説明

ファイバ・ブラッグ格子感知パッケージ、及びガス・タービン温度測定のシステム

【課題】異なる苛酷な環境条件に耐え得る統合型感知システムを提供する。
【解決手段】ファイバ・ブラッグ格子多点温度感知システム(44)が、壁の内面に沿って円周方向に分配されておりファイバ感知ケーブル・パッケージを固定する複数の圧締器具(50)を含んでいる。ファイバ感知ケーブル・パッケージは、光ファイバ(12)と、光ファイバに書き込まれた複数のブラッグ格子(14)と、織布層(18)と、光ファイバを包囲する鎧装管(16)とを含むファイバ・ブラッグ格子方式感知ケーブル(53)を含んでいる。多点ファイバ温度感知システムは、ブラッグ格子方式感知ケーブル・パッケージに光を伝達する光源と、反射信号を受ける検出器モジュールとを含んでいる。各々の圧締器具が、放射状配置T字形器具(54)を含んでおり、ファイバ感知ケーブルを固定する装着孔(58)を画定している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般的には、センシング(感知)技術に関し、さらに具体的には、光ファイバ型感知パッケージ、及び例えばガス・タービンの多点温度測定のシステムに関する。
【背景技術】
【0002】
温度センシングは、多くの工業プロセスの安全性、並びに効率的な運転及び制御のために不可欠的なものである。ガス・タービン、石炭ボイラの運転、燃焼、発電及びガス化のような工業プロセスには、実時間工業プロセス監視のためにも、制御及び最適化のためにも高い温度の測定が必要である。
【0003】
ガス温度は、ガス・タービン運転のための重要な制御パラメータの一つであり、温度測定の精度を少しでも改善すればタービン効率を高めることができる。圧縮機/ガス・タービンの排気管の温度は、極めて強いガス・マス・フローを伴いながら華氏600度〜1200度(°F)に近く、制御目的での直接式の燃焼器温度測定は、殆どの温度測定設備の能力を超えている。燃焼制御の実用技術では、環状アレイを成す熱電対を用いて排気温度を測定して、燃焼器への燃料流を制御している。故障温度が検出されたら常に、過冷又は過熱の何れにおいても燃料流量調節又はガス・タービンの早期停止の何れかが生ずる。かかる燃焼制御方法には正確な環状排気温度測定が必要である。しかしながら、環状アレイ型熱電対(TC)を用いた現行の排気温度測定は限定された感知点しか提供せず、感知の空間分解能は約2分の1メートルであって最適値よりも大きい場合がある。従って、ガス・タービンの制御方策には過度の余地があり、発電効率の低下及び診断能力の低下を招いている。しかしながら、現行の方法から既存のTCの数及び位置を増加させることは、パッケージの嵩が大きく過大な電気配線を必要とするため困難である。
【0004】
二酸化ケイ素を基本成分とする石英ファイバ材料は、例えば約2700°Fの温度等のような高温で溶融し、従って二酸化ケイ素材料系の四面体型ファイバ・ブラッグ格子(FBG)センサが、ターボ機械装置系、燃焼器、発電機、エンジン及び気化器のような苛酷な環境からの多点温度測定に用いるのに大きな可能性を有するものと考えられている。さらに、FBGセンサは、特定の波長の光を反射し他の波長を透過させる石英光ファイバとして構築された高品質反射体を含んでいる。FBGセンサは、低質量、高感度、多重化能力、多点分配能力、多重感知作用、及び電磁干渉不感受性を有するものとして有利である。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許出願公開第20060059917号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ガス・タービンの運転状態を監視するためには、熱安定型ファイバ・ブラッグ格子センサばかりでなく堅牢なファイバ・センサ・パッケージが必要とされる。多点温度測定又はあらゆる過渡的熱力学的測定のために、ガス・タービンの内部に容易に展開配置可能なセンサ・パッケージを提供することができれば有用である。設置されたファイバ・センサ・パッケージは、初期的なガス・タービン始動及び過渡的温度に耐えなければならず、この温度は周囲温度から1000°F〜1200°Fまでにわたる勾配を有する。排気ガスがCO、CO、NO及びHO等を含み得ることを考慮すると、ファイバ・センサ・パッケージは、信頼性の高い温度測定のためばかりでなく振動、熱サイクル、及び応力腐蝕に誘発される機械的疲労に耐える高い機械的強度を保つために、気密密封されているべきである。
【0007】
しかしながら、あらゆる工業発電システムにファイバ・センサを展開配置するためには、適正なファイバ・センサ・パッケージ及び対応する設置方法が断然必要である。一方で、各々の工業システムの運転状態は、例えば温度、圧力、流量、振動及び腐蝕が区々であり得るので、設置方法は工業システム間で異なり得る。異なる苛酷な環境条件に耐え得る改善されたFBGセンサ・パッケージ、設置方法、及び統合型感知システムを提供することが望ましい。
【課題を解決するための手段】
【0008】
本書に開示される一実施形態によれば、ファイバ・ブラッグ格子多点温度感知システムが、ファイバ感知ケーブル・パッケージと、壁の内面に沿って円周方向に分配されておりファイバ感知ケーブル・パッケージを固定する複数の圧締器具とを含んでいる。ファイバ感知ケーブル・パッケージは、少なくとも1本の光ファイバと、光ファイバに書き込まれた複数のブラッグ格子と、光ファイバを包囲する鎧装管とを含むファイバ・ブラッグ格子方式感知ケーブルを含んでいる。ファイバ感知ケーブル・パッケージは、ブラッグ格子に光を伝達する光源と、ブラッグ格子から反射した光を受ける検出器モジュールとを含んでいる。各々の圧締器具が、放射状配置T字形器具(radiation tee)を含んでおり、ファイバ感知ケーブルを固定する少なくとも1個の装着孔を画定している。
【0009】
本書に開示されるもう一つの実施形態によれば、ファイバ感知ケーブル・パッケージが、ファイバ・コア及びクラッド(外装)と、ファイバ・クラッドを包囲する皮膜層とを含む光ファイバと、ファイバ・コアに書き込まれた複数のブラッグ格子と、ファイバ・クラッドを包囲する織布層と、織布層の周囲の鎧装管と、ブラッグ格子に光を伝達する光源と、ブラッグ格子から反射した光を受ける検出器モジュールとを含んでいる。織布層は、ファイバ材料の熱膨張率と適合する熱膨張率を含んでいる。
【0010】
本書に開示されるさらにもう一つの実施形態によれば、方法が、複数のブラッグ格子が書き込まれたファイバを得るステップと、ファイバを既存の硬質金属棒に取り付けるステップとを含んでいる。金属棒は、棒の外面に棒の長さに沿って設けられた複数の貫通孔を含んでいる。ブラッグ格子は各々、対応する貫通孔に位置する。
【図面の簡単な説明】
【0011】
本発明のこれらの特徴、観点及び利点、並びに他の特徴、観点及び利点は、添付図面を参照して以下の詳細な説明を読むとさらに十分に理解されよう。尚、図面全体にわたり、類似の参照符号は類似の部材を表わす。
【図1】本発明の一実施形態による例示的なファイバ・ブラッグ格子(FBG)感知ケーブル・パッケージの単純化された断面図である。
【図2】図1のFBG感知ケーブル・パッケージのFBG感知ケーブルの例示的な断面図である。
【図3】図1のFBG感知ケーブルの複数のブラッグ格子の例示的な波長スペクトルの図である。
【図4】ガス・タービン試験期間内での温度変化に応答した図1のFBG感知ケーブルの複数のブラッグ格子の例示的な波長シフト・スペクトルの図である。
【図5】本発明のもう一つの実施形態による多数のFBG感知ファイバによるケーブル・パッケージの部分断面図である。
【図6】本発明の一実施形態によるガス・タービンの排気管に設置されたFBG温度感知システムの一例の図である。
【図7】放射状配置T字形器具を含んでおり、円周方向FBG感知ケーブル・アセンブリを放射状配置T字形器具の最上部に近接して設けた状態で1対のFBG感知ケーブルを固定する圧締器具の例示的な展開図である。
【図8】既存の放射状配置T字形器具と共にガス・タービンの排気管の内部にFBG感知ケーブルを固定する図7の圧締器具の遠近図である。
【図9】半径方向温度プロファイル・マッピングのための本発明のもう一つの実施形態によるガス・タービンの排気管に用いられる例示的なFBG感知レーキ・パッケージの図である。
【図10】本発明のさらにもう一つの実施形態によるガス・タービンの排気管に用いられる例示的なFBG感知アセンブリの図である。
【図11】本発明のさらにもう一つの実施形態によるガス・タービンの排気管に用いられる例示的なFBG感知アセンブリの図である。
【図12】図11のFBG感知アセンブリのFBG感知レーキの前面図である。
【発明を実施するための形態】
【0012】
本発明の各実施形態は、ファイバ・ブラッグ格子(FBG)方式の温度感知パッケージ、及びガス・タービンのような苛酷な環境にFBG感知パッケージを設置する方法に関する。
【0013】
図1及び図2を参照して述べると、高温の測定用のFBG感知ケーブル・パッケージ10がFBG感知ケーブル11を含んでおり、FBG感知ケーブル11は、光ファイバ12と、光ファイバ12に書き込まれた複数のブラッグ格子14と、光ファイバ12を包囲する外側鎧装管16と、光ファイバ12と外側鎧装管16との間に設けられる織布層18とを含んでいる。
【0014】
一実施形態では、光ファイバ12は、ファイバ・コア20と、クラッド23(図2)と、クラッド23を包囲するポリマー皮膜22とを含んでいる。幾つかの実施形態では、ファイバ・クラッドを保護するために金属皮膜22が用いられる。幾つかの実施形態では、ファイバ・コア20は、ゲルマニウム及びフッ素を共に含ませた二酸化ケイ素材料を含んでいる。もう一つの実施形態では、ファイバ・コアは二酸化ケイ素であって、フッ素を含ませた二酸化ケイ素クラッドを設けられる。さらにもう一つの実施形態では、ファイバ・コアは石英を含んでいる。ポリマー皮膜22は、アクリレート、シリコーン、ポリイミド、カーボン、又はこれらの組み合わせを含み得る。ポリマー皮膜22は、機械的可撓性を有し低経費であり、また光ファイバの機械的強度を高めてFBG感知ケーブル・パッケージ10の組み立てを容易にするものとして有利である。しかしながら、ポリマー皮膜22は一般的には、相対的に低い溶融温度を有し、例えばポリイミド皮膜では華氏約750度(°F)(摂氏400度(℃))である。織布層18を設けていない従来のFBG感知ケーブル・パッケージでは、高温の下でポリマー層が溶融して鎧装管16の内面に付着する場合がある。鎧装管16は、光ファイバ材料に比べて熱膨張率が大きく、高温の下では膨張して、織布層18を設けなければポリマー皮膜22及び/又は光ファイバ12の破損を招きかねない。
【0015】
織布層18が、ファイバ12の熱膨張率と適合する熱膨張率を有すると有利である。本書で用いられる「適合する」との用語は、織布層18の熱膨張率(CTE)及び光ファイバ12の熱膨張率が、ファイバが高温の下で織布層18の熱膨脹によって破損することのないように十分に近いことを意味する。幾つかの実施形態では、ファイバ・コア20及び織布層18は、実質的に同じCTEを有する。幾つかの実施形態では、この適合性は、少なくとも80重量%の光学用二酸化ケイ素又はシリカ材料を含む織布層18を用いることにより達成される。一実施形態では、例えば、織布層18は例えばSiOに繊維ガラス布を透過(leaching a fiberglass cloth to SiO)させることにより製造されるシリカ布、フッ素ゴム皮膜付き繊維ガラス、ポリクロロプレン皮膜付き繊維ガラス布、シリコン・ゴム皮膜付き繊維ガラス、又はポリ(テトラフルオロエチレン)皮膜付き繊維ガラスを含み得る。幾つかの実施形態では、織布層18は、光ファイバ12を包囲するスリーブの形態、光ファイバ12に巻き付けられたシート若しくはメッシュの形態、又は光ファイバ12に巻回されたファイバ束の形態にあってよい。高温の下では、ポリマー皮膜22が溶融し又は織布層18の内面に付着する場合がある。織布層18がファイバ12に適合する熱膨張率を有するため、織布がファイバを損傷から守り、さらにFBG感知ケーブル・パッケージ10を守る。本発明の一実施形態では、織布層18はスリーブを含んでおり、光ファイバはスリーブに挿入されて、織布層18に緩やかに収納される。織布層18について一つの例示的な織布材料の物理的特性を下記の表1に示す。
(表1) 光ファイバ保護織布材料の物理的特性
連続運転温度 2000F
最高運転温度 3100F
主材料 SiO 98%
熱伝導率(500F) 0.45(BTUインチ/時・F・ft
引張り強さ 0.5×10psi
弾性率 10.5×10psi
気孔率 1%
材料特性 無機質、熱曝露時無煙
幾つかの実施形態では、ファイバ・ブラッグ格子14は、紫外(UV)レーザ光又は近赤外(NIR)フェムト秒レーザ光の書き込み等によって光化学的過程によってファイバ・コア20に書き込まれ、続いて約1000°Fと約1500°Fとの間の温度で熱アニール工程が行なわれる。光化学的過程は通常、レーザ光が十分な強度と共にファイバ・コア20に到達して所望の遷移を生じさせるように、光ファイバ12からのポリマー皮膜22の部分の除去を必要とする。ポリマー皮膜22は、一例ではポリマーを硫酸に溶解させることを含む様々な手段によって格子領域から取り除かれ得る。光ファイバ12はポリマー皮膜22が部分的に除去された区域では強度を失い、従って、一実施形態では、ファイバ・ブラッグ格子14がコア20に形成された後に、ポリマー皮膜22を取り除いた光ファイバ12の部分が再び被覆される。もう一つの実施形態では、図2で最も分かり易く見られるように、FBG感知ケーブル・パッケージ10はさらに、光ファイバ12と共に織布層18に封入されてFBG感知ケーブル11の剛性を高める少なくとも一つの長手方向強化部材24を含む。図2の図示の実施形態では、強化部材24は、1又は多数の多重モード・ファイバを含んでいる。各々の多重モード・ファイバが、ファイバ・コア25と、ポリマー皮膜、又は銅、ニッケル若しくはアルミニウムのような金属(Cu、Ni、Al等)皮膜付きのクラッドとを含んでいる。幾つかの実施形態では、光ファイバ12及び多重モード・ファイバ24は、撚り合わされて、ポリマー皮膜22によって保護されていてもよい。
【0016】
図1を参照すると、一実施形態では、外側鎧装管16は金属材料及び研磨外面を含んでいる。この実施形態では、環境からの短波長熱輻射エネルギが、温度測定精度に影響を及ぼすことなく鎧装管16の研磨外面によって反射される。一つの例示的な鎧装管16材料は、インコネル600(商標)又はインコネル基合金、及びオーステナイト系ニッケル−クロム基超合金材料であって、耐熱性及び高い抗酸化性を有するものである。幾つかの実施形態では、管16の外径は6.35ミリメートル(mm)よりも大きく、管16の壁厚は1.2mmよりも厚く、従って鎧装管16はFBG感知ケーブル11を保護して、熱ガス流でありロータ・ブレード回転速度が3000回転毎分〜3600回転毎分(RPM)であり、固有振動周波数が50Hz〜60Hzにわたり、潜在的高調波成分が100Hz〜350Hzにわたるような苛酷な環境に耐えるものとなる。
【0017】
熱応答時間とは、熱的変化に応答するファイバ感知ケーブルの時間遅延を指し、FBG感知ケーブル・パッケージ10の重要なパラメータの一つである。短い熱応答時間が望ましく、するとガス・タービン制御システムは温度変化に対してより高速に応答することができる。FBG感知ケーブル11については、径を細くし、また鎧装管16の壁を薄くすると、相対的に短い応答時間が提供されるが、構造が相対的に弱くなり、ガス・タービンの苛酷な環境での運転状態に耐え得ない場合がある。もう一つの懸念は、比較的細く及び壁の薄い鎧装管の振動周波数が、ガス・タービンのロータ・ブレードの振動周波数帯域幅と重なり得ることである。比較的重い又は大きい管と共にパッケージしたFBG感知ケーブルを用いれば、応答時間の遅延が長くなることを代償として良好な耐久性を有し得る。一つの最適化されたパッケージ設計は、熱応答特性を均衡させつつ、パッケージの管構成がロータの基本周波数の共振周波数及び高次の高調波成分から外れるようにするものである。熱応答時間tは、下記の式1によって算出することができる。
【0018】
=r・c・ρ/κ (式1)
式中、rはパッケージ材料の半径であり、cはパッケージ材料の比熱であり、ρは質量密度であり、κは熱伝導率である。幾つかの実施形態では、鎧装管16の外径は6.35mmから9.5mmにわたり、鎧装管16の壁厚は1.2mmから2mmにわたる。
【0019】
下記の表2は、ステンレス鋼製の外側鎧装管16と、1mmの半径を有するファイバ層18と、鎧装管16とファイバ層18との間に3mmの空隙とを有するFBG感知ケーブルの例示的な応答時間を掲げており、熱事象からの合計応答時間は約2.8秒間である。大重量のパッケージは長時間の耐久性のための良好な機械的強度を提供することができるので、トレードオフはファイバ・センサが熱事象を検出するときの相対的な長時間の遅延である。タービン制御及び最適化の目的では、FBG感知ケーブルは無視できる熱応答時間を有しつつガス・タービンの苛酷な運転状態に耐えるものであるべきである。
(表2) FBG感知ケーブル応答時間
材料 r(m) ρ(km/m3) C(J/KgC) κ(W/mC) t(秒)
ステンレス鋼
0.003 8000 500 21.5 1.67
ファイバ・スリーブ
0.001 66 740 0.068 0.72
空気 0.003 1.205 1005 0.0257 0.42
応答時間(秒) 2.8
一実施形態では、FBG感知ケーブルの振動周波数がガス・タービンの基本振動周波数と重なるのを防ぐために、2種類の鎧装管寸法すなわち外径3.175mm及び6.35mmについて無圧締状態及び固定圧締状態でシミュレートされている。鎧装管が無圧締状態にあるときには、鎧装管は水平軸においてのみ自由に移動することができるが、鉛直方向には自由に移動することはできない。鎧装管が固定圧締状態にある間には、鎧装管は自由に動くことを許されない。無圧締の実施形態では、3.175mm鎧装管は50Hzに近い振動周波数を有するものと期待され、6.35mm管は約130Hzの振動周波数を有するものと期待される。7FA、7FB及び9FAのガス・タービンについて、基本モードからの正常時振動周波数は50Hz又は60Hzである。従って、一実施形態では、鎧装管16は壁厚が1.2mmよりも厚い6.35mmインコネル(商標)鎧装管を含む。
【0020】
幾つかの実施形態では、熱ガスが様々な電磁波を放射して不正確なガス温度測定を導く場合がある。図1の図示の実施形態では、FBG感知ケーブル・パッケージ10はさらに、鎧装管を包囲する外側織物スリーブ26を含んでいる。織物スリーブ26を用いると、長波長の熱輻射エネルギ(2マイクロメートルを上回る波長等)を減衰させることができる。さらに長波長のあらゆる熱輻射については、このファイバ・スリーブ材料は、熱ガス又は拡散壁の何れからのものでも熱輻射の影響を実効的に軽減することができる。
【0021】
図1を続けて参照して述べると、FBG感知ケーブル・パッケージ10はさらに、光ファイバ12を通してブラッグ格子14に光を伝達する光源28と、ブラッグ格子14から反射した光を受ける検出器モジュール30とを含んでいる。FBG感知ケーブル・パッケージ10はまた、ブラッグ格子14からの反射信号ばかりでなく光源28からの入射光も管理する光カプラ32を含み得る。カプラ32は、適当な反射信号を検出器モジュール30に送り込む。
【0022】
検出器モジュール30は、反射した光学的信号をブラッグ格子14から受けて、様々なハードウェア構成要素及びソフトウェア構成要素と協働して、光学的信号の内部に埋め込まれた情報を分析する。一実施形態では、検出器モジュール30は、ブラッグ格子14から発生される反射スペクトルに基づいて環境の状態又はパラメータを推定するように構成されている。幾つかの実施形態では、検出器モジュール30は、光学的スペクトル分析器を用いてブラッグ格子14からの信号を分析する。所望の応用に応じて、検出器モジュール30は、環境の様々なパラメータを測定するように構成され得る。かかるパラメータの実例としては、温度、ガスの存在、歪み、圧力、振動及び輻射等が挙げられる。
【0023】
一実施形態では、FBG感知ケーブル・パッケージ10は、燃焼器、発電機、エンジン又は気化器のようなターボ機械装置系の苛酷な工業的環境での温度測定に用いられる。光源28からの光が光ファイバ12を通してブラッグ格子14に伝達されるときに、光エネルギは、下記の式2によって与えられる対応するブラッグ波長λにおいてブラッグ格子14の各々によって反射される。
【0024】
λ=2neffΛ (式2)
式中、「λ」は対応するブラッグ格子14のブラッグ波長を表わし、「neff」は屈折率であり、「Λ」はブラッグ格子14の周期である。屈折率(neff)及びブラッグ格子14の周期(Λ)の両方とも温度及び歪みの関数である。ブラッグ格子14に歪みが働かない状態でFBG感知ケーブル・パッケージ10が温度測定に用いられるときには、各々のブラッグ格子14の波長シフト(Δγ)は下記の式3に従う。
【0025】
Δλ(T)=λ[(1/neff)(∂neff/∂T)+α]T
=λ(β+α)T (式3)
式中、「α」は熱膨張率であり、「β」は熱光学係数である。両者とも非線形である熱光学効果及び熱膨脹効果を考慮すると、波長シフト(Δλ)を下記の式4によって温度(T)の三次関数として較正することができる。
【0026】
Δλ(T)=aΔT+bΔT+cΔT (式4)
係数a、b及びcは、例えば熱電対、抵抗温度検出器(RTDs)又は白金抵抗温度計(PRTs)のような温度計を用いて事前実験的較正によって求めることができる。実験的較正によって求められる各係数の値の一例は、a=4.87、b=3.20×10−3及びc=−8.0ラ10−7である。環境の多点測定用の複数のブラッグ格子14をコンパクトなFBG感知ケーブル・パッケージ10の内部に構成すると簡便である。幾つかの実施形態では、これら複数のブラッグ格子14は異なる波長を有するように設計され、波長の空間的分離は0.5ナノメートルから100ナノメートルであって、測定時の如何なる潜在的なピーク重なりも回避する。図3は、同じ光ファイバ12の内部の一定数(N)のブラッグ格子14の例示的な波長スペクトルを示す。図示のように、各々のブラッグ格子14が一意の波長を有し、従って検出器モジュール30によって受光されたときに互いに区別され得る。図4は、温度変化に応答した一定の期間(T)内のこれら複数のブラッグ格子の例示的な波長シフト・スペクトルを示す。このようにして、FBG感知ケーブル・パッケージ10をオンライン・データ分析に用いることができ、この分析によってガス・タービン制御及び最適化のための平均化された排気温度及び/又は局所温度を両方とも与えることができる。各々のブラッグ格子14は異なる中心波長を有するが、波長シフトは温度変化に実質的に比例したものとなる。波長シフトから温度への変換は式4に基づいて行なわれる。
【0027】
幾つかの実施形態では、FBG感知ケーブル・パッケージ10は、さらに多くのブラッグ格子14を担持するために同じFBG感知ケーブル11の内部に2以上の光ファイバ12を含んでいてよい。図5を参照して述べると、本発明のもう一つの実施形態によるFBG感知ケーブル・パッケージ34が、同じFBG感知ケーブル11の内部に第一、第二及び第三の光ファイバ12、36、38を含んでいる。第一、第二及び第三の光ファイバ12、36、38の各々に複数のブラッグ格子14が書き込まれている。一実施形態では、同じ光ファイバ12のブラッグ格子14は、全体的な長手方向に沿って分配されている。一実施形態では、異なる光ファイバのブラッグ格子14は、FBG感知ケーブル11の長手方向に沿って互い違いに配置されている。多数のファイバを設けているので、ブラッグ格子14は、長手方向に沿ってよりコンパクトな態様で構成され得ると共に、長手方向に沿ってより多くの点を測定することができる。一実施形態では、OLE_LINK3第一、第二及び第三の光ファイバ12、36、38は、対応する織布層18OLE_LINK3によってそれぞれ包囲されて、次いでさらに鎧装管16に収容されている。もう一つの実施形態では、第一、第二及び第三の光ファイバ12、36、38は、一つの共通の織布層18によって包囲されて、次いでさらに鎧装管16に収容されている。
【0028】
図6〜図8は、ガス・タービン・システムにおいて例えば多点排気温度測定及び熱プロファイリング用に用いられる例示的なFBG方式分配型温度感知システム44を示している。図6を参照して述べると、本発明の一つの例示的な実施形態では、FBG感知システム44をガス・タービン46に用いて、ガス・タービン46の排気温度の測定を行なう。ガス・タービン46は拡散壁48を含んでおり、拡散壁48の内部に中心バレル49を封入している。拡散壁48は、実質的に円周状の断面像を有する。FBG感知システム44は、拡散壁48の内面に複数の圧締器具50と、円周方向FBG感知ケーブル53を含んでおり圧締器具50によって支持されているFBG感知ケーブル・パッケージ52とを含んでいる。FBG感知ケーブル・パッケージ52は、図1及び図2に関して上で述べたように少なくとも1本の光ファイバ12と、光ファイバに書き込まれた複数のブラッグ格子とを含んでいるが、所望に応じて1本の光ファイバを用いてもよいし、多数のファイバ及び/又はケーブルを用いてもよい。複数のブラッグ格子14が円周方向光ファイバ(1又は複数)に沿って分配されているときには、ブラッグ格子14の波長シフトを監視することにより、光ファイバ経路に沿って円形熱プロファイルをマッピングすることができる。一実施形態では、FBG感知ケーブル53の詳細な設計は、図1及び図4のFBG感知ケーブル11に関して記載されたものと同様であってよい。
【0029】
高温の下では、FBG感知ケーブル53は円周方向に沿って熱膨脹を有し、この熱膨脹がFBG感知ケーブル53に応力及び歪みを誘発してブラッグ格子14に波長シフトを誘発する。幾つかの実施形態では、FBG感知ケーブル・パッケージ52は、直列接続された2以上のFBG感知ケーブルを含んで、拡散壁48の内面の円周方向全長を網羅することができる。図6の図示の実施形態では、FBG感知ケーブル・パッケージ52は、直列接続された2本の半円形FBG感知ケーブル53を含んでおり、拡散壁48の内面の円周方向全長に沿って延在している。このように、各々のFBG感知ケーブル53が、全円周に沿った熱膨脹の幾分かずつを担当して、ケーブル破損の危険性を抑えると共に温度測定の精度を高める。
【0030】
図7及び図8はそれぞれ、1個の圧締器具50の拡大展開図及び拡大遠近図である。図示の実施形態では、圧締器具50は、拡散壁48(図6)の内面に固定される放射状配置T字形器具54と、放射状配置T字形器具54の上部に据え付けられて、FBG感知ケーブル53を保持する装着孔58を画定する据付け要素56と、据付け要素56に取り付けられて、装着孔58にFBG感知ケーブル53を固定する少なくとも1個の固定要素60とを含んでいる。幾つかの実施形態では、放射状配置T字形器具54は30センチメートルを上回る高さを有し、従って据付け要素56に支持されるFBGケーブル53は、拡散壁48の内面から約30センチメートルだけ離隔して設けられる。幾つかの実施形態では、圧締器具50及び放射状配置T字形器具54は、鎧装管16と同じ材料を含んでおり、熱電対の設置及び保護を容易にしている。
【0031】
一実施形態では、据付け要素56は、放射状配置T字形器具54の前方外周面に合致する中間陥凹部62と、中間陥凹部62から延在する少なくとも1枚のプレート64とを有している。図示の実施形態では、据付け要素56は、中間陥凹部から横方向に延在しており2本のFBG感知ケーブル53を固定する1対のプレート64を含んでいる。各々のプレート64が少なくとも1個の装着孔58を画定しており、FBG感知ケーブル53を収容すると共にFBGケーブル53の下方向移動を制限している。一実施形態では、各々の装着孔58が、プレート62の上端を貫通して延在して装着孔58でのFBG感知ケーブル53のさらに容易な装着を促進する斜行スロットを含んでいる。また、各々の固定要素60が、装着孔58に対応する装着孔68を含んでいる。一実施形態では、装着孔68は、固定要素60の下端を貫通して延在して装着孔68でのFBG感知ケーブル53のさらに容易な装着を促進すると共にFBG感知ケーブル53の上方向移動を制限する斜行スロットを含んでいる。一実施形態では、据付け要素56及び固定要素60はそれぞれ、据付け要素56及び固定要素60を共にねじ止めする固定孔70を含んでいる。一実施形態では、据付け要素56は貫通孔72にねじを締めることにより放射状配置T字形器具54に固定される。
【0032】
図6に戻り、一実施形態では、ガス・タービン46はさらに、燃焼工程制御及び最適化例えば燃料と空気との過薄混合気をガス・タービン46に注入する等を行なう制御器73を含んでいる。温度変化は発火工程動力学の極めて重要な指標である。従って、制御器73は、FBG感知システム44によって監視される温度パラメータを受け取って制御を行なう。一実施形態では、ガス・タービン46は元々、熱電対を周囲壁48の内面の円形の環に沿って分配させるように設計されており、放射状配置T字形器具54は元々、熱電対を装着するように構成されている。図示のFBG感知ケーブル53は、熱電対に代えてFBG感知ケーブル53を装着するように放射状配置T字形器具54を採用しており、追加の嵩高い電気配線を設けずに測定点の密度を選択随意で高める。従って、温度測定精度が高まり、さらに、制御器73がより正確な工程制御及び最適化を行なうことを可能にする。他の実施形態では、放射状配置T字形器具54は、FBG感知ケーブル53を装着するように特殊に設計されていてもよい。FBG感知ケーブル53は幾つかの実施形態ではガス・タービン46の排気管の内周全体に沿って延在し、また他の実施形態では内周の一部に沿って延在する。
【0033】
図9の実施形態を参照して述べると、FBG感知システム74が、図1〜図5に関して記載されたようなFBG感知ケーブル・パッケージ10又は34を用いている。図9の図示の実施形態では、FBG感知ケーブル75は、実質的に直線的な硬質レーキ(「FBG感知レーキ75」)の形態にあり、FBG感知システム74は、FBG感知レーキ75をガス・タービン46の排気管に固定する装着部76を含んでいる。図示のように、FBG感知レーキ75は拡散壁48の貫通孔87を通ってガス・タービン46の内部まで延在しており、ガス・タービン46の長手方向又はガス流方向Dに対して全体的に垂直になっている。この実施形態では、FBG感知レーキ75を用いて、拡散壁48から中心バレル49までのガス・タービン46の半径方向熱プロファイルを測定することができる。図示の実施形態では、装着部76は、ねじ穴88及び90を通してそれぞれ装着部86及びガス・タービン46の拡散壁48にねじを締めることにより、拡散壁48の外面に固定されている。一実施形態では、ガス・タービン46には元々、熱電対を装着するための孔87が拡散壁48に設けられている。一実施形態では、拡散壁48は、環として分配された複数の孔87を画定しており、FBG感知システム84は対応する孔87を通ってガス・タービン46の内部まで延在する複数のFBG感知レーキ75を含んで、ガス・タービン46の半径方向熱プロファイルの測定を行なう。
【0034】
図10の実施形態を参照して述べると、ガス・タービン46の排気管に用いられるFBG感知システム84が、図1〜図5に関して記載されたようなFBG感知ケーブル・パッケージ10又は34を用いており、FBG感知システム84をガス・タービン46の排気管に固定する装着部86を含んでいる。図示の実施形態では、FBG感知ケーブル又はレーキ85は、ガス・タービン46の中心軸に沿ってガス・タービン46のガス流方向Dに全体的に沿って延在している。このようにして、FBG感知システム84を用いてガス・タービン46の軸方向熱プロファイルを測定することができる。FBG感知レーキ85は、ブラッグ格子14をレーキ85に沿って分配させた状態でガス・タービン46の外部まで延在することができ、従って、ガス・タービン46の中心方向に沿ってガス・タービン46の内部からガス・タービン46の外部までの熱プロファイルを得ることができる。一実施形態では、装着部86は、ねじ穴88及び90を通してそれぞれ装着部86及びガス・タービン46の周囲壁48にねじを締めることにより燃焼器の壁48の外面に固定されている。
【0035】
図11及び図12を参照して述べると、ガス・タービン46の排気管に用いられるFBG感知システム92が、図1〜図5に関して記載されたようなFBG感知ケーブル・パッケージ10又は34を用いており、FBG感知システム92をガス・タービン46の排気管に固定する装着部94を含んでいる。図示の実施形態では、FBG感知システム92は、ガス・タービン46の中心軸に沿ってガス・タービン46のガス流方向Dに全体的に沿って延在しているFBGケーブル又はレーキ95を含んでいる。このようにして、FBG感知システム92を用いて、ガス・タービン46の軸方向熱プロファイルを測定することができる。図示の実施形態では、FBG感知レーキ95は、管状壁100の外面に複数の貫通孔98を画定している硬質棒96を含んでいる。FBG感知レーキ95は、管状壁100に固定されている少なくとも1本のファイバ102を含んでいる。ファイバ102には複数のブラッグ格子14が書き込まれており、各々のブラッグ格子が管状壁100の対応する貫通孔98に配列されている。従って、ブラッグ格子14は、ガス・タービン46の排気管の温度変化に対する感度がさらに高く、温度の高速応答を得ることができる。一実施形態では、棒96の貫通孔98は元々、TCを装着するために設けられている。幾つかの実施形態では、ファイバ102は棒96の外面に固定される。一実施形態では、ファイバ102を棒96の外面に固定する方法が、先ず棒96の外面にスロットを切開するステップと、ファイバ102を金属鎧装管に挿入してファイバ感知管を形成するステップと、次いでファイバ感知管を金属棒の外面に固定するステップと、ブラッグ格子が対応する貫通孔98に位置するようにファイバ感知管をスロットに配置するステップと、次いでスロットに接着材を充填することによりファイバ感知管を棒96の外面に埋め込むステップとを含んでいる。
【0036】
各実施形態の例を参照して本発明を説明したが、当業者には、本発明の範囲から逸脱せずに様々な変形を施し、また本発明の諸要素に代えて均等構成を置換し得ることが理解されよう。加えて、本発明の本質的な範囲から逸脱せずに、特定の状況又は材料を本発明の教示に合わせて適応構成する多くの改変を施すことができる。従って、本発明は、本発明を実施するのに想到される最良の態様として開示された特定の実施形態に限定されず、特許請求の範囲に属する全ての実施形態を包含するものとする。
【0037】
上述のような目的又は利点全てが任意の特定の実施形態に従って必ずしも達成される訳ではないことを理解されたい。従って、例えば、当業者は、本書に記載されるシステム及び手法が、本書に教示されているような一つ又は一群の利点を達成する又は最適化するような態様で具現化され又は実施され得るのであって、本書に教示され又は示唆され得るような他の目的又は利点を必ずしも達成せずに具現化され又は実施され得ることを認められよう。
【0038】
さらに、当業者は、異なる実施形態からの様々な特徴の互換性を認められよう。所載の様々な特徴は各々の特徴の他の公知の均等構成と共に、本開示の原理に従うさらに他のシステム及び手法を構築するように当業者によって混合され適合することができる。
【符号の説明】
【0039】
10 FBG感知パッケージ
11 FBGケーブル
12 光ファイバ
14 ブラッグ格子
16 金属管
18 OLE_LINK1織布層OLE_LINK1
20 ファイバ・コア
22 ポリマー皮膜
23 クラッド
24 強化部材
25 強化部材の芯
27 強化部材の金属層
26 織物スリーブ
28 光源
30 検出器モジュール
32 光カプラ
34 FBG感知パッケージ
36、38 第二及び第三の光ファイバ
40、42 波長スペクトル
44 FBG感知システム
46 ガス・タービン
48 燃焼器の拡散壁
49 中心バレル
50 圧締器具
52 FBG感知パッケージ
53 FBGケーブル
54 装着用支柱
56 据付け要素
58 装着孔
60 固定要素
62 中間陥凹部
64 プレート
68 装着孔
70 固定孔
72 孔
73 制御器
74 FBG感知システム
75 FBG感知ケーブル又はレーキ
76 装着部
84 FBG感知システム
85 FBG感知ケーブル又はレーキ
86 装着部
88、90 ねじ穴
92 FBG感知システム
94 装着部
95 FBG感知ケーブル又はレーキ

【特許請求の範囲】
【請求項1】
ファイバ感知ケーブル・パッケージ(52)と、
壁の内面に沿って円周方向に分配されており、各々が放射状配置T字形器具(54)を含んでおり、前記ファイバ感知ケーブルを固定する少なくとも1個の装着孔(58)を画定している複数の圧締器具(50)と
を備えたファイバ・ブラッグ格子多点温度感知システム(44)であって、前記ファイバ感知ケーブル・パッケージは、
少なくとも1本の光ファイバ(12)、該光ファイバに書き込まれた複数のブラッグ格子(14)、前記光ファイバを包囲する織布層(18)、及び前記光ファイバを包囲する鎧装管(16)を含むファイバ・ブラッグ格子方式温度感知ケーブル(53)と、
前記ブラッグ格子に光を伝達する光源と、
前記ブラッグ格子から反射した光を受ける検出器モジュールと
を含んでいる、ファイバ・ブラッグ格子多点温度感知システム(44)。
【請求項2】
各々の圧締器具は、前記放射状配置T字形器具に固定されており前記ファイバ・ブラッグ格子方式温度感知ケーブルを収容する少なくとも1個の装着孔を画定している据付け要素と、該据付け要素に着脱自在に固定されており前記ファイバ・ブラッグ格子方式温度感知ケーブルを固定する固定要素とを含んでいる、請求項1に記載のファイバ・ブラッグ格子多点温度感知システム。
【請求項3】
各々の固定要素は、前記据付け要素の前記装着孔に対応しており前記ファイバ・ブラッグ格子方式温度感知ケーブルを収容する装着孔を画定している、請求項1に記載のファイバ・ブラッグ格子多点温度感知システム。
【請求項4】
前記据付け要素の前記装着孔は、当該据付け要素の上端を貫通して延在するスロットを含んでおり、前記固定要素の前記装着孔は、当該据付け要素の下端を貫通して延在するスロットを含んでいる、請求項3に記載のファイバ・ブラッグ格子多点温度感知システム。
【請求項5】
ファイバ・コア及びクラッド、並びに前記ファイバ・クラッドを包囲する皮膜層を含む光ファイバと、
前記ファイバ・コアに書き込まれた複数のブラッグ格子と、
前記ファイバ・クラッドを包囲しており、前記ファイバ材料の熱膨張率と適合する熱膨張率を含む織布層と、
該織布層の周囲の鎧装管と、
OLE_LINK2前記ブラッグ格子に光を伝達する光源と、
前記ブラッグ格子OLE_LINK2から反射した光を受ける検出器モジュールと
を備えたファイバ多点温度感知ケーブル・パッケージ。
【請求項6】
前記織布層は二酸化ケイ素又はシリカ材料のスリーブを含んでいる、請求項5に記載のファイバ温度感知ケーブル・パッケージ。
【請求項7】
前記ファイバ・スリーブ織布層は少なくとも80重量%の二酸化ケイ素又はシリカ材料を含んでいる、請求項5に記載のファイバ温度感知ケーブル・パッケージ。
【請求項8】
前記織布層に封入された強化部材をさらに含んでいる請求項6に記載のファイバ温度感知ケーブル・パッケージ。
【請求項9】
前記強化部材は1又は複数の多重モード・ファイバを含んでいる、請求項8に記載のファイバ温度感知ケーブル・パッケージ。
【請求項10】
複数のブラッグ格子が前記ファイバ・コアの内部に書き込まれた少なくとも2本の光ファイバを含んでいる請求項5に記載のファイバ温度感知ケーブル・パッケージ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−266443(P2010−266443A)
【公開日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2010−110714(P2010−110714)
【出願日】平成22年5月13日(2010.5.13)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【氏名又は名称原語表記】GENERAL ELECTRIC COMPANY
【Fターム(参考)】