説明

フラックスの不純物除去方法

【解決手段】不純物を含むフラックスを加熱溶融し、フラックス中にハロゲンガスを含む処理気体を吹き込むことにより、フラックス中の不純物を低減することを特徴とするフラックスの不純物除去方法。
【効果】本発明によれば、冶金的手法による太陽電池用等の高純度シリコンの製造に用いるフラックス中の不純物、特にホウ素、リンを効果的に低減することができる。この結果、極めて安価にホウ素、リン等が低減されたフラックスを得ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冶金的手法によるシリコンの高純度化に用いるフラックスから不純物、特にホウ素、リンを簡単な方法で、効果的に低減するフラックスの不純物除去方法に関するものである。得られたシリコンは太陽電池用高純度シリコンとして用いることができる。
【背景技術】
【0002】
金属グレードシリコン(純度98〜99%)から太陽電池用高純度シリコン(純度6N)を得る方法としてシーメンス法、亜鉛還元法、溶融塩電解法、冶金法等が提案されている。この中で、冶金法は他の方法に比べ設備コスト、使用エネルギーが少なく、太陽電池用高純度シリコンを工業的規模で製造する方法と位置付けられている。
冶金法において、鉄(Fe)、アルミニウム(Al)、チタン(Ti)等の金属不純物についてはシリコンの固液間における分配係数が小さいことを利用して一方向凝固法で低減する方法が提案、確立されている。
ドーパントとして作用するホウ素,リンのシリコンの固液間における分配係数は、ホウ素が0.8、リンが0.35と大きく、工業的に一方向凝固法を利用して低減することは困難である。
リンに対しては、ケイ素融点近傍でのリンの蒸気圧が比較的高いことから高真空下、局所高温加熱の一方あるいは両方の処理により揮発除去する方法が提案されている。
【0003】
しかし、一般的な冶金的手法に用いる酸化物系フラックス原料であるCaO、CaCO3、Na2O、CaF2、Ca(OH)2,MgCO3等の、酸化物あるいは分解してH2O又はCO2を発生した後に酸化物となる物質は、少なくとも数十ppm以上のリンを含有している。
リンの、冶金的手法に用いる酸化物系フラックスとシリコン間の溶融状態における分配係数は1より小さく、フラックスに含まれるリンはシリコンへ移行する。
【0004】
従って、数ppm〜数十ppm程度のリンが含有したこれらのフラックス原料から製造したフラックスを高純度シリコンの製造に用いた場合、フラックスに含まれるリンがシリコン中へ移行し、シリコンのリン濃度が上昇する。
リン濃度が上昇したシリコンは、高真空下、局所高温加熱などによるリン濃度低減の処理に要する時間が長くなる。
更に長時間、高真空、高温下に曝されることによりシリコンの揮散が増大し、回収率が低下するなど生産性の低下は免れない。
【0005】
一方、ホウ素はシリコン融点近傍でのホウ素の蒸気圧が低いため、シリコンに対しリンのような揮発除去が困難である。シリコン中のホウ素低減については、冶金的手法を用いた以下の方法が提案されている。
【0006】
特開2003−12317号公報(特許文献1)には、ホウ素濃度が100質量ppm以下であるシリコンに、塩基性成分を含むフラックスを添加し、これらを溶融させるフラックス添加工程と、シリコンにノズルを浸漬し、酸化性気体を吹き込む反応工程と、シリコンからフラックスを除去するフラックス除去工程を有し、フラックスにはCaO、CaCO3又はNa2Oを含み、特にCaO−CaF2混合フラックスが好ましいホウ素の低減方法が開示されている。
【0007】
特開平9−202611号公報(特許文献2)には、1400℃以下で分解し、H2O及び/又はCO2を発生する1種又は2種以上の固体を、Ar、H2、COなどのキャリアと共に溶融シリコン浴中に吹き込むことにより、ノズル先端部でのシリコンの酸化を抑えることができ、また固体から分解する大量のH2O又はCO2をシリコン浴中に導入することができ、ホウ素の酸化物ガスをキャリアガスと共に排出するホウ素の除去方法が開示されている。H2O及び/又はCO2を発生する物質の具体例としてCa(OH)2、CaCO3、MgCO3が示されている。
これらはいずれもシリコン中の不純物であるホウ素をフラックスへ移行、蓄積させてホウ素濃度の高いスラグを生成し、相対的にホウ素濃度の低いシリコンを得ることを目的としている。
しかし、一般的なフラックス原料として用いられるCaO、CaCO3、Na2O、CaF2、Ca(OH)2,MgCO3等の酸化物あるいは分解しH2O又はCO2を発生した後に酸化物となる物質は、少なくとも数ppm以上のホウ素を含有している。
【0008】
従って、これらのフラックス原料を数ppm以上のホウ素が含有したままフラックスとして高純度シリコンの製造に用いた場合、[B]≦0.3ppmが必須条件である太陽電池用高純度シリコンのホウ素濃度には決して到達し得ない。
このように冶金的手法で用いるフラックス中のホウ素、リンは極力低減する必要があるが、特開2003−12317号公報(特許文献1),特開平9−202611号公報(特許文献2)にはフラックス中に含まれるホウ素、リンの濃度及び濃度の低減に関する記述はない。これらはシリコン中のホウ素の低減方法であり、フラックス中のホウ素の低減には採用し得ない。
従って、低コストの太陽電池用高純度シリコンの製造を可能とするリン、ホウ素等の不純物を低減したフラックスを有効に効率よく得る方法が要望されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2003−12317号公報
【特許文献2】特開平9−202611号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、上記事情に鑑みなされたもので、冶金的手法によるシリコンの精製に用いるフラックス中の不純物、特にホウ素、リンを簡便で効果的に低減する方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、不純物を含むフラックスを加熱し、フラックス中にハロゲンガスを含む気体を吹き込むことにより、フラックス中の不純物、特にホウ素、リンを効率よく低減することができることを見出した。
【0012】
即ち、本発明は、下記のフラックスの不純物除去方法を提供する。
請求項1:
不純物を含むフラックスを加熱溶融し、フラックス中にハロゲンガスを含む処理気体を吹き込むことにより、フラックス中の不純物を低減することを特徴とするフラックスの不純物除去方法。
請求項2:
前記ハロゲンガスを含む処理気体が、フッ素、塩素、臭素、ヨウ素の1種又は2種以上を含む請求項1記載のフラックスの不純物除去方法。
請求項3:
前記ハロゲンガスを含む処理気体が、ヘリウム、ネオン、アルゴン、窒素の1種又は2種以上を含む請求項1又は2記載のフラックスの不純物除去方法。
請求項4:
前記不純物が、ホウ素、リンの少なくとも1種以上を含む請求項1乃至3のいずれか1項記載のフラックスの不純物除去方法。
請求項5:
前記フラックスが、ケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の1種又は2種以上を含む請求項1乃至4のいずれか1項記載のフラックスの不純物除去方法。
請求項6:
前記フラックスが、更に、アルカリ金属、アルカリ金属の酸化物、アルカリ金属の塩化物、アルカリ金属のフッ化物、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属の塩化物、アルカリ土類金属のフッ化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の水酸化物、アルミニウム、アルミニウムの塩化物、アルミニウムのフッ化物、アルミニウムの炭酸塩、アルミニウムの水酸化物、チタン、チタンの酸化物、チタンの塩化物、チタンのフッ化物、チタンの炭酸塩、チタンの水酸化物の1種又は2種以上を含む請求項1乃至5のいずれか1項記載のフラックスの不純物除去方法。
請求項7:
フラックスがシリコン精製用のものである請求項1乃至6のいずれか1項記載のフラックスの不純物除去方法。
【発明の効果】
【0013】
本発明によれば、冶金的手法による太陽電池用等の高純度シリコンの製造に用いるフラックス中の不純物、特にホウ素、リンを効果的に低減することができる。この結果、極めて安価にホウ素、リン等が低減されたフラックスを得ることができる。
【図面の簡単な説明】
【0014】
【図1】SiO2−CaO−Al23平衡状態図を示す。
【発明を実施するための形態】
【0015】
本発明のフラックスの不純物除去方法は、不純物を含むフラックスを加熱し、フラックス中に処理気体としてハロゲンガスを含む気体を吹き込むことにより、フラックス中の不純物を低減することを特徴とするもので、フラックス中の不純物、特にホウ素、リンを効率よく低減するもので、シリコンの精製用フラックスに有効に用いられる。
【0016】
本発明において、不純物を含むフラックスは、ケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の1種又は2種以上を含むことが好ましい。
【0017】
ここで、フラックスは一般的にケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物等の溶融混合物からなり、一種のケイ酸塩であり、ケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物はケイ酸塩の網目構造を構成する物質である。このケイ酸塩の網目構造の一部、あるいは網目の中に目的とする金属(Si)以外の不純物元素を捕捉、あるいは不純物が移行しスラグを生成する。冶金的手法による太陽電池用高純度シリコンの製造では、シリコン中の不純物、特にホウ素がフラックス中へ捕捉、移行し、シリコン中の不純物が除去される。
【0018】
また、フラックスは、処理温度において流動性を有した状態であることが好ましい。
【0019】
従って、フラックス中のケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の比率は、鉄鋼便覧第4.1版第1巻1編、図1・35(日本鉄鋼協会)で示される平衡状態図において、処理気体を吹き込み不純物除去の処理を行う温度における液相線の内部であればよい。
【0020】
なお、ケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の含有量はフラックス中、30〜100質量%、特に60〜95質量%であることが好ましい。
【0021】
このフラックスには、必要に応じて、アルカリ金属、アルカリ金属の酸化物、アルカリ金属の塩化物、アルカリ金属のフッ化物、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属の塩化物、アルカリ土類金属のフッ化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の水酸化物、アルミニウム、アルミニウムの塩化物、アルミニウムのフッ化物、アルミニウムの炭酸塩、アルミニウムの水酸化物、チタン、チタンの酸化物、チタンの塩化物、チタンのフッ化物、チタンの炭酸塩、チタンの水酸化物の1種又は2種以上を含有することができる。
【0022】
フラックス中におけるケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の組成が、処理温度において上記平衡状態図の液相線外、あるいは液相線内であるが粘性が高い場合は、フラックスの融点、粘度を下げる手段として、これらアルカリ金属、アルカリ金属の酸化物、アルカリ金属の塩化物、アルカリ金属のフッ化物、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属の塩化物、アルカリ土類金属のフッ化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の水酸化物、アルミニウム、アルミニウムの塩化物、アルミニウムのフッ化物、アルミニウムの炭酸塩、アルミニウムの水酸化物、チタン、チタンの酸化物、チタンの塩化物、チタンのフッ化物、チタンの炭酸塩、チタンの水酸化物の1種又は2種以上を用いてもよい。
【0023】
これらの物質を添加することで、特にフラックスの融点、粘度、密度、表面張力が大きく変化し、流動性を高くすることができる。これらの物質は工程、操業条件に応じて適量を用いればよい。
【0024】
フラックス中におけるケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の比率が、処理温度において上記平衡状態図の液相線内であり、粘性が十分低い場合でも、これらアルカリ金属、アルカリ金属の酸化物、アルカリ金属の塩化物、アルカリ金属のフッ化物、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属の塩化物、アルカリ土類金属のフッ化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の水酸化物、アルミニウム、アルミニウムの塩化物、アルミニウムのフッ化物、アルミニウムの炭酸塩、アルミニウムの水酸化物、チタン、チタンの酸化物、チタンの塩化物、チタンのフッ化物、チタンの炭酸塩、チタンの水酸化物の1種又は2種以上を用いることに制約はない。
【0025】
なお、これら添加剤の含有量は、フラックス中、0〜70質量%、特に5〜40質量%であることが好ましい。
本発明は、上記フラックス中にハロゲンガスを含む処理気体を吹き込み、これによってフラックス中の不純物、特にホウ素、リンを低減するものである。
【0026】
ここで、ハロゲンガスを含む処理気体は、フラックス中のホウ素、リンと反応し、ホウ素、リンとの化合物を生成すると考えられる。
【0027】
処理気体の反応例として、塩素(Cl2)とホウ素及びリンとの主な反応式を以下に示す。
2B+Cl2=2BCl (1)
B+Cl2=BCl2 (2)
2B+3Cl2=2BCl3 (3)
2P+Cl2=2PCl (4)
2P+5Cl2=2PCl5 (5)
2P+3Cl2=2PCl3 (6)
ここで、式(1)〜(5)の生成物はいずれも常温で気体である。また、式(6)の生成物の沸点は80℃である。
【0028】
本発明は加熱されたフラックスにハロゲンガスを含む気体を処理気体として吹き込むことを特徴としており、通常はフラックスが流動性を有する温度で処理を行う。
【0029】
従って、式(1)〜(6)による生成物は直ちにフラックスの系外へ排出されると考えられる。
この結果、フラックス中のホウ素が低減される。
このとき、式(1)〜(6)においてホウ素、リンと処理気体であるハロゲンガスを含む気体との反応は、反応場が高温であることから不純物元素の原子と処理気体が接触した段階で、速やかに完了する。
【0030】
そのため、不純物精製用ガスの吹込み方法、撹拌、混合等による気液の接触効率の改善により、式(1)〜(6)の反応速度は大きく増加する。
【0031】
更に、本発明においては、処理気体がヘリウム、ネオン、アルゴン、窒素の1種又は2種以上を含むことが好ましい。
処理気体にヘリウム、ネオン、アルゴン、窒素の1種又は2種以上を含む場合、これらの気体は、処理気体であるハロゲンガスを含む気体の濃度を調節する目的で使用できる。
【0032】
更に、吹き込みガスの線速を増減し、撹拌状態を変化することで、処理気体とフラックス中の不純物との気液接触効率を改善、調節し、不純物の反応の進行を促進することができる。
【0033】
また、撹拌翼等の機械を用いた撹拌方法が、撹拌装置の耐熱性あるいは被撹拌物に対する汚染の点から機構、材質の選定が困難であるのに対し、これらの気体による気液接触効率の改善効果は、撹拌装置の耐熱性あるいは被撹拌物に対する汚染の問題がない。
【0034】
処理気体中のハロゲンガスを含む気体と、ヘリウム、ネオン、アルゴン、窒素の比は任意であるが、ヘリウム、ネオン、アルゴン、窒素等の割合が高いとホウ素、リンと反応するハロゲンガスを含む気体の絶対量が不足する場合があり、ハロゲンガスを含む気体とヘリウム、ネオン、アルゴン、窒素の比は容量比として100:0〜10:90が好ましく、実用的な範囲として80:20〜20:80が好ましい。
【0035】
本発明において、フラックス中の不純物としては、特にホウ素、リンの1種以上を含む。
シリコン中のホウ素、リンは半導体におけるドーパントとしての作用があり、太陽電池用高純度シリコンして用いる場合は、その含有量を0.3質量ppm以下にする必要がある。
【0036】
冶金的手法を用いて効率的に太陽電池用高純度シリコンを製造するには、シリコン中のホウ素をより多量、迅速にフラックス中へ移行、捕捉する必要がある。
【0037】
従って、純度6N程度の太陽電池用高純度シリコンを得るには、ホウ素濃度の極めて低いあるいは実質的にホウ素を含有しないフラックスを用いる必要がある。
【0038】
工業的には、
処理前のシリコン中のホウ素濃度が50質量ppmを超える場合、フラックスのホウ素濃度は10質量ppm以下が好ましく、より好ましくは5質量ppm以下であり、
処理前のシリコン中のホウ素濃度が20質量ppmを超え50質量ppm以下の場合、フラックスのホウ素濃度は5質量ppm以下が好ましく、より好ましくは1質量ppm以下であり、
処理前のシリコン中のホウ素濃度が5質量ppmを超え20質量ppm以下の場合、フラックスのホウ素濃度は1質量ppm以下が好ましく、より好ましくは0.5質量ppm以下であり、
処理前のシリコン中のホウ素濃度が5質量ppm以下の場合、フラックスのホウ素濃度は0.5質量ppm以下が望ましく、より好ましくは0.1質量ppm以下である。
【0039】
フラックス中のホウ素濃度が低いと1回の処理で大量のホウ素がシリコン中からフラックス中へ捕捉、移行するため、ホウ素濃度の高いフラックスを用いた場合に対し処理回数を減らすことができる。更に使用するフラックスの量も削減できる。この結果、シリコン中のホウ素除去のコストを大幅に抑制できる。
【0040】
また、フラックスに含まれるリンはシリコン中へ移行する。リンは高真空下、あるいは局所高温加熱等の処理により除去できるが、シリコン中のリン濃度が高い場合、処理時間の増大と処理に伴うシリコン回収率の減少により生産性が低下する。
そのため、シリコン中のリン濃度を増加させずに処理を行うには、リン濃度の極めて低いあるいは実質的にリンを含有しないフラックスを用いる必要がある。
【0041】
工業的には、
処理前のシリコン中のリン濃度が50質量ppmを超える場合、フラックスのリン濃度は30質量ppm以下が、
処理前のシリコン中のリン濃度が10質量ppmを超え50質量ppm以下の場合、フラックスのリン濃度は20質量ppm以下が、
処理前のシリコン中のリン濃度が10質量ppm以下の場合、フラックスのリン濃度は10質量ppm以下が望ましい。
【0042】
本発明においては、不純物を含むフラックスを加熱溶融し、フラックス中に処理気体を吹き込み作用させるもので、これにより上記不純物量が低減し、シリコンの精製に有効なフラックスが得られる。
ここで、フラックスの融点は、シリコンの融点より低すぎる場合はシリコンが溶融する温度で組成が変化する可能性があり、シリコンの融点より高すぎる場合はフラックスを加熱溶融するための多くのエネルギーが必要となる。従って、フラックスの融点は900〜1600℃が好ましく、より好ましくは1100〜1500℃である。
従って、加熱温度としては、フラックスが融解、あるいは流動状態を呈する温度であることが好ましいが、実用的には処理対象のフラックスの融点以上であればよく、局所的な低温部を避けるためにフラックスの融点+50℃以上が好ましい。
【0043】
加熱温度が2000℃を超えると、フラックス成分の蒸発量が多くなり、処理後に補う蒸発成分量が多くなる。また炉材の損傷が激しくなる場合がある。加熱温度は1000〜1700℃、特に1200〜1600℃が好ましい。
【0044】
処理気体は、アルミナ、ジルコニア、黒鉛、石英等の耐火性材料からなる中空管等を用いて反応容器中のフラックス中に吹き込むことが好ましい。
【0045】
吹き込みは処理対象のフラックス中のホウ素、あるいはリン濃度に応じて1〜180分間、特に20〜120分間継続することが好ましい。
また、吹き込み速度は、処理するフラックスの量に応じて適宜増減すれば良い。線速が小さすぎると反応速度、あるいは反応効率が低下し、処理に長時間を要する場合があり、大きすぎると処理気体の未反応割合が増加、あるいはフラックスが周囲に飛散し、処理効率やフラックスの回収率が低下する場合がある。
上記フラックスの温度、処理気体の組成、吹き込み時間、速度等を制御することにより、フラックス中の不純物、特にリン、ホウ素濃度を上述した範囲に低減できる。
【0046】
ここで、処理対象となる不純物を含有するフラックスとしては、高純度シリコンの製造に用いる前、あるいは用いた後のものを対象とすることができる。
【0047】
一般的なケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物、更にアルカリ金属、アルカリ金属の酸化物、アルカリ金属の塩化物、アルカリ金属のフッ化物、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属の塩化物、アルカリ土類金属のフッ化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の水酸化物、アルミニウム、アルミニウムの塩化物、アルミニウムのフッ化物、アルミニウムの炭酸塩、アルミニウムの水酸化物、チタン、チタンの酸化物、チタンの塩化物、チタンのフッ化物、チタンの炭酸塩、チタンの水酸化物は、ホウ素を3〜100質量ppm程度、リンを10〜300質量ppm程度含有する。
従って、これらを用いたフラックスは本発明の不純物除去方法を適用できる。
【0048】
更に、太陽電池用高純度シリコンの製造に用いたフラックスは、より高濃度のホウ素を含有している。このフラックスに本発明の方法を適用することでホウ素及びリンの濃度を低減し、再び太陽電池用高純度シリコンの製造に使用することができる。
【0049】
本発明の不純物低減方法を用いて得られたフラックスは、含有するホウ素、リンが極めて少量あるいは実質的に含有しない。
【0050】
このフラックスを溶融状態のシリコンに接触させるが、フラックス中のホウ素、リンが極めて少量あるいは実質的に含有しないため、フラックスからシリコン中へリンが移行することがなく、シリコン中のホウ素をフラックス中へ多量に移行できる。
このように本発明を用いて得られたフラックスを冶金的手法による太陽電池用高純度シリコンの製造に用いることで、シリコン中のリン濃度を増加させることなく、ホウ素を容易、迅速、かつ多量に除去することができる。
【0051】
こうしてホウ素を除去したシリコンに、一般的な高真空下、局所高温加熱の一方あるいは両方の処理を施し、シリコン中の、本発明を適用する前に既に含有していたリンの揮発除去を行い、更に一方向凝固等を施すことで、Fe、Al、Ca、Cr、Ni、Ta、Ti、V等の金属不純物を低減し、極めて安価に純度6N程度の太陽電池に使用可能な高純度シリコンとすることができる。
【0052】
更に本発明は、上述したように、太陽電池用高純度シリコンの製造に使用され、ホウ素を高濃度に含有したフラックスに適用することもできる。太陽電池用高純度シリコンの製造に使用後のホウ素を高濃度に含有したフラックスからホウ素を除去することで、従来は廃棄していた使用後のフラックスを再び太陽電池用高純度シリコンの製造用のフラックスとして使用することができる。この結果、廃棄するフラックスの量が抑制される。
【0053】
本発明の方法により得られたフラックスは、太陽電池用高純度シリコンの製造に限定使用されることなく、ホウ素濃度の低いSiO2、CaO、Al23等の溶融混合物を必要とする各種産業分野の原材料、製品に利用することができる。
【実施例】
【0054】
以下、実施例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
なお、下記例において使用した不純物を含有する出発フラックスの組成、ホウ素及びリン濃度は以下の通りである。
SiO2=42mol%、CaO=38mol%、Al23=20mol%、[B]=10質量ppm、[P]=50質量ppm
不純物濃度の測定は、ICP−MS法(エスアイアイ・ナノテクノロジー製SPQ9000)により行った。
【0055】
[実施例1]
内径80mmφ黒鉛製るつぼに出発フラックス400gを入れ、750℃/時で昇温し、1590℃に加熱した。フラックスが融解後、不純物測定用サンプルを10g採取した。その後、アルミナ製内径6mmφ円管を用いて塩素0.5l/min、アルゴン0.5l/minの混合気体をフラックスに吹き込んだ。60分後気体の吹き込みを終了し、1100℃まで100℃/時で降温し、以降自然放冷した。固化後のフラックスから不純物分析用サンプルを採取した。
サンプル中の不純物濃度は、[B]=3質量ppm、[P]=8質量ppmであった。
【0056】
[実施例2]
実施例1と同様の条件で吹き込み時間を120分とした。サンプル中の不純物濃度は、[B]=0.5質量ppm、[P]=1.5質量ppmであった。
【0057】
[実施例3]
実施例2で得たフラックスを冶金的手法による太陽電池用高純度シリコンの製造に使用した。使用後のフラックスの不純物濃度は、[B]=7質量ppm、[P]=1.5質量ppmであった。この使用後のフラックス400gを内径80mmφ黒鉛製るつぼに入れ、750℃/時で昇温し、1590℃に加熱した。フラックスが融解後、アルミナ製内径6mmφ円管を用いて塩素0.5l/min、アルゴン0.5l/minの混合気体をフラックスに吹き込んだ。100分後、気体の吹き込みを終了し、1100℃まで100℃/時で降温し、以降自然放冷した。固化後のフラックスから不純物分析用サンプルを採取した。
サンプル中の不純物濃度は、[B]=0.5質量ppm、[P]=1.8質量ppmであった。
【0058】
[実施例4]
実施例2で得たフラックスに炭酸カリウム(K2CO3)を添加し、SiO2=40mol%、CaO=36mol%、Al23=19mol%、K2CO3=5mol%とした。
このフラックスを冶金的手法による太陽電池用高純度シリコンの製造に使用した。
使用後のフラックスの不純物濃度は、[B]=7.5質量ppm、[P]=1.5質量ppmであった。
この使用後のフラックス400gを内径80mmφ黒鉛製るつぼに入れ、750℃/時で昇温し、1590℃に加熱した。フラックスが融解後、アルミナ製内径6mmφ円管を用いて塩素0.5l/min、アルゴン0.5l/minの混合気体をフラックスに吹き込んだ。100分後、気体の吹き込みを終了し、1100℃まで100℃/時で降温し、以降自然放冷した。固化後のフラックスから不純物分析用サンプルを採取した。
サンプル中の不純物濃度は、[B]=0.5質量ppm、[P]=1.5質量ppmであった。

【特許請求の範囲】
【請求項1】
不純物を含むフラックスを加熱溶融し、フラックス中にハロゲンガスを含む処理気体を吹き込むことにより、フラックス中の不純物を低減することを特徴とするフラックスの不純物除去方法。
【請求項2】
前記ハロゲンガスを含む処理気体が、フッ素、塩素、臭素、ヨウ素の1種又は2種以上を含む請求項1記載のフラックスの不純物除去方法。
【請求項3】
前記ハロゲンガスを含む処理気体が、ヘリウム、ネオン、アルゴン、窒素の1種又は2種以上を含む請求項1又は2記載のフラックスの不純物除去方法。
【請求項4】
前記不純物が、ホウ素、リンの少なくとも1種以上を含む請求項1乃至3のいずれか1項記載のフラックスの不純物除去方法。
【請求項5】
前記フラックスが、ケイ素の酸化物、カルシウムの酸化物、アルミニウムの酸化物の1種又は2種以上を含む請求項1乃至4のいずれか1項記載のフラックスの不純物除去方法。
【請求項6】
前記フラックスが、更に、アルカリ金属、アルカリ金属の酸化物、アルカリ金属の塩化物、アルカリ金属のフッ化物、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、アルカリ土類金属、アルカリ土類金属の酸化物、アルカリ土類金属の塩化物、アルカリ土類金属のフッ化物、アルカリ土類金属の炭酸塩、アルカリ土類金属の水酸化物、アルミニウム、アルミニウムの塩化物、アルミニウムのフッ化物、アルミニウムの炭酸塩、アルミニウムの水酸化物、チタン、チタンの酸化物、チタンの塩化物、チタンのフッ化物、チタンの炭酸塩、チタンの水酸化物の1種又は2種以上を含む請求項1乃至5のいずれか1項記載のフラックスの不純物除去方法。
【請求項7】
フラックスがシリコン精製用のものである請求項1乃至6のいずれか1項記載のフラックスの不純物除去方法。

【図1】
image rotate


【公開番号】特開2012−162403(P2012−162403A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2009−107337(P2009−107337)
【出願日】平成21年4月27日(2009.4.27)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】