説明

マイクロ流体チップ

【課題】 マイクロポンプなどの流体制御素子を再使用可能にするマイクロ流体チップを提供する。
【解決手段】 1個以上のポートと、該ポートに連通する微細流路を有する基板と、該基板の微細流路形成面に貼り合わされる対面基板とからなるマイクロ流体チップにおいて、前記ポートのうちの少なくとも1個のポートの上面に載置して着脱可能に自己吸着されるか、又は該ポート内に挿入して着脱可能に自己吸着されるマイクロ流体部品アセンブリーを有することを特徴とするマイクロ流体チップ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はマイクロ流体チップに関する。更に詳細には、本発明は、マイクロポンプなどの流体制御素子などを着脱可能に配設することができるマイクロ流体チップに関する。
【背景技術】
【0002】
最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内にマイクロチャネルや反応容器及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うように構成されたマイクロデバイスが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル、ポート及び反応容器などの微細構造を有する構造物は総称して「マイクロ流体チップ」又は単に「マイクロチップ」と呼ばれる。マイクロ流体チップは遺伝子解析、臨床診断、薬物スクリーニングなどの化学、生化学、薬学、医学、獣医学分野のみならず、化学工業、環境計測などの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロ流体チップは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。
【0003】
マイクロ流体チップの材質や構造及び製造方法は例えば、特許文献1及び特許文献2などに開示されている。特許文献1及び特許文献2に記載されているように、一般的に、これらのマイクロ流体チップは、一方の平面上にマイクロチャネル(微細流路)などの微細構造を有する基板と、これらの微細構造を封止する目的の平面を有する対面基板とを貼り合わせた構造を有する。各基板の材質は製造方法やマイクロ流体チップの使用目的等により、各種のものが利用されているが、基板材料にシリコンゴム系のポリジメチルシロキサン(PDMS)を用い、対面基板にガラス基板を用いると、PDMS基板とガラス対面基板とが恒久接着するので、マイクロチャネルなどからの流体の漏洩が完全に防止される利点がある。
【0004】
マイクロ流体チップ内のマイクロチャネルや反応容器では流体(主に薬液やサンプル等の液体)を扱うが、その為には流体の流れや移送を制御する機能が必要になる。特にマイクロ流体チップに内蔵した小さな機能部品は流体制御素子と呼ばれる。流体制御素子として一般的なものはマイクロバルブやマイクロポンプなどである。
【0005】
マイクロ流体チップ内に配設されるマイクロポンプの一例は特許文献3に記載されている。特許文献1の図1によれば、マイクロポンプ100は、流路抵抗が差圧に応じて変化する第1流路115と、差圧の変化に対する流路抵抗の変化の割合が第1流路115よりも小さい第2流路117と、第1流路115及び第2流路117に接続される加圧室109と、加圧室109の内部の圧力を変化させるための圧電素子107とを備え、加圧室109の内部の圧力を圧電素子107で変化させることにより、第1流路115の流路抵抗と第2流路117の流路抵抗との比を異ならせることができる。これにより、微少量の液体を正逆両方向に高精度に搬送することが可能となる。しかし、このマイクロポンプは次のような欠点を有する。(1)高価な圧電素子がマイクロ流体チップと共に廃棄されるので、コスト増を招く;(2)圧電素子の駆動制御は容易ではなく、思い通りに液体を搬送できない;(3)圧電素子を使用するため、マイクロ流体チップを小型化できない;(4)加圧室の前後に開閉弁や逆止弁が配設されていないため、液体の流動を完全に止めることができない;(5)加圧室の前後に開閉弁や逆止弁が配設されてていないため、外部からの大きな圧力に対し、ポンプ動作を行うことができない;及び(6)流路抵抗の相違に基づくため、液体の流動制御には利用できるが、気体の流動制御には利用できない。
【0006】
【特許文献1】特開2000−27813号公報
【特許文献2】特開2001−157855号公報
【特許文献3】特開2001−322099号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
従って、本発明の目的は、マイクロポンプなどの流体制御素子を再使用可能にするマイクロ流体チップを提供することである。
【課題を解決するための手段】
【0008】
前記課題を解決するための手段としての請求項1の発明は、1個以上のポートと、該ポートに連通する微細流路を有する基板と、該基板の微細流路形成面に貼り合わされる対面基板とからなるマイクロ流体チップにおいて、前記ポートのうちの少なくとも1個のポートの上面に載置して着脱可能に自己吸着されるか、又は該ポート内に挿入して着脱可能に自己吸着されるマイクロ流体部品アセンブリーを有することを特徴とするマイクロ流体チップである。
【0009】
前記課題を解決するための手段としての請求項2の発明は、前記基板はポリジメチルシロキサンから形成されており、前記マイクロ流体部品アセンブリーの外殻又は本体はポリジメチルシロキサン又はガラスから形成されており、該外殻又は本体内に部品が内蔵されていることを特徴とする請求項1記載のマイクロ流体チップである。
【0010】
前記課題を解決するための手段としての請求項3の発明は、前記マイクロ流体部品はマイクロポンプ、マイクロ電極及びマイクロバルブからなる群から選択される請求項1又は2記載のマイクロ流体チップである。
【0011】
前記課題を解決するための手段としての請求項4の発明は、1個以上のポートと、該ポートに連通する微細流路を有する基板と、該基板の微細流路形成面に貼り合わされる対面基板とからなるマイクロ流体チップにおいて、前記ポートのうちの少なくとも1個のポートの上面に載置して着脱可能に、マイクロポンプ部品15を水平にした状態で、この水平部分を基板3の水平部分に設けることにより、取り付けを容易にし、かつ、全体を小型に構成できるようにしたことを特徴とするマイクロ流体チップである。
【発明の効果】
【0012】
本発明によれば、マイクロポンプ、マイクロ電極及びマイクロバルブなどのマイクロ流体部品をポリジメチルシロキサン又はガラスなどの内蔵させ、アセンブリー化することにより、このマイクロ流体部品アセンブリーをマイクロ流体チップのPDMS基板のポート上面に載置するか又はポート内に挿入することにより、マイクロ流体部品アセンブリーをPDMS基板に自己吸着させることができる。従来のマイクロ流体チップでは、使用後に、マイクロポンプや電極などはチップと共に廃棄されてしまうが、本発明によれば、マイクロ流体チップ使用後はPDMS基板からマイクロ流体部品アセンブリーを脱離させることにより、これらマイクロ流体部品アセンブリーを別のマイクロ流体チップで再使用することができ、大幅なコスト低減を実現することができる。
【発明を実施するための最良の形態】
【0013】
以下、図面を参照しながら本発明の好ましい実施態様について具体的に説明する。図1は本発明によるマイクロ流体チップ1の一例の概要断面図である。本発明のマイクロ流体チップ1におけるPDMS基板3には微細流路5とこの微細流路に連通したポート7及び9が形成されている。このような微細流路及びポートの形成方法自体は前記特許文献1及び特許文献2などに記載されており、これ以上の説明は特に必要ないであろう。また、言うまでもなく、PDMS基板3には図示された微細流路5及びポート7,9の他に、必要に応じて、反応容器、バルブ(例えば、開閉弁及び/又は逆止弁)など種々の構成要素を形成することができる。また、PDMS基板3は図示された単層に限らず、2枚以上を積層させた多層構造のPDMS基板も使用できる。PDMS基板3の下面側には例えば、ガラス製の対面基板10が恒久接着されている。微細流路5及びポート7,9は2個以上配設することもできる。
【0014】
図1において、ポート7の上面に、マイクロポンプアセンブリー11が載置されている。マイクロポンプアセンブリー11は外殻13と、この外殻13に内蔵されたマイクロポンプ部品15を有する。マイクロポンプ部品15には、このポンプを駆動させるためのリード線17,19が接続されている。言うまでもなく、このリード線17,19の他端は適当な直流電源(図示されていない)に接続されている。マイクロポンプ部品15の上部は液体貯留空間21が形成されており、この液体貯留空間21内に液体を給送するためのチューブ23が適当な接着剤により固設されている。ポート7の内径はマイクロポンプ部品15のサイズに合わせて適宜決定することができる。マイクロポンプアセンブリー11の外殻13の全体がPDMSで形成されているため、マイクロポンプ部品15の排出側をポート7と一致するように位置合わせして配置すると、PDMS製の外殻13はPDMS基板3の上面に恒久接着する。マイクロ流体チップ1で所期の目的とする分析操作などが行われた後、PDMS基板3からマイクロポンプアセンブリー11を剥離して回収する。従って、マイクロポンプアセンブリー11は別のマイクロ流体チップで再使用することができる。
【0015】
図1に示されたマイクロポンプ部品15は例えば、多孔質膜前後にパッキンを入れて電極を設置したものであることができる。多孔質膜は例えば、ニッケル金属フィルター又はポリカーボネートフィルターなどである。ポリカーボネートフィルターは(株)三商からアイソポア(登録商標)メンブレンフィルターとして市販されている。このメンブレンはポリカーボネートフィルムからなり、メンブレン表面で試料を観察するあらゆる分析に推奨されるトラックエッチドスクリーンフィルタである。このポリカーボネートフィルターの孔径は5μmで、厚さは11μmである。一方、ニッケル金属フィルターの孔径は5.01μmで、厚さは10μmである。膜前後の電極間に直流数V〜数十V(例えば、2V〜15V)の電圧を印加すると、液体は陽極側から陰極側に向かって流れる。従って、液体貯留空間21内の液体は多孔質膜を透過してポート7内に押し出される。この多孔質膜ポンプによる流量は0.1μL/s〜100μL/sの範囲内で変化させることができる。流量は印加電圧に概ね比例する。印加電圧の極性を逆にすると、液体の流動方向を逆転させることができる。このようなマイクロポンプ部品を使用することの利点は、脈流が発生しないことである。このタイプのポンプは“多孔質膜を通る電気浸透流を利用した微小流量用ポンプの開発”,森田誠(新潟大学大学院)他,第53回理論応用力学講演会講演論文集(NCTAM2004),2004年1月27日発行,pp359−360に記載されている。PDMS外殻13に内蔵されるポンプ部品15は上記の多孔質膜タイプのものに限定されない。様々なタイプのマイクロポンプ部品を使用することができる。例えば、圧電素子と振動板とを貼り合わせたユニモルフ振動を用いるタイプのマイクロポンプ、圧電素子でダイアフラムを振動させるタイプのマイクロポンプ、圧電素子のずり変形を用いるタイプのマイクロポンプ、静電気力によりダイヤフラムを変形させるタイプのマイクロポンプ、振動子の一部に形状記憶合金を用いるタイプのマイクロポンプなどを適宜選択して使用することができる。使用するポンプに応じて、チューブ23の接続形態を適宜変更することができる。例えば、ポンプの入力口にチューブ23を接続し、ポンプの出力口をポート7内に接続する形態を採用することもできる。
【0016】
外殻13の材質は上記のPDMSだけに限定されず、PDMS基板3と自己接着することができるガラスであることもできる。
【0017】
図2は本発明によるマイクロ流体チップ1の別の例の概要断面図である。図2では、微細流路5の途中に別のポート25が形成されている。このポート25内に電極アセンブリー27を挿入する。電極アセンブリー27はPDMS又はガラス本体29から構成されており、この本体29の下面には電極31が配設されている。電極31にはリード線33が接続されている。電極31は例えば、白金又は金などのような導電性金属膜である。このような金属膜の形成方法自体は当業者に公知である。本体29がPDMS又はガラスから形成されているので、この電極アセンブリー27をポート25内に挿入すると、PDMS又はガラス製の本体29はポート25の内壁面に恒久接着する。マイクロ流体チップ1で所期の目的とする分析操作などが行われた後、ポート25の内壁面から電極アセンブリー27を剥離して回収する。従って、電極アセンブリー27は別のマイクロ流体チップで再使用することができる。従来のマイクロ流体チップの場合、このような電極はガラス対面基板上にプリント配線印刷などにより形成されていたので、マイクロ流体チップ使用後は、チップと共に廃棄され、電極用の貴金属が無駄に消費されていた。しかし、本発明のマイクロ流体チップにより、このような貴金属の浪費が抑制されるばかりか、プリント配線印刷の手間も省け一挙両得である。
【0018】
ポート25内に挿入されるアセンブリーとしては、図2に示された電極アセンブリー27に限らず、図1に示されたマイクロポンプアセンブリー11であることもできる。
【実施例1】
【0019】
図1に示されるような断面構造を有するマイクロ流体チップを作製した。対面基板10は厚さ1mmのガラス製であり、基板3は厚さ2mmのPDMS製であった。微細流路5の幅及び高さは各200μmであり、長さ(距離)は50mmであった。ポート9の内径は1mmであった。マイクロポンプアセンブリー11の外殻13の外径は20mm、高さは15mmであり、チューブ23の内径は3mmであった。マイクロポンプ部品15としては、孔径5μm、孔数320000個、厚さ11μmのポリカーボネート多孔質膜を使用した。マイクロポンプ部品15の外径は13mmであり、外殻13内に内蔵した。マイクロポンプ部品15のサイズに合わせて、ポート7の内径は9mmとした。マイクロポンプアセンブリー11をPDMS基板3のポート7に対して位置合わせし、自己吸着させた。その後、チューブ23から、イオン交換水(イオンを取り除いた蒸留水)にポリスチレン粒子(粒子径:0.12μm)を濃度0.01%で分散させたコロイド溶液を液体貯留空間21に給送した。ポリカーボネート多孔質膜の前後に接続された電極リード線を介して直流電圧を印加し、マイクロポンプを駆動させた。印加電圧の陽極側から陰極側に向かって流れが発生した。その結果、液体貯留空間21内のポリスチレンコロイド溶液はポート7から微細流路5を通りポート9まで流れた。印加電圧を変化させ、各電圧に対応する流量を測定した。結果を図3に示す。図3に示された特性曲線から明らかなように、印加電圧を調整することにより、液体の流量を変化させることができる。
【実施例2】
【0020】
実施例1におけるマイクロポンプアセンブリー11を、実施例1のマイクロ流体チップから剥離し、同じ流路構造を有する別のマイクロ流体チップのポート7の上面に自己接着させ、実施例1と同じポリスチレンコロイド溶液を用いて送液実験を行ったところ、実施例1と同じ結果が得られた。また、マイクロポンプアセンブリー11とPDMS基板3との接着界面からの漏液は発生しなかった。このことから、本発明によるマイクロポンプアセンブリーは、マイクロ流体チップにおける外付けマイクロポンプとして有効に繰り返し使用出来ることが理解できる。
【産業上の利用可能性】
【0021】
以上、本発明の好ましい実施態様について図面を参照しながら説明したきたが、本発明は例示された実施態様のみに限定されるものではない。例えば、PDMS基板3のホール7は1個だけでなく、複数個配設することもでき、各ホールにそれぞれ必要な部品アセンブリーを自己吸着させることもできる。また、 マイクロポンプなどの着脱式部品アセンブリーはホール9にも配設することができる。更に、着脱式部品アセンブリーとしては、マイクロポンプや電極だけでなく、マイクロバルブなども実施できる。
また、液体としては、ポリスチレン粒子の代わりに、シリカ粒子を分散させたイオン交換水からなるコロイド溶液も使用できる。シリカ粒子はポリスチレン粒子に比べて安価であり、経済的な利点が大きい。
液体として食塩水を使用すると電圧印加後に電気分解が起こり、気泡発生や流量の時間的減少が見られるので好ましくない。ポリスチレンコロイド溶液やシリカコロイド溶液では、このような気泡発生や流量の時間的減少が見られず、流量は一定になる。
【図面の簡単な説明】
【0022】
【図1】本発明のマイクロ流体チップの一例の部分概要断面図である。
【図2】本発明のマイクロ流体チップの別の例の部分概要断面図である。
【図3】実施例1における印加電圧に対する流量の変化を示す特性図である。
【符号の説明】
【0023】
1 本発明のマイクロ流体チップ
3 PDMS基板
5 微細流路
7 入力ポート
9 出力ポート
10 対面基板
11 マイクロポンプアセンブリー
13 PDMS製外殻
15 ポンプ部品
17,19 リード線
21 液体貯留空間
23 送液チューブ
25 ポート
27 電極アセンブリー
29 本体
31 電極
33 リード線

【特許請求の範囲】
【請求項1】
1個以上のポートと、該ポートに連通する微細流路を有する基板と、該基板の微細流路形成面に貼り合わされる対面基板とからなるマイクロ流体チップにおいて、前記ポートのうちの少なくとも1個のポートの上面に載置して着脱可能に自己吸着されるか、又は該ポート内に挿入して着脱可能に自己吸着されるマイクロ流体部品アセンブリーを有することを特徴とするマイクロ流体チップ。
【請求項2】
前記基板はポリジメチルシロキサンから形成されており、前記マイクロ流体部品アセンブリーの外殻又は本体はポリジメチルシロキサン又はガラスから形成されており、該外殻又は本体内にマイクロ流体部品が内蔵されていることを特徴とする請求項1記載のマイクロ流体チップ。
【請求項3】
前記マイクロ流体部品はマイクロポンプ、マイクロ電極及びマイクロバルブからなる群から選択される請求項1又は2記載のマイクロ流体チップ。
【請求項4】
1個以上のポートと、該ポートに連通する微細流路を有する基板と、該基板の微細流路形成面に貼り合わされる対面基板とからなるマイクロ流体チップにおいて、前記ポートのうちの少なくとも1個のポートの上面に載置して着脱可能に、マイクロポンプ部品15を水平にした状態で、この水平部分を基板3の水平部分に設けることにより、取り付けを容易にし、かつ、全体を小型に構成できるようにしたことを特徴とするマイクロ流体チップ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−26791(P2006−26791A)
【公開日】平成18年2月2日(2006.2.2)
【国際特許分類】
【出願番号】特願2004−208346(P2004−208346)
【出願日】平成16年7月15日(2004.7.15)
【出願人】(502338454)フルイドウェアテクノロジーズ株式会社 (11)
【出願人】(802000019)株式会社新潟ティーエルオー (27)
【Fターム(参考)】