであることが容易に明らかとなる。フレーム期間が電気光学媒体の切り換え時間の約50パーセントから約200パーセントであるように、駆動電圧を用いることが望ましいことがわかっている。好ましくは、フレーム期間は、切り換え時間の約75パーセントから約150パーセントである。フレームレートが切り換え時間と同様で、少なくとも、逐次的な画像間で異なるピクセルが、フレーム期間の間ずっとピクセルの見かけを変化させ続けると、すでに留意されたように、一つの画像から続く画像への、このタイプの滑らかで連続的な「流れ」は、各フレーム期間の実質的にすべてでない場合にはほとんどの期間の間ずっと変化しない画像のディスプレイと比較して、目に対して滑らかな動きの印象を作ることに、より成功していると考えられている。双安定性電気光学ディスプレイが電圧修正されるドライバーによって駆動される場合には、各移行が完了されるべきフレーム期間の少なくとも約半分を必要とするように、各移行に対して用いられる駆動する電圧を調整することが有利であり得る。
【0042】
本発明のビデオディスプレイはまた、本発明のビデオディスプレイがビデオカメラまたは同様のデバイスを用いてディスプレイからの出力を録画することが所望されるとき、さらなる利点を有する。ビデオ撮影分野における当業者には周知のように、陰極線管または非双安定性液晶ビデオディスプレイを撮影しようと試みるとき、カメラのフレームレートをディスプレイのフレームレートと注意深く同期させることが必要であり、さもなければ、しばしばディスプレイの上または下にスライドする黒っぽい帯の形態をした目立つビデオアーチファクト(video artifact)が録画の質に悪影響を及ぼす。これらの黒っぽい帯は、逐次的な書き換えと書き換えとの間の、ディスプレイの上記フェージングに大きく起因する。本発明の電気光学ディスプレイがこのフェージングの影響をかなり受けないで済むので、そのようなディスプレイからの出力は、カメラのフレームレートをディスプレイのフレームレートと同期させることなく、そして目立つビデオアーチファクトを生成することなく、録画され得る。
【0043】
本発明のビデオ電気光学ディスプレイは、静止画像を表示するように意図された先行技術の電気光学ディスプレイの利点のほとんどを共有する。例えば、本発明のビデオディスプレイは、継続的画像間で変化するピクセルを書き換える必要があるだけなので、典型的には、先行技術のビデオディスプレイよりも低い電力消費を有する。(少なくとも複数秒の長い間隔で変化しないピクセルの書き換えが、ディスプレイの遅いフェージングに対処する必要があり得るが、そのような長い間隔での書き換えに用いられるエネルギーは、連続的に書き換えられねばならない非双安定性液晶に基づくディスプレイのようなディスプレイに必要なエネルギーよりもはるかに少ない。)さらには、双安定性ディスプレイ上では所望のこま止めされた画像を適所に残して、ディスプレイを書き換えることが単に止められ得るので、本発明の双安定性ディスプレイ上に個々のフレームをこま止めすることは、先行技術のディスプレイ上で行うよりもはるかに単純である。
【0044】
本発明のディスプレイは、先行技術のディスプレイが用いられている任意の用途において用いられ得る。こうして、例えば、本ディスプレイは、電子ブックリーダー、ポータブルコンピューター、タブレットコンピューター、セルラ電話、スマートカード、標識、時計、棚札およびフラッシュドライブにおいて用いられ得る。

【特許請求の範囲】
【請求項1】
電気光学媒体を備えている電気光学ディスプレイを駆動する方法であって、フレーム期間が電気光学媒体の切り換え時間の50パーセントから200パーセントであることを特徴とする、方法。
【請求項2】
前記フレーム期間は、前記切り換え時間の75パーセントから150パーセントである、請求項に記載の方法。
【請求項3】
前記電気光学媒体は、双安定性である、請求項に記載の方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−20273(P2013−20273A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−232545(P2012−232545)
【出願日】平成24年10月22日(2012.10.22)
【分割の表示】特願2010−509515(P2010−509515)の分割
【原出願日】平成20年5月21日(2008.5.21)
【出願人】(500080214)イー インク コーポレイション (148)
【Fターム(参考)】