説明

マトリックスコンバータ制御装置

【課題】三相交流電源を入力し、任意の振幅および周波数の三相交流電源を得る電力変換器であるマトリックスコンバータにおいて、より過変調になりにくく、歪の少ない三相交流出力を得る。
【解決手段】マトリックスコンバータにおいて、三角波キャリアと比較される出力電圧指令値の内、最大のものと最小のものの差が最小になるように、三相電源電圧のうちの中間相電圧を出力する比率を演算して指令値に用いることによって、より過変調になりにくく、歪の少ない三相交流出力を得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マトリックスコンバータの制御技術に関するもので、特に出力電圧の歪抑制に関する。
【背景技術】
【0002】
従来のマトリックスコンバータとその制御器構成図を図2に示す。マトリックスコンバータ2は三相電源1を入力とし、9つのスイッチにより負荷3に任意の振幅および周波数の三相電源を供給するものである。マトリックスコンバータ制御装置4は、電源電圧検出器34出力の電源電圧と電流検出器33出力の負荷3に流入する電流とを入力して、マトリックスコンバータ2の9つのスイッチを制御する信号を出力する。
【0003】
電源電圧位相検出器42は、電源電圧検出器34出力の電源電圧を入力して、電源電圧の位相θdと相電圧振幅Vdを求めて出力する。基準キャリア比較信号発生器45は、任意の電圧指令Vus,Vvs,Vwsと電源電圧位相検出器42出力の電源電圧の位相θdと振幅Vdを入力して、基準キャリア比較信号Vuc,Vvc,Vwcを
Vuc=Vus・A/emax (1)
Vvc=Vvs・A/emax (2)
Vwc=Vws・A/emax (3)
の演算で求めて出力する。ここでAは、キャリア発生器41出力の三角波キャリアの振れ幅であり、emaxは、三相電源1の三相電源電圧の内で最大のもの(以下最大相)と最小のもの(以下最小相)との電位差であり、電源電圧位相検出器42出力の電源電圧の位相θdと振幅Vdから求められ、例えば図3に示されるようになる。
【0004】
中間相電流指令演算器43は、任意の電圧指令Vus,Vvs,Vwsと電流検出器33出力の負荷3に流入する電流Iu,Iv,Iwを入力して、まず
Po=Vus・Iu+Vvs・Iv+Vws・Iw (4)
の演算で負荷3への出力電力Poを求める。ここで、マトリックスコンバータ2は負荷3へ任意の電圧指令Vus,Vvs,Vws通りの電圧が印加できているとしている。そして、前記出力電力Poを三相電源1が供給する際に、三相電源1の三相電源電圧の内で中間の電圧である相(以下中間相)に流すべき電流Icを求めて出力する。例えば図4のようになる。
【0005】
中間相接続率演算器48は、中間相電流指令演算器43出力IcとIu,Iv,Iwを入力して、各出力相を電源の中間相に接続する時間比率Ku’,Kv’,Kw’を求めて出力する。IxがIcと同符号の場合はKx’=Ic/Isumであり、異符号の場合はKx’=0とする。ここでxはu,v,wで表される出力相を意味し、IsumはIu,Iv,Iwの内でIcと同符号のものの総和である。例えばIc>0,Iu>0,Iv<0,Iw<0ならば、Ku’=Ic/Iu,Kv’=Kw’=0となる。またIc<0,Iu>0,Iv<0,Iw<0ならば、Ku’=0,Kv’=Kw’=Ic/(Iv+Iw)となる。このように、Icと同符号の出力相が2つある場合は、それらの相の中間相接続率は等しい値となる。
【0006】
キャリア比較信号生成器46は、基準キャリア比較信号発生器45出力と中間相接続率演算器48出力を入力して
VxH=Vxc+A・Kx’・G (5)
VxL=VxH−A・Kx’ (6)
でキャリアと比較する信号を求めて出力する。ここでxはu,v,wで表される出力相を意味し、Gは
G=1−emid/emax (7)
であり、emidは三相電源電圧の内で中間のもの(中間相)と最小のもの(最小相)との電位差であり、電源電圧の位相θdより得ることができ、例えば図5のようになる。
【0007】
キャリア発生器41は、振れ幅Aの三角波キャリアCを出力し、比較器47はその三角波キャリアCとキャリア比較信号生成器46の出力とを比較した結果としてFxを出力する。ここでxはu,v,wで表される出力相を意味する。C<VxLならばFx=0、VxL<C<VxHならばFx=1、VxH<CならばFx=2となり、Fx=0は、出力のx相を三相電源1の最大相に接続することを意味し、Fx=1は、出力のx相を三相電源1の中間相に接続することを意味し、Fx=2は、出力のx相を三相電源1の最小相に接続することを意味する。
【0008】
スイッチ制御器50は、比較器47の出力と位相θdに応じたスイッチング信号をマトリックスコンバータに出力する。例えばFu=0,0<θd<60ならば、u相は電源の最大相であるR相に接続することになるので、SuR=ON,SuS=SuT=OFFとなる。
【0009】
この様な構成とすることで、負荷3に印加される電圧は、電圧指令Vus,Vvs,Vws通りとなり、電源電流波形も例えば正弦波とすることができ、電源力率も例えば1とすることができるようになる。(たとえば、非特許文献1参照。)
【非特許文献1】中小路元、小林広介、佐藤之彦 他著:「マトリックスコンバータの入出力電流を正弦波化するPWM制御方式の提案」、電気学会半導体電力変換研究会論文No.SPC−03−36、61〜66頁
【発明の開示】
【発明が解決しようとする課題】
【0010】
従来の技術では、Icと同符号の出力相が2つある場合は、それらの相の中間相接続率は等しいとしているが、等しくしなければならない根拠はない。一方、キャリアと比較される6つの信号VuH,VuL,VvH,VvL,VwH,VwLがキャリアの振れ幅の外に出る(以下過変調状態と表現する)と指令通りの電圧をマトリックスコンバータが出力できなくなるので、なるべく上記6つの信号の最大のものと最小のものとの差は小さい方が望ましい。例えばIc=10A,Iu=80A,Iv=20Aの場合、Kw=0,Ku=Kv=10/(80+20)=0.1となり、v相の電流はIcを流すためにあまり役に立っていないにも関わらずu相と同じ時間率だけ中間相に接続することとなりVvHを大きくしてしまう。もしVvc>Vuc>Vwcならば、上記6つの信号の最大のものがVvHとなるので上記6つの信号の最小のものとの差が大きくなり過変調状態となる恐れがある。Ic=Ku・Iu+Kv・Ivが満たされていればKu=Kvである必要はないので例えばKu=0.12,Kv=0.02でも問題なく、そうするとVvHがあまり大きくならず上記6つの信号の最大のものと最小のものとの差が大きくならずに過変調状態となる恐れも小さくなる。
【0011】
つまり本発明が解決しようとする課題は、Icと同符号の出力相が2つある場合にそれらの相の中間相接続率を等しいとしていることで、過変調状態となる可能性が高められて、マトリックスコンバータが出力できる電圧が低くなっていることである。
【課題を解決するための手段】
【0012】
上記問題点を解決するために、三相電源1と負荷3とを、9つのスイッチからなるマトリックスコンバータ2で接続した主回路構成で、前記マトリックスコンバータ2が前記負荷3に出力する電流を検出する電流検出器33と、前記三相電源1の電圧を検出する電源電圧検出器34と、前記電圧検出器34の出力を入力して電源電圧の位相と大きさを求めて出力する電源電圧位相検出器42と、前記電源電圧位相検出器42の出力と各相の出力電圧指令と前記電流検出器33の出力とを用いて前記三相電源1の3つの電源電圧の中で中間の電圧状態である相である中間相に流すべき電流である中間相電流指令を演算して出力する中間相電流指令演算器43と、前記中間相電流指令演算器43の出力と前記電流検出器33の出力とを入力して、前記マトリックスコンバータ2の各出力相を前記中間相に接続する時間比率を求める中間相接続率演算器44と、前記電源電圧位相検出器42の出力と前記マトリックスコンバータ2が出力すべき各相の出力電圧指令を入力して前記マトリックスコンバータ2の各相の出力電圧が前記各相の出力電圧指令に一致するようなキャリア比較信号を出力する基準キャリア比較信号発生器45と、前記基準キャリア比較信号発生器45の出力と前記中間相接続率演算器44の出力を入力して6つのキャリア比較信号を出力するキャリア比較信号生成器46と、キャリアを生成するキャリア発生器41と、前記キャリア比較信号生成器46の出力と前記キャリア発生器41との出力を比較して出力する比較器47と、前記比較器47の出力と前記電源電圧位相検出器42の出力の電源電圧の位相とを入力して前記マトリックスコンバータ2のスイッチを制御する信号を出力するスイッチ制御器50とからなるマトリックスコンバータ制御装置において、前記キャリア比較信号生成器46出力の6つの信号の中で最大のものと最小のものとの差を最小とするように前記中間相接続率演算器44の出力を求めるマトリックスコンバータ制御装置を実装する。
【発明の効果】
【0013】
電源電流の波形を正弦波で電源力率1を保った状態で、マトリックスコンバータの出力可能電圧を上げることができる。
【発明を実施するための最良の形態】
【0014】
マトリックスコンバータの出力可能電圧を上げる目的を、電源特性の性能低下を招くことなく、部品を追加することなく、中間相に接続する時間率の計算方法を変えるだけで実現した。
【実施例1】
【0015】
図1によって、実施例を示す。本発明の主体は発明の中間相接続率演算器44なので、従来と同じ技術については説明を省略する。発明の中間相接続率演算器44には出力電流Iu、Iv、Iwと基準キャリア比較信号発生器45の出力であるVuc、Vvc、Vwcと中間相電流指令演算器43の出力であるIcを入力する。電源中間相電流指令値Icと同符号の出力電流の相がuとvである場合を例に説明する。キャリア信号Cの振幅を0から1(つまりA=1)として、U=(Vuc/Emax)、V=(Vvc/Emax)、W=(Vwc/Emax)、G=(1−emid/emax)、とすると、キャリア比較信号生成器46内で演算されるキャリア比較信号は、(9)式から(14)式のように演算される。
VuH=U+Ku・G (8)
VuL=U−Ku・(1−G) (9)
VvH=V+Kv・G (10)
VvL=V−Kv・(1−G) (11)
VwH=W+Kw・G (12)
VwL=W−Kw・(1−G) (13)
【0016】
ここで、中間相接続率演算器44において電源中間相電流指令値Icと異符号の出力電流の相の中間相接続率Kwは0とするので、VwH=VwL=Wである。またKuとKvと電源中間相電流指令値Icは(14)式を満たす必要がある。
Ic=Ku・Iu+Kv・Iv (14)
まず、VuH、VuL、VvH、VvLの4つの信号の最大信号と最小信号の差が最小となるKuおよびKvを算出する。たとえばU>Vであるとするなら、
VuH≧VvH (15)
VuL≧VvL (16)
なので、(14)式を代入すると
Kv≦Iu・(U−V)/(G・(Iu+Iv))+Ic/(Iu+Iv) (17)
Ku≦Iv・(U−V)/((1−G)・(Iu+Iv))+Ic/(Iu+Iv)(18)
を満たす必要があり、また(14)式より
Kv≦Ic/Iv (19)
Ku≦Ic/Iu (20)
であり、VuH、VuL、VvH、VvLの4つの信号の最大信号と最小信号の差
VuH−VvL=U+Ku・G−V+Kv・(1−G) (21)
を最小とするには
G≧(1−G)・Iu/IvならばKu≧0,(19)かつ(17)式を満たせばよい。また、G≦(1−G)・Iu/IvならばKv≧0,(20)かつ(18)式を満たせばよい。
ここまでで得られたKuとKvで仮のVuH、VuL、VvH、VvLを求めて、それらをVuH’、VuL’、VvH’、VvL’とする。
【0017】
次にVuH’、VvL’、Wの3つの信号の最大信号と最小信号の差が最小となるKuおよびKvを算出する。
W>VuH’の場合は、VuHがWを超えない範囲でKuを大きくできるので、その条件である
Ku≦(W−VuH’)/G (22)
と(18)式と(20)式を満たす最大の値とすればよい。その時のKvは、(14)式より求める。
W<VvL’の場合は、VvLがWを下回らない範囲でKvを大きくできるので、その条件である
Kv≦(VvL’−W)/(1−G) (23)
と(17)式と(19)式を満たす最大の値とすればよい。その時のKuは、(14)式より求める。
【0018】
以上で電源中間相電流指令値Icと同符号の出力電流の相がuとvであり、U>Vの場合において、6つのキャリア比較信号の最大のものと最小のものとの差が最小となるKuとKvを得ることができる。なお、U<Vの場合や、中間相電流指令値Icと同符号の出力電流の相がvとwだった場合やuとwだった場合についても同様の演算をする。以上の演算を発明の中間相接続率演算器44にて行うことで、キャリア比較信号生成器46の出力である6つのキャリア比較信号の最大信号と最小信号の差が最小になる2つの中間相接続率の組み合わせが演算できる。本発明により、(8)式から(13)式のキャリア比較信号はキャリア振幅Aに収まりやすくなり、過変調になりにくくなるので本発明はマトリックスコンバータの出力可能電圧の向上に有効であるといえる。
【産業上の利用可能性】
【0019】
本発明は従来のマトリックスコンバータと比較して、歪みの少ない出力を得られるものであり、昇降機、エレベータ、エスカレータ、遠心分離機、ビルおよび研究所の電源設備に応用が可能である。
【図面の簡単な説明】
【0020】
【図1】図1は本発明のマトリックスコンバータ制御装置を示す図である。
【図2】図2は従来のマトリックスコンバータ制御装置を示す図である。
【図3】図3は入力電源電圧と位相の関係を説明するための図である。
【図4】図4は力率1での中間相電流指令値と位相の関係を説明するための図である。
【図5】図5は変数Gと位相の関係を説明するための図である。
【符号の説明】
【0021】
1:三相電源
2:マトリックスコンバータ
3:負荷
33:電流検出器
34:電源電圧検出器
4:マトリックスコンバータ制御装置
41:キャリア発生器
42:電源電圧位相検出器
43:中間相電流指令演算器
44:発明の中間相接続率演算器
45:基準キャリア比較信号発生器
46:キャリア比較信号生成器
47:比較器
48:従来技術の中間相接続率演算器
50:スイッチ制御器


【特許請求の範囲】
【請求項1】
三相電源(1)と負荷(3)とを、9つのスイッチからなるマトリックスコンバータ(2)で接続した主回路構成で、該マトリックスコンバータ(2)が前記負荷3に出力する電流を検出する電流検出器(33)と、該三相電源(1)の電圧を検出する電源電圧検出器(34)と、該電圧検出器(34)の出力を入力して電源電圧の位相と大きさを求めて出力する電源電圧位相検出器(42)と、該電源電圧位相検出器(42)の出力と各相の出力電圧指令と該電流検出器(33)の出力とを用いて前記三相電源(1)の3つの電源電圧の中で中間の電圧状態である相である中間相に流すべき電流である中間相電流指令を演算して出力する中間相電流指令演算器(43)と、該中間相電流指令演算器(43)の出力と前記電流検出器(33)の出力とを入力して、前記マトリックスコンバータ(2)の各出力相を前記中間相に接続する時間比率を求める中間相接続率演算器(44)と、該電源電圧位相検出器(42)の出力と前記マトリックスコンバータ(2)が出力すべき各相の出力電圧指令とを入力して前記マトリックスコンバータ(2)の各相の出力電圧が前記各相の出力電圧指令に一致するようなキャリア比較信号を出力する基準キャリア比較信号発生器(45)と、該基準キャリア比較信号発生器(45)の出力と該中間相接続率演算器(44)の出力を入力して6つのキャリア比較信号を出力するキャリア比較信号生成器(46)と、キャリアを生成するキャリア発生器(41)と、該キャリア比較信号生成器(46)の出力と該キャリア発生器(41)との出力を比較して出力する比較器(47)と、該比較器(47)の出力と前記電源電圧位相検出器(42)の出力の電源電圧の位相とを入力して前記マトリックスコンバータ(2)のスイッチを制御する信号を出力するスイッチ制御器(50)とからなるマトリックスコンバータ制御装置において、
前記キャリア比較信号生成器(46)出力の6つの信号の中で最大のものと最小のものとの差を最小とするように前記中間相接続率演算器(44)の出力を求めることを特徴とするマトリックスコンバータ制御装置。










【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate