説明

マイクロ流体装置

【課題】
高粘度液体を含む複数の液体をマイクロ流体チップに供給して、所望の混合や反応を継続して起させることができるようにしたい。
【解決手段】
マイクロ流体チップ1における複数の液体供給口12,14からそれぞれ供給される液体を内部の微小流路に導き、微小流路17において液体の混合や反応を施し、液体吐出口18から処理済みの液体を得るマイクロ流体装置であり、該液体供給口は少なくとも2種類の液体を個別に供給するものであり、低粘度液体の流路に高粘度液体の誘導路が開口し、該誘導路の開口22は低粘度液体の流れの中に設けてある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ流体チップにおける複数の液体供給口からそれぞれ供給される液体を内部の微小流路に導き、微小流路において液体の混合や反応を施し、液体吐出口から処理済みの液体を得るマイクロ流体装置に関する。
【背景技術】
【0002】
供給した液体の種類に応じて混合や反応を行うマイクロ流体チップにおける微小流路は、幅や深さが数μmから数百μm程度であり、その微小流路内では液体のレイノルズ数は数百以下となり、従来の反応装置のような乱流支配ではなく、層流支配の世界となる。
【0003】
この層流支配下での液体同士の混合や反応は、各液体の接触界面における分子拡散によるものが主となり、その速度を規定する要素は液体の拡散方向厚さ(拡散距離)である。
【0004】
従来のマイクロ流体装置では、下記特許文献1に開示されているように、複数の液体をそれぞれ多数の層状の流れに分割し、それらを交互に配することで、液体の総体積に占める各液体の接触面積の割合を増加させたラミネートフローを形成し、高効率な分子拡散を可能としている。
【0005】
【特許文献1】特開2003−1077号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
従来のマイクロ流体チップは、数百μm以下の幅の狭く、拡散距離が短い微小流路に比較的低粘度の液体を供給して、混合や反応が起こるようにしている。この場合、流量は数十μl/min程度の少量である。
【0007】
マイクロ流体チップの微小流路内における圧力損失は、液体の粘性が大きな影響力を持つ。これは流路断面積に対する断面周長の割合が高く、流路壁面での粘性による摩擦損失が大であるためである。このため、マイクロ流体チップに高粘度液体を送液すると、壁面付近で圧力損失による停滞や堆積が発生し、正確な送液を行うことが困難となる。
【0008】
特に、低粘度の液体と高粘度の液体を供給して混合や反応を起させようとする場合、低粘度液体と高粘度液体とでは圧力損失に差が出て、低粘度液体は微小流路を比較的円滑に流れても、高粘度液体は滞るようになる。従って、当初は所望比率で液体を供給しても微小流路を流れていくうちに流量に差を生じて、一方の液体の量が他方に対し少なくなることから、混合を行う場合は所望比率の混合ができないし、反応を起させる場合には収益量が低下してしまう。そして、次第に高粘度液体が微小流路で滞って、流路の大半を高粘度液体で占めるようになり、所望の混合や反応は得られなくなる。
【0009】
それゆえ本発明の目的は、高粘度液体を含む複数の液体をマイクロ流体チップに供給して、所望の混合や反応を継続して起させることができるマイクロ流体装置を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するために本発明マイクロ流体チップにおける複数の液体供給口からそれぞれ供給される液体を内部の微小流路に導き、微小流路において液体の混合や反応を施し、液体吐出口から処理済みの液体を得るマイクロ流体装置において、該液体供給口は少なくとも2種類の液体を個別に供給するものであり、低粘度液体の流路に高粘度液体の誘導路が開口し、該誘導路の開口は低粘度液体の流れの中に設けた。
【発明の効果】
【0011】
本発明によれば、高粘度液体の周囲に低粘度液体が存在し、高粘度液体が直接微小流路の壁面に接触することはないので、高粘度液体に流れの停滞は起こらず、所望な液体の混合や反応が済んだ処理液を継続して得ることができる。
【0012】
しかも高粘度液体と低粘度液体の接触面積は増加するので、液体相互の分子拡散は良好に進み、所望な液体の混合や反応を高効率で得ることができる。
【発明を実施するための最良の形態】
【0013】
以下、図に示した実施形態について説明する。
【実施例1】
【0014】
以下、本発明マイクロ流体チップの一実施形態として2種類の液体を混合するチップを図示し説明する。
【0015】
図1は、マイクロ流体装置におけるマイクロ流体チップ1を示す概略的分解斜視図で、マイクロ流体チップ1は、混合や反応などの処理をする液体の種類に応じて金属,ガラス,シリコン,樹脂などの数mm厚の板材により形成したマイクロ流体チップ本体10と、マイクロ流体チップ本体10の一主面側に配置されマイクロ流体チップ本体10における流路の天井部分を構成する蓋部材30と、この蓋部材30とは反対側になるマイクロ流体チップ本体10の他の主面側に配置されポンプなどの送液機構とチップをつなぐアダプタ部材50、及びこれら3部材間に配設したシール部材70,90(図4,図5参照)からなり、これらは周囲に設けた8個のねじ孔2〜4を貫通する図示していないねじの締結により液体が漏れないようにしている。
【0016】
シール部材としては粘着性パッキング材やメタルパッキング材などを使用してもよいが、レーザー接合や接着剤など他の方法を用いてマイクロ流体チップ本体10の表裏に蓋部材30やアダプタ部材50を直接固定しても良い。
【0017】
チップ本体10の流路側から見て右及び下方には、位置決め用としてL字状の凹ガイド11を設け、蓋部材30には凹ガイド11に対応するものとしてL字状の凸ガイド31が設け、チップ本体10と蓋部材30を締結する際、このガイドの凹凸を組み合わせることで、正確な位置決めを容易に行うことができるようにしてある。
【0018】
アダプタ部材50には供給する原液や排出する処理液の通路となる開孔51〜53を設けてあり、チップ本体10とアダプタ部材50の間に設けられるシール部材90(図4,図5参照)の開孔51〜53に対応する位置にも同様な開孔を設けてある。後述するようにアダプタ部材50の裏面側において、開孔51には低粘度液体を供給するヘッド(プラグまたは継手)を接続し、開孔52には高粘度液体を供給するヘッド(プラグまたは継手)を接続するようになっている。
【0019】
図2はマイクロ流体チップ本体10の一主面側の正面図であり、長円形の第一液供給部12,複数の第二液供給部14,ラミネートフロー形成部15,流れ扁平化部16,処理部17,液体排出部18を備えている。第一液供給部12から低粘度液体を吐出し、第二液供給部14かは高粘度液体を吐出し、第一液供給部12側が上流で、液体排出部18が下流側である。
【0020】
複数の第二液供給部14は、第一液供給部12における長円形の長手方向に沿うように、即ち、低粘度液体の流れの方向に対し直交するように所望な均等な間隔で配列してある。
【0021】
第一液供給部12から第二液供給部14までは低粘度液体の流路13であり、処理部17は液体の混合や反応の処理が主に行われる微小流路である。ラミネートフロー形成部15や流れ扁平化部16も流路であり、これらの流路でも徐々に液体の混合や反応が進行する。なお、これらの構成については後述する。
【0022】
図3はマイクロ流体チップ本体10と接する側の蓋部材30の正面図であり、複数の第二液供給部14の蓋となる複数の第二液蓋部32と、マイクロ流体チップ本体10のその他の流路の蓋となる流路蓋部33からなる。流路蓋部33は蓋部材30の表面を切削して形成され、第二液蓋部32やシール部材70(図4,図5参照)と接する面34から一段低くなっている。なお、シール部材70は8個のねじ孔3や流路蓋部33の形状の開孔を有しており、液は流路蓋部33に接触する。
【0023】
マイクロ流体チップ本体10には、以下具体的に説明する液体供給部から液体排出口に至る各種形状の溝を設けてあり、マイクロ流体チップ本体10の表面に密着固定される蓋部材30はそれらの溝を密封する蓋の機能を果たし、各溝と蓋部材30とで上記した各流路(13,15〜17)を構成する。
【0024】
さて、図4は図2のI−I切断線に沿った位置でのマイクロ流体チップ1の横断面図であり、第一液供給部12は第一液吐出口12aとして単一の長円形ノズルを備えている。アダプタ部材50の第一液吐出口12aに対応する位置に第一液供給ヘッド5を取り付けてあり、第一液供給ヘッド5から供給された第一液(低粘度液体)Aは、液面の上昇に伴い第一液吐出口12aを満たし、図2に示した流路13の全幅と等しい薄いシート状の流れを形成する。
【0025】
図5は図2のII−II切断線に沿った位置でのマイクロ流体チップ1の横断面図である。
【0026】
図5に示すように、第二液供給部14には多数の第二液供給口14aを設けてあり、各第二液供給口14aはマイクロ流体チップ本体10の幅方向に一定の間隔をもって一列に並ぶようにマイクロ流体チップ本体10の裏面(アダプタ部材50側の主面)から表面(蓋部材30側の主面)にかけて設けた開孔で構成される。
【0027】
マイクロ流体チップ本体10におけるアダプタ部材50側の裏面部には、各第二液供給口14aを連通するように第二液(高粘度液体)Bを一時的に溜めておくバッファ槽19を設けてある。バッファ槽19はマイクロ流体チップ本体10の裏面に設けた凹部とアダプタ部材50で形成している。
【0028】
アダプタ部材50のバッファ槽19に対応する位置に第二液供給ヘッド6を取り付けてあり、第二液供給ヘッド6から供給された第二液Bは、バッファ槽19を満たした後に液面の上昇に伴い全ての第二液吐出口14aへと均一に供給される。この結果、全ての第二液吐出口14aから第二液が分流して吐出される。
【0029】
図6は、マイクロ流体チップ本体10における第一液供給部12〜ラミネートフロー形成部15までの表面側の要部を拡大して示している。
【0030】
各第二液供給口14aの周囲はほぼ菱形をした突出部20で囲まれており、各頂部は平坦で、その平坦面に各第二液蓋部32が当接する。各第二液蓋部32は、突出部20と同じ形状としてある。各突出部20には、各第二液供給口14aから下流側に向かう凹部21を設けてあり、凹部21の底部は流路13やラミネートフロー形成部15の位置よりも高い位置としてある。
【0031】
各第二液供給口14aは流路蓋部33から一段突出した各第二液蓋部32で封止されるので、各凹部21から流路13を流れる第一液Aに合流する。そのため、各第二液供給口14aとこれに連通した各凹部21は、各第二液Bの誘導路を構成している。この誘導路の開口、即ち、各凹部21と各第二液蓋部32で形成するラミネートフロー形成部15に向かう開口22は流路13の底部や流路蓋部33の天井部の両者から離れている。従って、開口22から吐出する各第二液Bは流路13を流れる第一液(低粘度液体)Aの流れの中に流路13の底部や流路蓋部33の天井部に接することはない。
【0032】
この状態を、図6に示した各液体の流れの方向を示す矢印で説明する。なお、各液体の流れを分かりやすくするために、一部の第二液蓋部32を示す。
【0033】
第一液供給口12aから吐出された低粘度の第一液Aはシート状流れとなって流路13全体を満たしながら移動し、第二液蓋部32及び第二液吐出部14の各突出部20と接触する。このシート状流れは層流であるため、接触後は図中の矢印のように乱れることなく第二液蓋部32及び各突出部20を包み込むように分流し、各突出部20の下流端で再び合流する。
【0034】
上記し図6のIII−III切断線に沿う縦断面図である図7に示すように、第二液Bを吐出する各開口22は流路底面から一段高くなっており、第二液蓋部32は流路天井から一段突出している。従って各開口22から吐出された高粘度液体(第二液)Bは、各突出部20の下流端で合流する第一液Aの流れの中に吐出され、ラミネートフロー形成部15へと進む。
【0035】
第二液Bが各開口22から吐出する時、周辺には低粘度の第一液Aが流れているため、図6のIV−IV切断線に沿う横断面図である図8に示すように、高粘度の第二液Bは全周を第一液Aに囲まれた流れとなり、高粘度の第二液Bは流路壁面に接触しなくなる。
【0036】
これにより壁面と高粘度液の接触による圧力損失の増大、それに伴う高粘度液体の停滞や堆積を防止することができ、正確な送液を行う事が可能となる。この時、高粘度液を送り出す第二液供給口14aの直径は、流れが層流であるならば第二液供給口14aでの圧力損失を抑えるために大きいことが望ましい。
【0037】
マイクロ流体チップ本体10の幅方向に一列にならんだ第二液吐出部14の各第二液供給口14aと同数の流れが並列にできることで、図6や図8に示すようにラミネートフロー形成部13においては、第一液と第二液が交互に配されたラミネートフローが形成される。即ち、ラミネートフロー形成部13を設けている理由は、第一液と第二液が交互に配された安定したラミネートフローの流れを得ることにある。
【0038】
このラミネートフローは特に分流した第二液Bを第一液Aで包んだ形になっており、2種類の液体の総体積に占める接触面積の割合が増加する効果を得ることができる。この結果、各接触面で発生する分子拡散が活発になり、一定時間の分子拡散量が増加するためマイクロ流体チップの高効率化が実現する(同一体積の場合、マイクロ流体チップの効率はラミネートフローの層の数に比例する)。
【0039】
ラミネートフロー形成部15で形成されたラミネートフローは、次に流れ扁平化部16へと移動する。
【0040】
分子拡散による液体の混合において、混合完了までの時間に影響するのは接触界面に垂直な方向の液体の厚さ(=分子や粒子の拡散距離)であり、厚さの2乗に時間が比例する関係を持つ。例えば、10秒で1mm拡散する場合は、拡散距離を1/2の0.5mmに短縮すると、時間は1/4の2.5秒しかかからない。
【0041】
この関係に基づいて、流れ扁平化部16ではラミネートフローの深さを拡大し流路幅を絞る。これにより拡散距離を短縮し、高速で液体の混合を行う事が可能となる。
【0042】
絞る前と絞った後の流路幅の比が同じ値の場合、チップの幅方向に一列にならんだ第二液吐出口14aの数を多くし、ラミネートフローの層数を多くするほど、1層当りの厚さは薄くなり、それによって混合完了までの時間は短くて済む。
【0043】
通常、流路の幅を絞ると流路断面積が減少し、それにより流路内での単位長当りの圧力損失は下流に向かうほど増大する。特にマイクロ流体チップで大流量を送液しようとすると、流路内の圧力損失は液供給ヘッドなどの上流側に配設してある図示していないポンプの性能限界を超過し、送液は不可能となる。
【0044】
そこで本実施形態においては、従来は0.5mm程度の薄板で製作される事の多かったマイクロ流体チップ本体10に数mm厚の板材を用い、図2に示すように下流に向かうに従って流路幅Wを絞ると同時にそれに比例して図2に示したV−V切断線に沿った縦断面図である図9に示すように流路の深さHを広げ、流路断面積を一定に保つ流れ扁平化部16を設けることで圧力損失が増大しない構造とした。流れ扁平化部16は、圧力損失増大阻止機能をもつ拡散距離短縮部と云える。
【0045】
この場合、流路の深さHを広げても、流路内の流れは層流を維持しているためにラミネートフロー13aが乱れることはなく、分子拡散は乱されない。
【0046】
図10に示すように、流れ扁平化部16では流れの方向をX方向、幅方向(ラミネートフロー形成部15において交互に配列された液体の配列方向)をY方向、深さ方向(ラミネートフロー形成部15において交互に配列された液体の配列方向と流れの方向に交差する方向)をZ方向で表した場合、ラミネートフローの各1層は、厚さが下流に進むに連れて薄くなり(厚さw1⇒w2)、代わりに、深さ方向(Z方向)において長くなるように(深さh1⇒h2)扁平化され、流れ方向に交差する方向での断面積は上流のラミネートフロー形成部15側(断面積S1)と下流の処理部17側(断面積S2)でもほぼ同一となるように流路断面積を一定(断面積S1≒S2)に維持させているが、下流ほど断面積はやや広くなるようにする(断面積S2≧S1)と良い。
【0047】
流れ扁平化部16における断面形状をどうするかは、マイクロ流体チップ本体10の厚さや後述する処理部17の長さなどによって決めれば良い。
【0048】
図2においては、流れ扁平化部16をマイクロ流体チップ本体10の正面から見て半円状としているが、形状に制限はなく、三角形でも構わない。また、液体の流速が低いなどレイノルズ数が十分に小さい場合は、半円状や三角形などの形状は微細ピッチの階段状の形に模擬してもよく、その形状に合せて、深さ方向においても緩やかな傾斜を階段状としてもよい。
【0049】
流れ扁平化部16を通過した液体は、処理部17へ移動する。
【0050】
処理部17は、流れに交差する方向での流れ扁平化部16との接続部における幅と深さをそのまま液体排出部(液体排出口)18まで維持している。
【0051】
これは、流路断面形状を同一にすることで加工が容易となり、また液体の混合状態を推定する計算も容易とするためである。ただし、マイクロ流体チップ本体10の厚みに余裕があれば流れ扁平化部16の流路深さHを深くし、ラミネートフローの界面面積/全体積の比を増やすことができ、より混合性能を上げることも可能である。
【0052】
この処理部17を通過する間に液体の混合は完全に終了し、液体排出部18から装置外に均一に混合された処理液が排出される。アダプタ部材50の液体排出部18に対応する個所に図示していない処理液排出ヘッドを設けてあり、この処理液排出ヘッドを通して処理液を得る。
【0053】
本実施形態では、高粘度液体を低粘度液体で包み込み界面面積率を高くした上に、更にこれをラミネートフロー化して絞り込んであるため、処理部17においては二液体を交互に並べた通常の単純なラミネートフローによる混合に比べてより高い効率で液体混合を行うことができる。
【0054】
また、高粘度液体が流れの途中で圧力損失により停滞することはなく、高粘度液体と低粘度液体の比率は上流側と下流側で変化しないので、所望の混合比率の処理液や所望量の反応済みの処理液を継続して得ることができる。
【0055】
上記実施形態のマイクロ流体チップ10では、単一のチップで高粘度液体を含む複数液の高速且つ均一な混合及び反応を数十ml/minの処理流量で行う事が出来る。
【0056】
また、加工の容易な大きさの吐出ノズルを多数形成し、高粘度液体を低粘度液体で包み込んだ多数の流れを並列に配したラミネートフローを形成し、この流れを絞ることによって高速な混合や反応を実現できるため、高度な微細加工技術無しにマイクロ流体チップを製作することができる。
【0057】
実施例では処理部17を直線形状としたが、混合完了までに必要な滞留時間を計算により求め、そこから導かれる必要流路長をマイクロ流体チップ本体10上に確保するためならば、渦巻き状や蛇行状など他の形状でも良い。
【0058】
液体が層流である限り、本発明のマイクロ流体チップ1の混合性能は、ラミネートフローの層の数と流れ扁平化部16における前後の流路幅の比により決定される。よって、従来のマイクロ流体チップのような微細なノズルや溝は必ずしも必要ではなく、それぞれが数百μmから数mmのノズルや溝の組み合わせとしても性能を発揮できるため、加工性に優れる。
【0059】
図2の実施例ではラミネートフローを横に配列した形としているが、マイクロ流体チップ本体10の厚さ方向に配列した形、即ち、図10の各軸方向について、YとZの軸方向を、X軸を中心として90度回転させ、Y軸が図10のZ軸方向となるような縦の配列としても良い。
【0060】
本実施例では3液体の混合を説明したが、3液以上の液体の混合を行う場合は、第二液供給部14とそれに対応する第二液蓋部32に相当するものを、下流に液の数だけ追加する。この時使用する液体の中で最も粘度が低い液を第一液供給部12より送液し、以下粘度の低い順に送液していく。
【実施例2】
【0061】
図11は、本発明の他の実施形態における各二液吐出口14aの突出部20を示している。
【0062】
この実施形態では、蓋部材30は図3に示した各第二液蓋部32や流路蓋部33が存在しない平板状のものとし、突出部20は蓋部材30に届く高さとし、突出部20の頂上面20aにおける第二吐出口14aの上流側から下流側に掛けて凹部21の底に向かう傾斜24を設ける。ここに平板状の蓋部材30を取り付けると、図7に準じたマイクロ流体チップの部分的縦断面図である図12に示すように、傾斜24によって第二液吐出口14aの周囲に蓋部材30との間に隙間Kが形成される。
【0063】
ここで第一液供給部12より低粘度の第一液Aを送液すると図中に矢印で示すように、まず突出部20の上流側先端に接触して左右に分流する。分流した液体の一部はそのままラミネートフロー形成部15へと移動するが、他の一部は傾斜24と蓋部材30の間の隙間Kを通り、凹部21の上面を覆うように移動し、第一液による天井流を形成した後にラミネートフロー形成部15へ移動する。
【0064】
この状態で高粘度の第二液Bを送液すると、高粘度第二液Bの周囲を低粘度の第一液で包んだ流れを形成することができ、高粘度液体Bが流路壁面に接触することによって生じる圧力損失の増大を防止することができる。
【0065】
実施例1の実施形態と比較した場合、本実施形態では蓋部材30が平坦な板でよいため、裏面に第二液蓋部32や流路蓋部33を形成するための加工を省略でき、生産性に優れる。また、第二液蓋部32を突出部20と正確に貼り合わせる必要が無いため、組立て時の位置決めも容易である。
【0066】
なお、この実施形態では、傾斜24と蓋部材30の間の隙間Kを通り、凹部21の上面を覆うように移動する第一液による天井流を形成できればよいので、そのための傾斜24の形状は任意に設定して差し支えない。
【図面の簡単な説明】
【0067】
【図1】本発明マイクロ流体装置の一実施形態におけるマイクロ流体チップの概略分解斜視図である。
【図2】図1に示したマイクロ流体チップにおけるマイクロ流体チップ本体の正面図である。
【図3】図1に示したマイクロ流体チップにおける蓋部材の裏面図である。
【図4】図2のI−I切断線に沿ったマイクロ流体チップの横断面図である。
【図5】図2のII−II切断線に沿ったマイクロ流体チップの横断面図である。
【図6】図2に示したマイクロ流体チップ本体における液体の流れの状況を説明する部分的斜視図である。
【図7】図6のIII−III切断線に沿ったマイクロ流体チップの部分的縦断面図である。
【図8】図6のIV−IV切断線に沿ったマイクロ流体チップの部分的縦断面図である。
【図9】図2のV−V切断線に沿ったマイクロ流体チップ本体の縦断面図である。
【図10】図9に示したマイクロ流体チップ本体における流れ扁平化部について説明するための図である。
【図11】本発明マイクロ流体装置の他の実施形態における第二液吐出部の拡大図である。
【図12】本発明マイクロ流体装置の他の実施形態における図7に準じたマイクロ流体チップの部分的縦断面図である。
【符号の説明】
【0068】
1…マイクロ流体チップ
10…マイクロ流体チップ本体
12…第一液供給部
12a…第一液供給口
13…流路
14…第二液供給部
14a…第二液供給口
15…ラミネートフロー形成部
16…流れ扁平化部
17…処理部
18…液体排出部
19…バッファ槽
20…突出部
21…凹部
22…開口
30…蓋部材
32…第二液蓋部
33…流路蓋部
50…アダプタ部材

【特許請求の範囲】
【請求項1】
マイクロ流体チップにおける複数の液体供給口からそれぞれ供給される液体を内部の微小流路に導き、微小流路において液体の混合や反応を施し、液体吐出口から処理済みの液体を得るマイクロ流体装置において、
該液体供給口は少なくとも2種類の液体を個別に供給するものであり、低粘度液体の流路に高粘度液体の誘導路が下流に向けて開口し、該誘導路の開口は低粘度液体の流れの中に設けてあることを特徴とするマイクロ流体装置。
【請求項2】
請求項1に記載のマイクロ流体装置において、
該マイクロ流体チップは板状のマイクロ流体チップ本体と該マイクロ流体チップ本体の表裏各側の主面にそれぞれ気密に密着される蓋部材およびアダプタ部材からなり、該マイクロ流体チップ本体における表側の主面には該低粘度液体の流路とこれに続く微小流路となる溝があり、該蓋部材は該溝を覆うように密着しており、該低粘度液体の流路である溝に突出部があり、該突出部に該マイクロ流体チップ本体の裏面側に通じる高粘度液体の供給口があり、この供給口に続く凹部が低粘度液体の流路の下流に向けて設けてあり、該蓋部材が該供給口と凹部を覆って該高粘度液体の誘導路を形成することを特徴とするマイクロ流体装置。
【請求項3】
請求項2に記載のマイクロ流体装置において、
該突出部の該蓋部材側の頂面部には低粘度液体の流路の下流に向けて該蓋部材との間に空間を形成する傾斜面を設けてあることを特徴とするマイクロ流体装置。
【請求項4】
請求項1に記載のマイクロ流体装置において、
該高粘度液体の誘導路は該低粘度液体の流路方向に直交するように所望の間隔で複数個設けてあることを特徴とするマイクロ流体装置。
【請求項5】
請求項1に記載のマイクロ流体装置において、
該誘導路の開口の下流側で該微小流路の上流に下流に進むに従って流路断面積を一定に維持しつつ流路の幅を狭めるとともに流路の深さが深くなる流れ扁平化部を設けてあることを特徴とするマイクロ流体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−102649(P2006−102649A)
【公開日】平成18年4月20日(2006.4.20)
【国際特許分類】
【出願番号】特願2004−293179(P2004−293179)
【出願日】平成16年10月6日(2004.10.6)
【出願人】(000233077)株式会社 日立インダストリイズ (97)
【Fターム(参考)】