説明

マトリクスコンバータ

【課題】双方向スイッチの制御を容易に行うことができるマトリクスコンバータを提供すること。
【解決手段】交流電源2の各相と負荷3の各相とを接続する複数の双方向スイッチを備えた電力変換部10と、複数の双方向スイッチを制御する制御部20とを備える。制御部20は、負荷側相間電圧Vuv,Vvw,Vwuのうち最大の相間電圧を、当該最大の相間電圧にする相と交流電源側相間電圧Vrs,Vst,Vtrのうち最大の相間電圧が入力される相との接続を行う双方向スイッチを制御して生成する。また、制御部20は、負荷側相間電圧Vuv,Vvw,Vwuのうち中間の相間電圧を、当該中間の相間電圧にする相と交流電源側相間電圧Vrs,Vst,Vtrのうち中間の相間電圧が入力される相との接続を行う双方向スイッチを制御して生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マトリクスコンバータに関する。
【背景技術】
【0002】
マトリクスコンバータは、高調波電流の抑制や回生電力の有効利用が可能であることから、新しい電力変換装置として注目されている。マトリクスコンバータは、例えば、交流電源の各相と負荷の各相とを接続する複数の双方向スイッチを備え、これらの双方向スイッチを制御して、交流電源の各相電圧を直接スイッチングして負荷へ任意の電圧・周波数を出力する。
【0003】
かかるマトリクスコンバータは、双方向スイッチをPWM制御し、その導通比率を制御するものであるため、負荷側電圧が交流電源側電圧よりも低い電圧であることが一般的である。しかし、近年、負荷側電圧を交流電源側電圧よりも高い電圧にする昇圧機能を有するものが提案されている。
【0004】
昇圧機能を有するマトリクスコンバータは、例えば、交流電源の各相と双方向スイッチとの間にリアクトルを備え、かつ負荷に接続される出力の各相を接続するコンデンサを備え、双方向スイッチを制御することによって、2以上のリアクトルの双方向スイッチ側端子間を短絡後、コンデンサに接続する。これにより、マトリクスコンバータにおいて、負荷側電圧を交流電源側電圧よりも高い電圧にする昇圧機能が実現される(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2006/112275号
【発明の概要】
【発明が解決しようとする課題】
【0006】
マトリクスコンバータにおいては、双方向スイッチの制御を容易に行うことが望まれる。
【0007】
開示の技術は、上記に鑑みてなされたものであって、昇圧機能の有無によらず双方向スイッチの制御を容易に行うことができるマトリクスコンバータを提供することを目的とする。
【課題を解決するための手段】
【0008】
本願の開示するマトリクスコンバータは、一態様において、交流電源の各相と負荷の各相とを接続する複数の双方向スイッチを備えた電力変換部と、前記複数の双方向スイッチを制御する制御部とを備え、前記制御部は、負荷側相間電圧のうち最大の相間電圧を、前記最大の相間電圧に対する相と交流電源側相間電圧のうち最大の相間電圧が入力される相との接続を行う前記双方向スイッチを制御して生成し、前記負荷側相間電圧のうち中間の相間電圧を、前記中間の相間電圧に対する相と前記交流電源側相間電圧のうち中間の相間電圧が入力される相との接続を行う前記双方向スイッチを制御して生成することを特徴とする。
【発明の効果】
【0009】
本願の開示するマトリクスコンバータの一つの態様によれば、双方向スイッチの制御を容易に行うことができるという効果を奏する。
【図面の簡単な説明】
【0010】
【図1】図1は、実施例に係るマトリクスコンバータの構成を示す図である。
【図2】図2は、Bモードにおける回路構成の説明図である。
【図3】図3は、昇圧動作時の双方向スイッチの制御例を示す図である。
【図4】図4は、図3に示す区間Lの拡大図である。
【図5】図5は、表3に示す区間Lc,Lgにおいて電流が流れる経路を示す図である。
【図6】図6は、入力相の電圧と入力区間との関係を示す図である。
【図7】図7は、入力相の電圧と入力区間との関係を示す図である。
【図8】図8は、図1に示す制御部による双方向スイッチの制御の一例を示す図である。
【図9】図9は、図8に示す区間T11の拡大図である。
【図10】図10は、図1に示す制御部の構成を示す図である。
【図11】図11は、図10に示すPWM信号発生部によるPWM信号の生成方法の説明図である。
【図12】図12は、図10に示すPWM信号発生部によるPWM信号の生成方法の説明図である。
【図13】図13は、相間電圧指令の説明図である。
【発明を実施するための形態】
【0011】
以下に、本願の開示するマトリクスコンバータの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
【実施例】
【0012】
[マトリクスコンバータの全体構成]
まず、実施例に係るマトリクスコンバータの全体構成について、図1を参照して説明する。図1は、実施例に係るマトリクスコンバータ1の構成を示す図である。図1に示すように、実施例に係るマトリクスコンバータ1は、交流電源2と負荷3との間に設けられる。
【0013】
マトリクスコンバータ1は、交流電源2と負荷3との間で双方向の電力変換を行うことが可能であり、さらに、交流電源2と負荷3との間で昇降圧を行うことが可能である。かかるマトリクスコンバータ1では、電力変換の方向は、例えば、設定器4からの設定に基づき決定される。また、負荷3として、例えば、交流発電機や交流電動機などを適用することができる。なお、以下においては、交流電源2側を入力側と記載し、負荷3側を出力側と記載する。
【0014】
マトリクスコンバータ1は、図1に示すように、電力変換部10と、入力側リアクトル群11と、入力側コンデンサ群12と、入力側スイッチ13と、出力側リアクトル群14と、出力側コンデンサ群15と、出力側スイッチ16と、制御部20とを備える。
【0015】
電力変換部10は、交流電源2の各相と負荷3の各相とを接続する複数の双方向スイッチSru,Ssu,Stu,Srv,Ssv,Stv,Srw,Ssw,Stw(以下、双方向スイッチSと総称する場合がある)を備える。双方向スイッチSru,Ssu,Stuは、交流電源2のR相,S相,T相と負荷3のU相とをそれぞれ接続する。双方向スイッチSrv,Ssv,Stvは、交流電源2のR相,S相,T相と負荷3のV相とをそれぞれ接続する。双方向スイッチSrw,Ssw,Stwは、交流電源2のR相,S相,T相と負荷3のW相とをそれぞれ接続する。
【0016】
双方向スイッチSは、例えば、単一方向のスイッチング素子を互いに逆方向に並列接続した2素子から構成することができる。スイッチング素子として、例えば、IGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチが用いられる。そして、かかる半導体スイッチのゲートに信号を入力して各半導体スイッチをON/OFFすることで、通電方向が制御される。
【0017】
入力側リアクトル群11は、第1リアクトルL1r,L1s,L1t(以下、第1リアクトルL1と総称する場合がある)を備える。第1リアクトルL1rは、交流電源2のR相と双方向スイッチSru,Srv,Srwとの間に設けられる。第1リアクトルL1sは、交流電源2のS相と双方向スイッチSsu,Ssv,Sswとの間に設けられる。第1リアクトルL1tは、交流電源2のT相と双方向スイッチStu,Stv,Stwとの間に設けられる。
【0018】
入力側コンデンサ群12は、第1コンデンサC1r,C1s,C1t(以下、第1コンデンサC1と総称する場合がある)を備える。第1コンデンサC1rは、第1リアクトルL1rの双方向スイッチS側端子と入力側スイッチ13との間に設けられる。第1コンデンサC1sは、第1リアクトルL1sの双方向スイッチS側端子と入力側スイッチ13との間に設けられる。第1コンデンサC1tは、第1リアクトルL1tの双方向スイッチS側端子と入力側スイッチ13との間に設けられる。
【0019】
入力側スイッチ13は、一端が双方向スイッチSに接続された第1コンデンサC1r,C1s,C1tの他端を互いに接続するスイッチである。すなわち、入力側スイッチ13がオンのとき、第1コンデンサC1r,C1s,C1tの他端が互いに接続された状態になり、入力側スイッチ13がオフのとき、第1コンデンサC1r,C1s,C1tの他端がそれぞれ開放された状態になる。
【0020】
出力側リアクトル群14は、第2リアクトルL2u,L2v,L2w(以下、第2リアクトルL2と総称する場合がある)を備える。第2リアクトルL2uは、負荷3のU相と双方向スイッチSru,Ssu,Stuとの間に設けられる。第2リアクトルL2vは、負荷3のV相と双方向スイッチSrv,Ssv,Stvとの間に設けられる。第2リアクトルL2wは、負荷3のW相と双方向スイッチSrw,Ssw,Stwとの間に設けられる。
【0021】
出力側コンデンサ群15は、第2コンデンサC2u,C2v,C2w(以下、第2コンデンサC2と総称する場合がある)を備える。第2コンデンサC2uは、第2リアクトルL2uの双方向スイッチS側端子と出力側スイッチ16との間に設けられる。第2コンデンサC2vは、第2リアクトルL2vの双方向スイッチS側端子と出力側スイッチ16との間に設けられる。第2コンデンサC2wは、第2リアクトルL2wの双方向スイッチS側端子と出力側スイッチ16との間に設けられる。
【0022】
出力側スイッチ16は、一端が双方向スイッチSに接続された第2コンデンサC2u,C2v,C2wの他端を互いに接続するスイッチである。すなわち、出力側スイッチ16がオンのとき、第2コンデンサC2u,C2v,C2wの他端が互いに接続された状態になり、出力側スイッチ16がオフのとき、第2コンデンサC2u,C2v,C2wの他端がそれぞれ開放された状態になる。
【0023】
[マトリクスコンバータ1の動作モード]
次に、マトリクスコンバータ1の動作モードについて説明する。マトリクスコンバータ1は、以下に示すように、Aモード、Bモード、CモードおよびDモードの4つの動作モードを有する。
【表1】

【0024】
マトリクスコンバータ1は、動作モード毎に、入力側スイッチ13および出力側スイッチ16の状態を変更する。具体的には、制御部20は、実行すべき動作モードに応じて、入力側スイッチ13および出力側スイッチ16を下記表2にしたがってオン/オフ制御を行う。
【表2】

【0025】
[マトリクスコンバータ1の昇圧動作]
次に、マトリクスコンバータ1による昇圧動作について説明する。昇圧動作は、上記表2に示すようにBモードおよびDモードにおいて実行される。ここでは、昇圧動作としてBモードの動作を挙げて説明する。なお、以下においては、理解を容易にするために、まず、基本的な昇圧動作について説明した後、具体的な昇圧動作を説明する。
【0026】
Bモードでは、制御部20によって、入力側スイッチ13がオフに設定され、出力側スイッチ16が制御部20によってオンに設定される。したがって、マトリクスコンバータ1は、Bモードでは図2に示す回路と等価になる。図2は、Bモードにおける回路構成の説明図である。なお、Bモードにおいて、入力側スイッチ13をオフにするのは、不要な短絡電流の発生を防止するためである。
【0027】
制御部20は、入力側スイッチ13および出力側スイッチ16を設定した後、第1リアクトルL1の双方向スイッチS側端子を互いに接続する。例えば、制御部20は、双方向スイッチSru,Ssuをオンにする。これにより、第1リアクトルL1r,L1sの双方向スイッチS側端子が双方向スイッチSru,Ssuを介して互いに接続される。これにより交流電源2のR相およびS相が、第1リアクトルL1r,L1sを介して短絡され、短絡電流が流れ、第1リアクトルL1r,L1sに磁気エネルギーが蓄積される。なお、ここでは、昇圧動作の間、双方向スイッチStuは、制御部20によってオンの状態に固定されるものとする。
【0028】
次に、制御部20は、第1リアクトルL1に蓄積した磁気エネルギーを電気エネルギーとして第2コンデンサC2へ放出する。例えば、双方向スイッチSru,Ssuをオンにして第1リアクトルL1r,L1sに磁気エネルギーを蓄積した場合、制御部20は、双方向スイッチSsu,Sruをオフにし、双方向スイッチSsv,Srwをオンにする。これにより、第1リアクトルL1s,L1rのそれぞれに蓄積された磁気エネルギーが電気エネルギーとして第2コンデンサC2v,C2wへそれぞれ放出される。その結果、V相とW相との間の相間電圧の絶対値はR相とS相との相間電圧の絶対値よりも大きい値になり、昇圧が行われる。
【0029】
このように、Bモードにおける昇圧動作では、第1リアクトルL1に蓄積された磁気エネルギーを電気エネルギーとして第2コンデンサC2に蓄積させるため、第1リアクトルL1から第2コンデンサC2への経路を確立するように双方向スイッチSが制御される。
【0030】
Dモードの昇圧動作も、Bモードと同様な制御によって行われる。具体的には、制御部20は、第2リアクトルL2に蓄積された磁気エネルギーを電気エネルギーとして第1コンデンサC1に蓄積させることによって、出力側から入力側への電力変換における昇圧動作を実行する。
【0031】
ここで、マトリクスコンバータ1の昇圧動作についての理解を容易にするために、図3に示すような制御を考える。図3は、昇圧動作であるBモードにおける双方向スイッチSの制御例を示す図である。図3に示す制御では、図示された大小関係をもつR相、S相およびT相の3つの入力相の電圧Vr,Vs,Vtによって、最大の出力相間電圧(以下、最大出力相間電圧Vohighと記載する)と中間の出力相間電圧(以下、中間出力相間電圧Vomidと記載する)がそれぞれ生成される。
【0032】
図3に示す区間Lは、図4に示すように、区間La〜区間Liの9つの期間に分けることができる。図4は、図3に示す区間Lの拡大図である。区間La〜区間Liにおいてオン状態にする双方向スイッチSと電流経路との関係を下記表3に示す。なお、出力相間電圧Vuwを最大出力相間電圧Vohighとし、出力相間電圧Vvwを中間出力相間電圧Vomidとする。
【表3】

【0033】
上記表3に示す区間Lc,Lgにおいては、図5に示すように、S相からT相へ流れる電流は、双方向スイッチSsuおよび第2コンデンサC2uを通る第1経路と、双方向スイッチSsvおよび第2コンデンサC2vを通る第2経路とに分かれる。図5は、区間Lc,Lgにおいて電流が流れる経路を示す図である。
【0034】
また、上記表3に示す区間Leにおいても、R相からT相へ流れる電流は、双方向スイッチSruおよび第2コンデンサC2uを通る第1経路と、双方向スイッチSrvおよび第2コンデンサC2vを通る第2経路とに分かれる。
【0035】
このように第1経路と第2経路に分流する場合、分流を前提としない基本的な昇圧チョッパの動作とはならない。従って、昇圧比を決める基本的な昇圧チョッパの基本式に基づいた昇圧制御を行うことができず、補償処理を行うことになり、制御方法が複雑になる。また、例えば、Aモードにおける降圧動作においても、3つの入力相によって、最大出力相間電圧Vohighと中間出力相間電圧Vomidが生成されることから、双方向スイッチSの制御が複雑になる。
【0036】
そこで、実施例に係るマトリクスコンバータ1は、AモードおよびBモードにおいて、2つの入力相によって、最大出力相間電圧Vohighと中間出力相間電圧Vomidを生成する。また、マトリクスコンバータ1は、CモードおよびDモードにおいても同様に、2つの出力相によって、最大の入力相間電圧(以下、最大入力相間電圧Vihighと記載する)と中間の入力相間電圧(以下、中間入力相間電圧Vimidと記載する)を生成する。これにより、マトリクスコンバータ1では、上述した分流状態が解消され、また、双方向スイッチSの制御が容易になる。
【0037】
以下、制御部20が昇圧動作において実行する双方向スイッチSの制御について、図面を参照して具体的に説明する。図6および図7は、入力相の電圧と入力区間との関係を示す図であり、図8は、図1に示す制御部20による双方向スイッチSの制御の一例を示す図である。なお、BモードとDモードとは入出力の関係が逆である以外は同様の動作であるため、ここでは、Bモードにおける動作を例に挙げて説明する。
【0038】
Bモードにおいては、図6に示すように、R相、S相およびT相の3つの入力相電圧において絶対値の大小関係が変化しない期間である入力区間E0〜E11に区分けされる。制御部20は、後述する入力電圧の位相θaから入力区間E0〜E11を求めるテーブルを有する。そして、制御部20は、入力電圧の位相θaを検出し、かかる入力電圧の位相θaに基づいて入力相電圧Vr,Vs,Vtの状態が入力区間E0〜E11のいずれの入力区間に属する状態かを判定する。
【0039】
また、図7に示すように、入力電圧の位相θaに所定の位相差θbを加算した位相に基づき入力区間E0’〜E11’に区分けすることもできる。入力区間E0’〜E11’は、入力相電圧Vr,Vs,Vtに対して位相差θbを有する電圧Vr’,Vs’,Vt’ において絶対値の大小関係が変化しない期間である。
【0040】
入力区間E0’〜E11’に区分けすることで、入力力率を調整することができる。例えば、位相差θbを−90°とすることによって、入力力率を0にすることができる。この場合、制御部20は、入力電圧の位相θaから入力区間E0’〜E11’を求めるテーブルを有する。そして、制御部20は、入力電圧の位相θaを検出し、かかる入力電圧の位相θaに基づいて電圧Vr’,Vs’,Vt’の状態が入力区間E0’〜E11’のいずれの入力区間に属する状態かを判定する。
【0041】
すなわち、制御部20は、最大入力相間電圧Vihighおよび中間入力相間電圧Vimidを、入力電圧の位相θaに、所定の位相差θbを加算した位相に基づき選択することができる。また、制御部20は、入力相電圧Vr,Vs,Vt間の大小関係および中間の相電圧の正負を、入力相電圧Vr,Vs,Vtの位相θaに、所定の位相差θbを加算した位相に基づき判定することができる。
【0042】
このように、制御部20は、入力電圧の位相θaに基づいて、入力区間E0〜E11または入力区間E0’〜E11’のいずれの入力区間に属する状態かを判定する。なお、以下においては、制御部20が入力区間を入力区間E0〜E11から判定するものとして説明するが、制御部20が入力区間を入力区間E0’〜E11’から判定する場合も同様の制御である。
【0043】
制御部20は、入力区間を判定した後、最大出力相間電圧Vohighにする相に対しては、最大入力相間電圧Vihighが入力される相との接続を行う双方向スイッチSをオンにする。例えば、入力区間が図6に示す入力区間E1であり、U相とW相との間の相間電圧を最大出力相間電圧Vohighとする場合を考える。入力区間E1では、最大入力相間電圧Vihighが入力される相はR相およびT相である。したがって、制御部20は、図8に示すように、U相とR相との接続を行う双方向スイッチSruをオンにし、W相とT相との接続を行う双方向スイッチStwをオンにする。
【0044】
また、制御部20は、中間出力相間電圧Vomidにする相に対しては、中間入力相間電圧Vimidが入力される相との接続を行う双方向スイッチSをオンにする。例えば、入力区間が図6に示す入力区間E1であり、V相とW相との間の相間電圧を中間出力相間電圧Vomidとする場合を考える。入力区間E1では、中間入力相間電圧Vimidが入力される相はS相およびT相である。したがって、制御部20は、図8に示すように、V相とS相との接続を行う双方向スイッチSsvをオンにし、W相とT相との接続を行う双方向スイッチStwをオンにする。
【0045】
図9は、図8に示す区間T11の拡大図である。図9に示すように、図8に示すパルスの1周期は、区間a〜区間eの5つの期間に分けることができる。図8に示す例では、T1>T2の場合を示している。入力と出力との関係によっては、T1<T2となる場合もあるが、最大出力相間電圧Vohighおよび中間出力相間電圧Vomidを出力する期間が異なるだけであり、説明を分かり易くするために、以下においては、T1>T2である場合について説明する。
【0046】
区間a〜区間eにおいてオンにする双方向スイッチSと電流経路との関係を表4に示す。なお、出力相間電圧Vuwを最大出力相間電圧Vohighとし、出力相間電圧Vvwを中間出力相間電圧Vomidとする。
【表4】

【0047】
上記表4に示すように、区間a〜eのいずれも分流することなく、第1リアクトルL1に対応する第2コンデンサC2に電流が流れる。具体的には、区間a,eにおいて第1リアクトルL1r,L1sにおいて磁気エネルギーを蓄積した後、区間b,dにおいて第1リアクトルL1rから第2コンデンサC2uへ磁気エネルギーが電気エネルギーとして放出される。また、区間cにおいて第1リアクトルL1rから第2コンデンサC2uへ磁気エネルギーが電気エネルギーとして放出され、かつ第1リアクトルL1sから第2コンデンサC2vへ磁気エネルギーが電気エネルギーとして放出される。
【0048】
また、マトリクスコンバータ1のスイッチ制御は、図9に示す区間a〜eでのスイッチ制御であるため、パルス1周期に行う双方向スイッチSの制御回数を、図4に示す区間La〜Liでのスイッチ制御に比べて大幅に低減することができる。そのため、双方向スイッチSの制御を容易に行うことが可能になる。
【0049】
このように、実施例に係るマトリクスコンバータ1は、昇圧動作であるBモードにおいて、2つの入力相によって、最大出力相間電圧Vohighと中間出力相間電圧Vomidを生成するため、上述した分流状態を解消し、また、双方向スイッチSの制御を容易に行うことができる。また、昇圧動作であるDモードの場合も同様に、マトリクスコンバータ1は、2つの出力相によって、最大入力相間電圧Vihighと中間入力相間電圧Vimidを生成するため、上述した分流状態を解消し、また、双方向スイッチSの制御を容易に行うことができる。
【0050】
[制御部20の構成]
以下、マトリクスコンバータ1の制御部20の構成について具体的に説明する。図10は、図1に示す制御部20の構成を示す図である。図10に示すように、制御部20は、入力電圧検出部21と、出力電圧検出部22と、電圧指令生成部23と、昇圧降圧切替部24と、PWM信号発生部25とを備える。
【0051】
入力電圧検出部21は、入力側の電圧を検出する。具体的には、入力電圧検出部21は、交流電源2のR相、S相およびT相の各相と第1リアクトルL1との間の接続点を監視して、交流電源2の相間電圧Vrs,Vst,Vtr(以下、入力相間電圧Vrs,Vst,Vtrと記載する)の値を検出する。入力相間電圧VrsはR相とS相との間の電圧、入力相間電圧VstはS相とT相との間の電圧、入力相間電圧VtrはT相とR相との間の電圧である。さらに、入力電圧検出部21は、入力電圧の位相θaを検出する。
【0052】
出力電圧検出部22は、出力側の電圧を検出する。具体的には、出力電圧検出部22は、負荷3側のU相、V相およびW相の各相と第2リアクトルL2との間の接続点を監視して、交流電源2の相間電圧Vuv,Vvw,Vwu(以下、出力相間電圧Vuv,Vvw,Vwuと記載する)の値を検出する。出力相間電圧VuvはU相とV相との間の電圧、出力相間電圧VvwはV相とW相との間の電圧、出力相間電圧VwuはW相とU相との間の電圧である。さらに、出力電圧検出部22は、出力電圧の位相θcを検出する。
【0053】
電圧指令生成部23は、設定器4(図1参照)によって設定された電力変換方向情報Kdに基づき、電力変換方向を決定する。具体的には、電圧指令生成部23は、電力変換方向情報Kdに基づき、交流電源2側の電圧を基準に負荷3側への電圧を生成して行う電力変換(以下、出力方向電力変換と記載する)か、負荷3側の電圧を基準に交流電源2側への電圧を生成して行う電力変換(以下、入力方向電力変換と記載する)かを決定する。
【0054】
また、電圧指令生成部23は、電圧設定値Kv、周波数設定値Kfおよび電力変換方向情報Kdに応じた電圧指令を生成し、PWM信号発生部25と昇圧降圧切替部24へ出力する。電圧設定値Kvおよび周波数設定値Kfは、設定器4によって電圧指令生成部23に設定される情報である。
【0055】
例えば、電力変換方向情報Kdが出力方向電力変換を示す情報である場合、電圧指令生成部23は、電圧設定値Kvおよび周波数設定値Kfに応じた出力電圧指令Vu*,Vv*,Vw*を生成する。すなわち、電圧指令生成部23は、出力側の電圧を、電圧設定値Kvに応じた電圧および周波数設定値Kfに応じた周波数にする出力電圧指令Vu*,Vv*,Vw*を生成する。
【0056】
一方、電力変換方向情報Kdが入力方向電力変換を示す情報である場合、電圧指令生成部23は、電圧設定値Kvおよび周波数設定値Kfに応じた入力電圧指令Vr*,Vs*,Vt*を生成する。すなわち、電圧指令生成部23は、入力側の電圧を、電圧設定値Kvに応じた電圧および周波数設定値Kfに応じた周波数にする入力電圧指令Vr*,Vs*,Vt*を生成する。
【0057】
昇圧降圧切替部24は、Aモード、Bモード、CモードおよびDモードの4つの動作モード(上記表1参照)のうちいずれかの動作モードを選択し、選択した動作モードの情報IMを示す情報をPWM信号発生部25へ通知する。
【0058】
昇圧降圧切替部24による動作モードの選択は、電力変換方向情報Kd、入力相間電圧Vrs,Vst,Vtrの値、および出力相間電圧Vuv,Vvw,Vwuの値に基づいて行われる。昇圧降圧切替部24は、電力変換方向情報Kdを電圧指令生成部23から取得し、入力相間電圧Vrs,Vst,Vtrの値を入力電圧検出部21から取得し、出力相間電圧Vuv,Vvw,Vwuの値を出力電圧検出部22から取得する。
【0059】
昇圧降圧切替部24は、電力変換方向情報Kdが出力方向電力変換である場合、入力相間電圧Vrs,Vst,Vtrの値に基づいて、入力電圧値Vaを検出する。具体的には、昇圧降圧切替部24は、入力相間電圧Vrs,Vst,Vtrのうち絶対値が最大値となる入力相間電圧の絶対値を入力電圧値Vaとする。
【0060】
また、昇圧降圧切替部24は、電力変換方向情報Kdが出力方向電力変換である場合、出力電圧指令Vu*,Vv*,Vw*により出力相間電圧指令Vuv、Vvw、Vwuをそれぞれ演算する。具体的には、昇圧降圧切替部24は、出力相間電圧指令VuvをVu−Vvによって求め、出力相間電圧指令VvwをVv−Vwによって求め、出力相間電圧指令VwuをVw−Vuによって求める。そして、昇圧降圧切替部24は、これらの出力相間電圧指令Vuv、Vvw、Vwuのうち絶対値が最大値となる出力相間電圧指令の絶対値を出力電圧指令値Vbとする。
【0061】
昇圧降圧切替部24は、電力変換方向情報Kdが出力方向電力変換を示し、かつ、入力電圧値Vaに応じた値Vcが出力電圧指令値Vb以上である場合、Aモードを選択する。なお、「入力電圧値Vaに応じた値Vc」は、降圧動作によって電圧設定値Kvに応じた電圧を出力相の電圧にすることができるか否かを判定する値である。例えば、入力電圧値Vaに対して、降圧動作によって生成できる出力電圧の最大値がVa×k1である場合、「入力電圧値Vaに応じた値Vc」は、昇圧降圧切替部24において、Va×k1に設定される。
【0062】
また、昇圧降圧切替部24は、電力変換方向情報Kdが出力方向電力変換を示し、かつ、入力電圧値Vaに応じた値Vcが出力電圧指令値Vb未満である場合、Bモードを選択する。
【0063】
一方、電力変換方向情報Kdが入力方向電力変換である場合、出力相間電圧Vuv,Vvw,Vwuに基づいて、出力電圧値Vbを検出する。具体的には、昇圧降圧切替部24は、出力相間電圧Vuv,Vvw,Vwuのうち絶対値が最大値となる出力相間電圧の値を出力電圧値Vbとする。
【0064】
また、昇圧降圧切替部24は、電力変換方向情報Kdが出力方向電力変換である場合、入力電圧指令Vr*,Vs*,Vt*により入力相間電圧指令Vrs、Vst、Vtrをそれぞれ演算する。具体的には、昇圧降圧切替部24は、入力相間電圧指令VrsをVr−Vsによって求め、入力相間電圧指令VstをVs−Vtによって求め、入力相間電圧指令VtrをVt−Vrによって求める。そして、昇圧降圧切替部24は、これらの入力相間電圧指令Vrs、Vst、Vtrのうち絶対値が最大値となる入力相間電圧指令の絶対値を入力電圧指令値Vaとする。
【0065】
昇圧降圧切替部24は、電力変換方向情報Kdが入力方向電力変換を示し、かつ、出力電圧値Vbに応じた値Vdが入力電圧指令値Va以上である場合、Cモードを選択する。なお、「出力電圧値Vbに応じた値Vd」は、降圧動作によって電圧設定値Kvに応じた電圧を入力相の電圧にすることができるか否かを判定する値である。例えば、出力電圧値Vbに対して、降圧動作によって生成できる入力電圧の最大値がVb×k2である場合、昇圧降圧切替部24において、「出力電圧値Vbに応じた値Vd」は、Vb×k2に設定される。
【0066】
また、昇圧降圧切替部24は、電力変換方向情報Kdが入力方向電力変換を示し、かつ、出力電圧値Vbに応じた値Vdが入力電圧指令値Va未満である場合、Dモードを選択する。
【0067】
このように、昇圧降圧切替部24は、入力電圧値Vaに応じた値Vcと出力電圧指令値Vb*との大小関係、および、出力電圧値Vbに応じた値Vdと入力電圧指令値Va*との大小関係を判定する。そして、かかる判定結果と電力変換方向情報Kdに基づいて、昇圧降圧切替部24は、Aモード、Bモード、CモードおよびDモードのうちいずれかの動作モードを決定する。
【0068】
PWM信号発生部25は、動作モードに応じて、入力側スイッチ13と出力側スイッチ16を上記表2の規定に従ってオン/オフ制御する。また、PWM信号発生部25は、昇圧降圧切替部24によって選択された動作モードを示す情報を昇圧降圧切替部24から取得し、かかる動作モードに応じたPWM信号を生成する。そして、生成したPWM信号を電力変換部10へ出力する。
【0069】
例えば、動作モードの情報がAモードまたはBモードを示す場合、PWM信号発生部25は、入力相間電圧Vrs,Vst,Vtrの値および入力電圧の位相θaを入力電圧検出部21から取得する。そして、取得した情報に基づき、PWM信号発生部25は、入力相の状態が入力区間E0〜E11のうちどの入力区間に属する状態かを判定する。また、PWM信号発生部25は、後述するように、出力電圧指令Vu*,Vv*,Vw*の値に基づいて、後述する出力区間F0〜F5(図13参照)のうちどの出力区間に属する状態かを判定する。そして、PWM信号発生部25は、後述するように、判定した入力区間および出力区間に基づき、双方向スイッチSをオン/オフするPWM信号を生成する。
【0070】
一方、動作モードの情報がCモードまたはDモードを示す場合、PWM信号発生部25は、出力相間電圧Vuv,Vvw,Vwuの値および出力電圧の位相θcを出力電圧検出部22から取得する。そして、PWM信号発生部25は、出力相間電圧Vuv,Vvw,Vwuを、それぞれ入力相間電圧Vrs,Vst,Vtrに読み替え、出力相の状態が図7に示す入力区間E0〜E11のうちどの入力区間に属する状態かを判定する。また、PWM信号発生部25は、入力電圧指令Vr*,Vs*,Vt*を、それぞれ出力電圧指令Vu*,Vv*,Vw*に読み替え、入力電圧指令Vr*,Vs*,Vt*の状態が図13に示す出力区間F0〜F5のうちどの出力区間に属する状態かを判定する。そして、PWM信号発生部25は、後述するように、判定した出力区間および入力区間に基づき、双方向スイッチSをオン/オフするPWM信号を生成する。
【0071】
ところで、PWM信号発生部25は、変調波と搬送波を生成し、これらを比較することにより、電力変換部10の双方向スイッチSをオン/オフするPWM信号を生成する。図11および図12は、図10に示すPWM信号発生部25によるPWM信号の生成方法の説明図である。
【0072】
PWM信号発生部25は、動作モードの情報がAモードまたはBモードを示す場合、図11に示すように、搬送波CW1と最大出力相間電圧Vohigh用の変調波MW1とを比較することによって、最大出力相間電圧Vohigh用のPWM信号SP1を生成する。また、PWM信号発生部25は、搬送波CW2と中間出力相間電圧Vomid用の変調波MW2とを比較することによって、中間出力相間電圧Vomid用のPWM信号SP2を生成する。
【0073】
また、PWM信号発生部25は、動作モードの情報がCモードまたはDモードを示す場合、図12に示すように、搬送波CW3と最大入力相間電圧Vihigh用の変調波MW3とを比較することによって、最大入力相間電圧Vihigh用のPWM信号SP3を生成する。また、PWM信号発生部25は、搬送波CW4と中間入力相間電圧Vimid用の変調波MW4とを比較することによって、中間入力相間電圧Vimid用のPWM信号SP4を生成する。
【0074】
PWM信号発生部25は、搬送波CW1〜CW4、および変調波MW1〜MW4の振幅を表5に従って生成する。
【表5】

【0075】
動作モードがAモードである場合、PWM信号発生部25は、表5に示すように、入力電圧検出値Vin1に基づいて搬送波CW1の振幅を調整し、さらに、入力電圧検出値Vin2に基づいて搬送波CW2の振幅を調整する。入力電圧検出値Vin1は、入力相間電圧Vrs,Vst,Vtrのうち絶対値が最大値となる入力相間電圧の絶対値であり、入力電圧検出値Vin2は、絶対値が2番目に大きな値となる入力相間電圧の絶対値である。
【0076】
また、PWM信号発生部25は、上述した昇圧降圧切替部24と同様に、出力電圧指令Vu*,Vv*,Vw*から、出力相間電圧指令Vuv*,Vvw*,Vwu*を生成する。PWM信号発生部25は、出力相間電圧指令Vuv*,Vvw*,Vwu*のうち絶対値が最も大きな出力相間電圧指令の絶対値を最大出力相間電圧指令Vohigh*とし、絶対値が2番目に大きな出力相間電圧指令の絶対値を中間出力相間電圧指令Vomid*とする。そして、PWM信号発生部25は、表5に示すように、最大出力相間電圧指令Vohigh*の瞬時値に基づいて変調波MW1の大きさを調整し、中間出力相間電圧指令Vomid*の瞬時値に基づいて変調波MW2の大きさを調整する。
【0077】
また、PWM信号発生部25は、動作モードがAモードである場合、入力側スイッチ13をオンにし、出力側スイッチ16をオフにする。これにより、交流電源2と電力変換部10との間に、第1リアクトルL1および第1コンデンサC1によるフィルタ回路が形成される。
【0078】
Aモードでは、降圧チョッパの原理に基づいて、オン期間Tonとオフ期間Toffとが決まる。すなわち、PWM信号発生部25から出力されるPWM信号によって、オン期間Tonとオフ期間Toffとが下記式(1),(2)に示すような関係になるように双方向スイッチSが制御される。
(Ton1+Toff1)/Ton1=Vin1/Vohigh* ・・・(1)
(Ton2+Toff2)/Ton2=Vin2/Vomid* ・・・(2)
Ton1:最大出力相間電圧Vohighを生成する際のオン期間Ton
Toff1:最大出力相間電圧Vohighを生成する際のオフ期間Toff
Ton2:中間出力相間電圧Vomidを生成する際のオン期間Ton
Toff2:中間出力相間電圧Vomidを生成する際のオフ期間Toff
【0079】
動作モードがBモードである場合、PWM信号発生部25は、出力電圧指令Vu*,Vv*,Vw*から、出力相間電圧指令Vuv*,Vvw*,Vwu*を生成する。PWM信号発生部25は、出力相間電圧指令Vuv*,Vvw*,Vwu*のうち絶対値が最も大きな出力相間電圧指令の絶対値を出力相間電圧指令Vo*1とし、絶対値が2番目に大きな出力相間電圧指令の絶対値を出力相間電圧指令Vo2とする。PWM信号発生部25は、表5に示すように、かかる出力相間電圧指令Vo1*および出力相間電圧指令Vo2に基づき、それぞれ搬送波CW1および搬送波CW2の振幅を調整する。
【0080】
また、PWM信号発生部25は、最大入力相間電圧Vihighの瞬時値に基づいて変調波MW1の大きさを調整し、中間入力相間電圧Vimidの瞬時値に基づいて変調波MW2の大きさを調整する。例えば、入力相の状態が図6に示す区間E0に属する状態である場合、最大入力相間電圧Vihighは入力相間電圧Vrtの絶対値であり、中間入力相間電圧Vimidは入力相間電圧Vrsの絶対値である。したがって、この場合、PWM信号発生部25は、入力相間電圧Vrtの絶対値の瞬時値に基づいて変調波MW1の大きさを調整し、入力相間電圧Vrsの絶対値の瞬時値に基づいて変調波MW2の大きさを調整する。
【0081】
また、PWM信号発生部25は、動作モードがBモードである場合、入力側スイッチ13をオフにし、出力側スイッチ16をオンにする。これにより、第1リアクトルL1、双方向スイッチSおよび第2コンデンサC2による昇圧回路が構成される。
【0082】
Bモードでは、昇圧チョッパの原理に基づいて、オン期間Tonとオフ期間Toffとが決まる。すなわち、PWM信号発生部25から出力されるPWM信号によって、オン期間Tonとオフ期間Toffとが下記式(3),(4)に示すような関係になるように双方向スイッチSが制御される。
Toff3/(Ton3+Toff3)=Vihigh/Vo1* ・・・(3)
Toff4/(Ton4+Toff4)=Vimid/Vo2* ・・・(4)
Ton3:最大入力相間電圧Vihighを生成する際のオン期間Ton
Toff3:最大入力相間電圧Vihighを生成する際のオフ期間Toff
Ton4:中間入力相間電圧Vimidを生成する際のオン期間Ton
Toff4:中間入力相間電圧Vimidを生成する際のオフ期間Toff
【0083】
動作モードがCモードである場合、PWM信号発生部25は、表5に示すように、出力電圧検出値Vo1および出力電圧検出値Vo2に基づいて、それぞれ搬送波CW3および搬送波CW4の振幅を調整する。出力電圧検出値Vo1は、出力相間電圧Vuv,Vvw,Vwuのうち絶対値が最大値となる出力相間電圧の絶対値であり、出力電圧検出値Vo2は、絶対値が2番目に大きい出力相間電圧の絶対値である。
【0084】
PWM信号発生部25は、上述した昇圧降圧切替部24と同様に、入力電圧指令Vr*,Vs*,Vt*から、入力相間電圧指令Vrs*,Vst*,Vtr*を生成する。PWM信号発生部25は、入力相間電圧指令Vrs*,Vst*,Vtr*のうち絶対値が最も大きな入力相間電圧指令を最大入力相間電圧指令Vihigh*とし、絶対値が2番目に大きな入力相間電圧指令を中間入力相間電圧指令Vimid*とする。そして、最大入力相間電圧指令Vihigh*の瞬時値に基づいて変調波MW3の大きさを調整し、中間入力相間電圧指令Vimid*の瞬時値に基づいて変調波MW4の大きさを調整する。
【0085】
また、PWM信号発生部25は、動作モードがCモードである場合、入力側スイッチ13をオフにし、出力側スイッチ16をオンにする。これにより、電力変換部10と負荷3の間に、第2リアクトルL2および第2コンデンサC2によるフィルタ回路が形成される。なお、Cモードでは、Aモードと同様に、降圧チョッパの原理に基づいて、オン期間Tonとオフ期間Toffとが決まる。
【0086】
動作モードがDモードである場合、PWM信号発生部25は、入力電圧指令Vr*,Vs*,Vt*から、入力相間電圧指令Vrs*,Vst*,Vtr*を生成する。PWM信号発生部25は、入力相間電圧指令Vrs*,Vst*,Vtr*のうち絶対値が最も大きな入力相間電圧指令の絶対値を最大の入力相間電圧指令Vi1*とし、絶対値が2番目に大きな入力相間電圧指令の絶対値を入力相間電圧指令Vi2*とする。PWM信号発生部25は、かかる入力相間電圧指令Vi1*および入力相間電圧指令Vi2*に基づき、それぞれ搬送波CW3および搬送波CW4の振幅を調整する。
【0087】
また、PWM信号発生部25は、最大出力相間電圧Vohighの瞬時値に基づいて変調波MW3の大きさを調整し、中間出力相間電圧Vomidの瞬時値に基づいて変調波MW4の大きさを調整する。例えば、最大出力相間電圧Vohighは出力相間電圧Vuwであり、中間出力相間電圧Vomidは出力相間電圧Vuvであるとする。この場合、PWM信号発生部25は、出力相間電圧Vuwの瞬時値に基づいて変調波MW3の大きさを調整し、出力相間電圧Vuvの瞬時値に基づいて変調波MW4の大きさを調整する。
【0088】
また、PWM信号発生部25は、動作モードがDモードである場合、入力側スイッチ13をオンにし、出力側スイッチ16をオフにする。これにより、第2リアクトルL2、双方向スイッチSおよび第1コンデンサC1による昇圧回路が構成される。なお、Dモードでは、Bモードと同様に、昇圧チョッパの原理に基づいて、オン期間Tonとオフ期間Toffとが決まる。
【0089】
ここで、相間電圧指令について、図13を参照して具体的に説明する。なお、以下においては、電力変換方向情報Kdが出力方向電力変換を示す場合の例を説明する。すなわち、AモードまたはBモードの動作の場合を例に挙げて説明する。図13は、出力相間電圧指令の説明図である。
【0090】
図13に示すように、PWM信号発生部25は、出力電圧指令Vu*,Vv*,Vw*の値により、出力相間電圧Vuv,Vvw,Vwuをこれらの絶対値の大小関係が変化しない期間を区分して、出力区間F0〜出力区間F5までの区間に分ける。そして、PWM信号発生部25は、入力相電圧Vr,Vs,Vtの値および出力電圧指令Vu*,Vv*,Vw*に基づいて、図13に示す出力相間電圧指令A,Bを生成する。
【0091】
出力相間電圧指令Aは、入力相電圧Vr,Vs,Vtのうち電圧値が中間の入力相電圧(以下、中間入力相電圧Vimとする)が正電圧の場合に選択される出力相間電圧指令である。例えば、図13に示す出力区間F0では、中間入力相電圧Vimが正電圧である場合、PWM信号発生部25は、出力相間電圧指令Aとして、出力相間電圧指令Vuv*および出力相間電圧指令Vvw*を生成する。
【0092】
一方、出力相間電圧指令Bは、中間入力相電圧Vimが負電圧の場合に選択される出力相間電圧指令である。例えば、図13に示す出力区間F0では、中間入力相電圧Vimが負電圧である場合、PWM信号発生部25は、出力相間電圧指令Bとして、出力相間電圧指令Vvu*および出力相間電圧指令Vwu*を生成する。
【0093】
ここで、図13に示す出力区間F0におけるPWM信号の生成について、Bモードの動作を例に挙げて具体的に説明する。出力区間F0における出力相間電圧指令と入力区間E0〜E11との関係を表6に示す。PWM信号発生部25は、出力区間F0において、表6にしたがって双方向スイッチSのオン/オフ制御を行う。例えば、PWM信号発生部25は、表6に示すテーブルの情報を記憶し、かかる情報に基づいて、双方向スイッチSのオン/オフ制御を行う。
【表6】

【0094】
例えば、出力区間F0において、入力相電圧Vr,Vs,Vtが入力区間E0に属する状態にある場合、上記表6に示すように、中間入力相電圧VimであるS相電圧Vsが負電圧である。この場合、PWM信号発生部25は、出力相間電圧指令Bを選択し、最大出力相間電圧指令として出力相間電圧指令Vwu*を、中間出力相間電圧指令として出力相間電圧指令Vvu*をそれぞれ生成する。これにより、最大出力相間電圧Vohighとする相間がW相とU相との間になり、中間出力相間電圧Vomidとする相間がV相とU相との間になる。
【0095】
また、入力区間E0において、最大入力相間電圧Vihighは入力相間電圧Vrtであり、中間入力相間電圧Vimidは入力相間電圧Vrsである。したがって、出力区間F0で、かつ入力区間E0の場合に、PWM信号発生部25は、双方向スイッチSの接続制御処理(以下、スイッチ制御処理と記載する)を次のように行う。
【0096】
まず、PWM信号発生部25は、図9に示す区間aにおいて、双方向スイッチSru,Ssu,Stuをオンにして、第1リアクトルL1s,L1tに磁気エネルギーを蓄積する。なお、双方向スイッチSruは、図9に示す全区間a〜eにおいてオン状態に維持される。
【0097】
次に、PWM信号発生部25は、図9に示す区間b〜dにおいて、最大出力相間電圧VohighにするU相およびW相に対して、最大入力相間電圧Vihighが入力されるR相およびT相との接続を行うため、双方向スイッチStuをオフにし、双方向スイッチSru,Stwをオンにする。双方向スイッチSruはすでにオン状態にあるため、PWM信号発生部25は、双方向スイッチStwをオンにして、T相とW相を接続する。双方向スイッチStwは、PWM信号発生部25から出力されるPWM信号SP1によってオンにされる。これにより、第1リアクトルL1tに蓄積された磁気エネルギーが電気エネルギーとして第2コンデンサC2wに放出され、その結果、T相の電圧が昇圧されてW相へ出力される。
【0098】
また、PWM信号発生部25は、図9に示す区間cにおいて、中間出力相間電圧VomidにするU相およびV相に対して、中間入力相間電圧Vimidが入力されるR相およびS相との接続を行うため、双方向スイッチSsuをオフにし、双方向スイッチSru,Ssvをオンにする。双方向スイッチSruはすでにオン状態にあるため、PWM信号発生部25は、双方向スイッチSsvをオンにしてS相とV相を接続する。双方向スイッチSsvは、PWM信号発生部25から出力されるPWM信号SP2によってオンにされる。これにより、第1リアクトルL1sに蓄積されたエネルギーが電気エネルギーとして第2コンデンサC2vに放出され、結果として、S相の電圧が昇圧されてV相へ出力される。
【0099】
また、出力区間F0において、入力相電圧Vr,Vs,Vtが入力区間E1にある場合、中間入力相電圧VimであるS相電圧Vsが正電圧である。この場合、PWM信号発生部25は、出力相間電圧指令Aを選択し、最大出力相間電圧指令として出力相間電圧指令Vuw*を、中間出力相間電圧指令として出力相間電圧指令Vvw*をそれぞれ生成する。これにより、最大出力相間電圧Vohighとする相間がU相とW相との間になり、中間出力相間電圧Vomidとする相間がV相とW相との間になる。
【0100】
また、入力区間E1において、最大入力相間電圧Vihighは入力相間電圧Vrtであり、中間入力相間電圧Vimidは入力相間電圧Vstである。したがって、出力区間F0で、かつ入力区間E1の場合に、PWM信号発生部25はスイッチ制御処理を次のように行う。
【0101】
まず、PWM信号発生部25は、図9に示す区間aにおいて、双方向スイッチSrw,Ssw,Stwをオンにして、第1リアクトルL1r,L1sに磁気エネルギーを蓄積する。なお、双方向スイッチStwは、図9に示す全区間a〜eにおいてオン状態に維持される。
【0102】
次に、PWM信号発生部25は、図9に示す区間b〜dにおいて、最大出力相間電圧VohighにするU相およびW相に対して、最大入力相間電圧Vihighが入力されるR相およびT相との接続を行うため、双方向スイッチSrwをオフにし、双方向スイッチSru,Stwをオンにする。双方向スイッチStwはすでにオン状態にあるため、PWM信号発生部25は、双方向スイッチSruをオンにして、R相とU相を接続する。双方向スイッチSruは、PWM信号発生部25から出力されるPWM信号SP1によってオンにされる。これにより、第1リアクトルL1rに蓄積された磁気エネルギーが電気エネルギーとして第2コンデンサC2uに放出され、結果として、R相の電圧が昇圧されてU相へ出力される。
【0103】
また、PWM信号発生部25は、図9に示す区間cにおいて、中間出力相間電圧VomidにするV相およびW相に対して、中間入力相間電圧Vimidが入力されるS相およびT相との接続を行うため、双方向スイッチSswをオフにし、双方向スイッチSsv,Stwをオンにする。双方向スイッチStwはすでにオン状態にあるため、PWM信号発生部25は、双方向スイッチSrvをオンにしてR相とV相を接続する。双方向スイッチSrvは、PWM信号発生部25から出力されるPWM信号SP2によってオンにされる。これにより、第1リアクトルL1rに蓄積された磁気エネルギーが電気エネルギーとして第2コンデンサC2vに放出され、結果として、S相の電圧が昇圧されてV相へ出力される。
【0104】
また、PWM信号発生部25は、入力区間E2〜E11においても同様に、第1リアクトルL1に蓄積された磁気エネルギーを電気エネルギーとして第2コンデンサC2に放出して、入力相の電圧を昇圧して出力相へ出力する。
【0105】
このように、PWM信号発生部25は、入力相電圧間の大小関係および中間の入力相電圧の正負に応じてスイッチ制御処理の変更を行う。これにより、PWM信号発生部25は、最大出力相間電圧Vohighとする相間に対して最大入力相間電圧Vihighが入力される相との接続を行う双方向スイッチSをオンにし、中間出力相間電圧Vomidとする相間に対して中間入力相間電圧Vimidが入力される相との接続を行う双方向スイッチSをオンにすることができる。
【0106】
さらに、PWM信号発生部25は、入力区間や出力区間が切り替わる場合において、切り替え前後におけるスイッチ制御処理の変更を次のように行うことにより、昇圧動作を精度よく行う。なお、以下においては、Bモードにおける昇圧動作を例に、まず、入力区間の切り替わりについて具体的に説明した後、出力区間の切り替わりについて具体的に説明する。
【0107】
(入力区間の切り替わり)
PWM信号発生部25は、入力区間が切り替わる場合には、切り替え前の区間における双方向スイッチSの接続状態のうち切り替え後における双方向スイッチSの接続状態と一致する状態から行う。
【0108】
例えば、入力区間E0から入力区間E1への入力区間の切り替わりを考える。表7は、入力区間E0,E1において、出力電圧指令が出力区間F0にあるとき、オンにする双方向スイッチSを図9に示す区間a〜eに分けて表したものである。なお、表7の各枠において、「/」の左側に記載された双方向スイッチSが入力区間E0においてオンにする双方向スイッチSであり、「/」の右側に記載された双方向スイッチSが入力区間E1においてオンにする双方向スイッチSである。
【表7】

【0109】
上記表7に示すように、入力区間E0と入力区間E1とで、区間cの双方向スイッチSの状態が全て同一である。なお、表7において斜線が記載されている枠は、双方向スイッチSの状態が入力区間E0と入力区間E1とで同一であることを示す。
【0110】
したがって、PWM信号発生部25は、切り替え前の入力区間E0における双方向スイッチSの接続状態のうち切り替え後の入力区間E1における双方向スイッチSの接続状態と一致する区間cから行う。かかる制御を行うために、PWM信号発生部25は、例えば、表8に示すようなテーブルを用いる。
【表8】

【0111】
このように、PWM信号発生部25は、入力区間が切り替わる場合には、切り替え前の区間における双方向スイッチSの接続状態のうち切り替え後における双方向スイッチSの接続状態と一致する状態から行う。かかる処理によって、マトリクスコンバータ1は、昇圧動作を精度よく行うことができる。
【0112】
さらに、例えば、出力電圧指令が出力区間F0にあるとき、入力区間E1から入力区間E2への入力区間の切り替わりを考える。表9は、入力区間E1,E2においてオンにする双方向スイッチSを図9に示す区間a〜eに分けて表したものである。なお、表9の各枠において、「/」の左側に記載された双方向スイッチSが入力区間E1においてオンにする双方向スイッチSであり、「/」の右側に記載された双方向スイッチSが入力区間E2においてオンにする双方向スイッチSである。
【表9】

【0113】
上記表9に示すように、入力区間E1と入力区間E2とで、区間a,eの双方向スイッチSの状態が全て同一である。したがって、PWM信号発生部25は、双方向スイッチSの接続状態を負荷3側へ電圧を出力しない状態から電圧を出力する状態に変更するときに行う。負荷3側へ電圧を出力しない状態は、第1リアクトルL1に蓄積したエネルギーを放出する区間であり、かかる区間へ移行するタイミングで入力区間に応じた双方向スイッチSの切り替えを行うことで、昇圧動作を精度よく行うことができる。
【0114】
例えば、入力区間E1から入力区間E2への入力区間の切り替わりの場合、入力区間E1の区間aから入力区間E2の区間bへ移行するタイミングで、入力区間E1に対するスイッチ制御処理から入力区間E2に対するスイッチ制御処理への変更を行う。かかる制御を行うために、PWM信号発生部25は、例えば、表10に示すようなテーブルを用いる。
【表10】

【0115】
また、PWM信号発生部25は、双方向スイッチSの接続状態を負荷3側へ電圧を出力する状態から電圧を出力しない状態に変更するときに行うこともできる。負荷3側へ電圧を出力しない状態は、第1リアクトルL1に磁気エネルギーを蓄積する区間であり、かかる区間へ移行するタイミングで入力区間に応じた双方向スイッチSの切り替えを行うことで、昇圧動作を精度よく行うことができる。
【0116】
例えば、出力電圧指令が出力区間F0にあるとき、入力区間E1から入力区間E2への入力区間の切り替わりの場合、入力区間E1の区間dから入力区間E2の区間eへ移行するタイミングで、入力区間E1に対するスイッチ制御処理から入力区間E2に対するスイッチ制御処理への変更を行う。かかる制御を行うために、PWM信号発生部25は、例えば、表11に示すようなテーブルを用いる。
【表11】

【0117】
以上のように、マトリクスコンバータ1のPWM信号発生部25は、入力区間が切り替わる場合、区間a〜区間eのうち昇圧動作への影響が少ない区間を選択して入力区間に対応する双方向スイッチSの状態への切り替えを行う。このためにPWM信号発生部25は、入力区間切替用として、入力区間の切り替わり12通りのそれぞれに対して、出力電圧指令の区間である出力区間F0〜F5の6通りについて、合計72個のテーブルを有する。これにより、昇圧動作を精度よく行うことができる。
【0118】
(出力区間の切り替わり)
また、上述においては、入力区間が切り替わる場合の例を説明したが、出力区間が切り替わる場合も、同様に、区間a〜区間eのうち昇圧動作への影響が少ない区間を選択してスイッチ制御処理の変更を行う。
【0119】
ここで、出力区間F1における出力電圧指令と入力区間E0,E1の関係を表12に示す。
【表12】

【0120】
PWM信号発生部25は、出力区間を切り替える場合には、切り替え前の出力区間における双方向スイッチSの接続状態のうち切り替え後の出力区間における双方向スイッチSの接続状態と一致する状態から行う。
【0121】
例えば、入力区間E1において、出力区間F0から出力区間F1への出力区間の切り替わりを考える。この場合、各出力区間F0,F1においてオンにする双方向スイッチSを図9に示す区間a〜eに分けて表13に示す。なお、表13の各枠では、上記表7と同様に、「/」の左側に記載された双方向スイッチSが出力区間F0においてオンにする双方向スイッチSであり、「/」の右側に記載された双方向スイッチSが出力区間F1においてオンにする双方向スイッチSである。
【表13】

【0122】
入力区間E1において、出力区間F0から出力区間F1への切り替わりの場合、上記表13に示すように、出力区間F0と出力区間F1とで、区間a,eの双方向スイッチSの状態が全て同一である。なお、表13において斜線が記載されている枠は、双方向スイッチSの状態が出力区間F0と出力区間F1とで同一であることを示す。
【0123】
したがって、PWM信号発生部25は、入力区間E1において、出力区間F0から出力区間F1への出力区間の切り替えを行う場合、切り替え前の出力区間F0における区間aから切り替え後の出力区間F1における区間bへ移行する。また、PWM信号発生部25は、切り替え前の出力区間F0における区間dから切り替え後の出力区間F1における区間eへ移行することもできる。なお、PWM信号発生部25は、かかる制御を行うために、上述の場合と同様に、出力区間切替用として、出力区間の切り替わり6通りのそれぞれに対して、入力電圧の区間である入力区間E0〜E11の12通りについて、合計72個のテーブルを有している。
【0124】
なお、出力区間の切り替わりの場合も、入力区間の切り替わりの場合と同様に、出力区間によっては、切り替わりの前後で、電圧を出力する状態での双方向スイッチSの接続状態と一致する出力区間もある。このような出力区間では、PWM信号発生部25は、負荷3側へ電圧を出力する状態から電圧を出力しない状態に変更するときに出力区間の切り替えを行う。また、PWM信号発生部25は、負荷3側へ電圧を出力しない状態から電圧を出力する状態へ変更する際に出力区間の切り替えを行うこともある。
【0125】
(降圧動作および昇圧動作間の切り替わり)
上述においては、Bモードにおいて、入力区間や出力区間が切り替わる場合において、スイッチ制御処理の変更を所定のタイミングで行うことについて説明したが、降圧動作から昇圧動作へ移行する際も、スイッチ制御処理の変更を所定のタイミングで行うことができる。以下、この点について具体的に説明する。
【0126】
ここでは、一例として、入力区間E1でかつ出力区間F0である場合に、AモードからBモードへ切り替えるスイッチ制御処理について説明する。表14は、出力区間F0における出力電圧指令と入力区間E0,E1との関係を示す。
【表14】

【0127】
PWM信号発生部25は、降圧動作から昇圧動作へ切り替える場合には、切り替え前の区間における双方向スイッチSの接続状態のうち切り替え後の区間における双方向スイッチSの接続状態と一致する状態から行う。
【0128】
例えば、入力区間E0でかつ出力区間F0にある場合に、AモードおよびBモードにおいてオンにする双方向スイッチSを図9に示す区間a〜eに分けて表15に示す。なお、表15の各枠では、上記表7と同様に、「/」の左側に記載された双方向スイッチSがAモードにおいてオンにする双方向スイッチSであり、「/」の右側に記載された双方向スイッチSがBモードにおいてオンにする双方向スイッチSである。
【表15】

【0129】
入力区間E0でかつ出力区間F0にある状態で、AモードからBモードへ切り替わる場合、上記表15に示すように、AモードとBモードとで、区間cの双方向スイッチSの状態が全く同一である。なお、表15において斜線が記載されている枠は、双方向スイッチSの状態がAモードとBモードとで同一であることを示す。
【0130】
したがって、PWM信号発生部25は、AモードからBモードへ切り替える場合には、切り替え前のAモードにおける双方向スイッチSの接続状態のうち切り替え後のBモードにおける双方向スイッチSの接続状態と一致する区間cから行う。
【0131】
かかる制御を行うために、PWM信号発生部25は、例えば、表16に示すようなテーブルを用いる。なお、PWM信号発生部25は、AモードからBモードへの切り替えを、上記表2に従って、区間cの開始時から区間dの開始時までの間に行う。
【表16】

【0132】
かかる制御は、例えば、入力区間E0でかつ出力区間F0にある状態で、BモードからAモードへ切り替わる場合も同様である。この場合、PWM信号発生部25は、例えば、表17に示すようなテーブルを用いる。なお、PWM信号発生部25は、BモードからAモードの切り替えを、下記表17に従って、区間cの開始時から区間dの開始時までの間に行う。
【表17】

【0133】
このように、PWM信号発生部25は、降圧動作から昇圧動作へ切り替わる場合およびその逆の場合に、テーブルに従い、切り替え前の区間における双方向スイッチSの接続状態のうち切り替え後における双方向スイッチSの接続状態と一致する状態から行う。PWM信号発生部25は、このような昇圧動作と降圧動作の必要なテーブルを、入力区間E0〜E11の12通りと出力区間F0〜F5の6通りにより決まる72通りの場合について、各々昇圧→降圧切替用と降圧→昇圧切替用との2つずつ、合計144個有している。かかる処理によって、マトリクスコンバータ1は、降圧動作から昇圧動作への移行を迅速に行うことができる。
【0134】
また、上述においては、Bモードに関するスイッチ制御処理について説明したが、PWM信号発生部25は、Dモードに関するスイッチ制御処理も同様に行う。これにより、Dモードにおいて、昇圧動作を精度よく行うことができる。また、CモードからDモードへの移行やそのDモードからCモードへの移行を迅速に行うことができる。
【0135】
また、PWM信号発生部25は、AモードやCモードに関するスイッチ制御処理についても、BモードやDモードに関するスイッチ制御処理と同様に行う。これにより、各モードでのスイッチ制御処理を同様に行うことができることから、スイッチ制御処理が全体として複雑になることを回避することができる。
【0136】
以上のように、実施例に係るマトリクスコンバータ1の制御部20は、出力相間電圧のうち最大の相間電圧にする相に対しては、入力相間電圧のうち最大の相間電圧が入力される相との接続を行う双方向スイッチSをオンにする。また、制御部20は、出力相間電圧のうち中間の相間電圧にする相に対しては、入力相間電圧のうち中間の相間電圧が入力される相との接続を行う双方向スイッチSをオンにする。これにより、双方向スイッチSの制御を容易に行うことができる。
【0137】
また、制御部20は、出力方向電力変換の場合、入力側の相電圧間の大小関係および入力側の中間の相電圧の正負に応じてスイッチ制御処理の変更を行う。そして、制御部20は、スイッチ制御処理の変更を、変更前における双方向スイッチSの接続状態のうち変更後における双方向スイッチSの接続状態と一致する状態から行う。これにより、例えば、昇圧動作の場合には、昇圧制御を精度よく行うことができる。
【0138】
また、制御部20は、入力方向電力変換の場合、出力側の相電圧間の大小関係および出力側の中間の相電圧の正負に応じてスイッチ制御処理の変更を行い、かつ、スイッチ制御処理の変更を、変更前における双方向スイッチSの接続状態のうち変更後における双方向スイッチSの接続状態と一致する状態から行う。これにより、例えば、昇圧動作の場合には、昇圧制御を精度よく行うことができる。
【0139】
さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細及び代表的な実施例に限定されるものではない。したがって、添付の特許請求の範囲及びその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
【符号の説明】
【0140】
1 マトリクスコンバータ
2 交流電源
3 負荷
4 設定器
10 電力変換部
11 入力側リアクトル群
12 入力側コンデンサ群
13 入力側スイッチ(第1スイッチ)
14 出力側リアクトル群
15 出力側コンデンサ群
16 出力側スイッチ(第2スイッチ)
20 制御部
C1r,C1s,C1t,C1 第1コンデンサ
C2u,C2v,C2w,C2 第2コンデンサ
L1r,L1s,L1t,L1 第1リアクトル
L2u,L2v,L2w,L2 第2リアクトル
Sru,Ssu,Stu,Srv,Ssv,Stv,Srw,Ssw,Stw,S 双方向スイッチ

【特許請求の範囲】
【請求項1】
交流電源の各相と負荷の各相とを接続する複数の双方向スイッチを備えた電力変換部と、
前記複数の双方向スイッチを制御する制御部と、を備え、
前記制御部は、
負荷側相間電圧のうち最大の相間電圧を、前記最大の相間電圧に対する相と交流電源側相間電圧のうち最大の相間電圧が入力される相との接続を行う前記双方向スイッチを制御して生成し、前記負荷側相間電圧のうち中間の相間電圧を、前記中間の相間電圧に対する相と前記交流電源側相間電圧のうち中間の相間電圧が入力される相との接続を行う前記双方向スイッチを制御して生成することを特徴とするマトリクスコンバータ。
【請求項2】
前記制御部は、
前記交流電源側の相電圧間の大小関係および前記交流電源側の中間の相電圧の正負に応じて前記双方向スイッチの接続制御処理の変更を行い、かつ、前記接続制御処理の変更を、前記変更前における前記双方向スイッチの接続状態のうち前記変更後における前記双方向スイッチの接続状態と一致する状態から行うことを特徴とする請求項1に記載のマトリクスコンバータ。
【請求項3】
前記制御部は、
前記負荷側の相電圧間の大小関係および前記負荷側の中間の相電圧の正負に応じて前記双方向スイッチの接続制御処理の変更を行い、かつ、前記接続制御処理の変更を、前記変更前における前記双方向スイッチの接続状態のうち前記変更後における前記双方向スイッチの接続状態と一致する状態から行うことを特徴とする請求項1又は2に記載のマトリクスコンバータ。
【請求項4】
前記交流電源の各相と前記電力変換部との間にそれぞれ接続される複数の第1リアクトルと、
前記負荷の各相と前記電力変換部との間にそれぞれ接続された複数の第2リアクトルと、
前記電力変換部の交流電源側の各相間を、第1スイッチを介して接続する複数の第1コンデンサと、
前記電力変換部の負荷側の各相間を、第2スイッチを介して接続する複数の第2コンデンサと、
を備え、
前記制御部は、
前記第1スイッチ、前記第2スイッチおよび前記双方向スイッチを制御して、前記交流電源側と前記負荷側との間の昇圧動作および降圧動作を行うことを特徴とする請求項1又は2に記載のマトリクスコンバータ。
【請求項5】
前記制御部は、
前記負荷側の相電圧間の大小関係に応じて前記双方向スイッチの接続制御処理の変更を行い、かつ、前記接続制御処理の変更を、前記変更前における前記双方向スイッチの接続状態のうち前記変更後における前記双方向スイッチの接続状態と一致する状態から行うか、又は前記双方向スイッチの接続状態を負荷側に電圧を出力しない状態から電圧を出力する状態に変更するときに行うか、又は前記双方向スイッチの接続状態を負荷側に電圧を出力する状態から電圧を出力しない状態に変更するときに行うことを特徴とする請求項4に記載のマトリクスコンバータ。
【請求項6】
前記制御部は、
前記第1スイッチおよび前記第2スイッチのうち、昇圧側に接続されたスイッチをオンし、降圧側に接続されたスイッチをオフすることを特徴とする請求項4又は5に記載のマトリクスコンバータ。
【請求項7】
前記制御部は、
前記昇圧動作および前記降圧動作のうち一方の動作から他方の動作への変更を、前記双方向スイッチの接続状態を前記負荷側に電圧を出力する状態から電圧を出力しない状態に変更するときに行うことを特徴とする請求項4に記載のマトリクスコンバータ。
【請求項8】
前記制御部は、
前記交流電源側相間電圧のうち最大の相間電圧および前記交流電源側相間電圧のうち中間の相間電圧を、前記交流電源側の相電圧の位相に、所定の位相差を加算した位相に基づき選択することを特徴とする請求項1に記載のマトリクスコンバータ。
【請求項9】
前記制御部は、
前記交流電源側の相電圧間の大小関係および中間の相電圧の正負を、前記交流電源側の相電圧の位相に、所定の位相差を加算した位相に基づき判定することを特徴とする請求項2又は4に記載のマトリクスコンバータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate