説明

リチウムイオン二次電池および二次電池システム

【課題】マンガン酸化物を正極活物質として用いたリチウムイオン二次電池に対し、高温貯蔵した際の前記正極活物質からのマンガンの溶出を抑制し、前記リチウムイオン二次電池の容量低下や抵抗上昇、寿命減少を抑制する。
【解決手段】リチウムイオン二次電池は、正極活物質として少なくともマンガン酸化物を有する正極と、リチウムを吸蔵放出可能な負極と、リチウム塩を含有する非水系溶媒からなる電解液とを有しており、前記電解液の質量をA(g)、前記マンガン酸化物の質量をB(g)とするとき、C = A/Bの値が0.96以上8.50以下であることを特徴としている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リチウムイオン二次電池および二次電池システムに関する。
【背景技術】
【0002】
電子機器の電源として、小型化・軽量化が期待される二次電池としてリチウムイオン二次電池が期待されている。これらのリチウムイオン二次電池の正極活物質としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)等のリチウムを含有する金属酸化物が検討され、実用化されている。
【0003】
しかしながら、近年、電池の低コスト化への要求が高まるにつれ、安価な材料を用いて長寿命化する技術開発が要求されている。
【0004】
そのために、正極材料としては、資源的に豊富であり安価であり、過充電などの濫用時においても熱的に安定であるとの特長を有していることから、マンガン酸リチウム(LiMn)が注目されている。
【0005】
しかしながら、マンガン酸リチウムは、電解液中に存在するフッ化水素(HF)などによりマンガン(Mn)が溶出するなどの問題から、電池を50℃以上で保持した際や充放電サイクルを行った際に容量の低下や抵抗の上昇などが発生し、寿命特性に関して課題があった。
【0006】
マンガン酸リチウムの充放電特性を改善させるために、これまでさまざまな検討がなされている。
【0007】
特許文献1及び特許文献2においては、マンガン酸リチウムに層状系リチウムマンガン酸化物を混合する手法が提案されている。
【0008】
すなわち、特許文献1には、リチウムマンガン複酸化物を正極活物質の主体とするリチウムイオン二次電池において、前記リチウムマンガン複酸化物は結晶構造が異なる2種以上のリチウムマンガン複酸化物を含み、かつ、前記正極の可逆容量が負極の可逆容量以下であるリチウムイオン二次電池が開示されている。このリチウムイオン二次電池によれば、充電時の負極の負担を軽減し、負極の劣化を抑制することができると記載されている。
【0009】
また、特許文献2には、正極シートと負極シートとがセパレータ及び非水系電解液を介して形成される電極群と、前記電極群を収容するラミネート状の外装ケースと、前記正極シート及び前記負極シートのそれぞれに接続される正極リード及び負極リードと、を有するリチウムイオン二次電池において、前記正極シートに形成される正極に使用される正極活物質は、スピネル系リチウムマンガン酸化物及び層状系リチウムマンガン酸化物を含有し、前記電解液は、カーボネート系の非水系溶媒にリチウム塩を溶解させた非水系溶液に、ホウ素を含有するリチウム化合物(LiBFを除く)を有する非水系二次電池が開示されている。この非水系二次電池は、ホウ素を含有するリチウム化合物を添加することにより、パルス充放電における出力の維持率を高くすることができると記載されている。
【0010】
一方、特許文献3には、マンガン酸リチウムを用いた電池について、放電容量あたりの電解液量を規定する手法が提案されている。すなわち、正極活物質にスピネル構造のリチウムマンガン複合酸化物、負極活物質に炭素材料を用いて、放電容量1Ah当たり6g〜8gの電解液を備えた非水二次電池が開示されている。この非水二次電池は、電池容量が10Ah以上で、10C放電で使用できる電池においても、室温で1000サイクル以上の寿命性能を有する電池の作製が可能となると記載されている。
【0011】
さらに、特許文献4には、マンガン酸リチウムを用いた電池について、正極活物質の重量と電池缶内の空隙部の体積を規定する手法が提案されている。すなわち、正極にマンガンを含んだリチウム酸化物、負極に炭素素材を用いたリチウムイオン二次電池において、正極活物質の質量1グラムあたり電池缶内の空隙部の体積0.10ミリリットル以上0.20ミリリットル以下にしたリチウムイオン二次電池が開示されている。このリチウムイオン二次電池は、充放電過程や高温状態での保存時に電池缶が膨れるという現象を抑制する。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2003−36846号公報
【特許文献2】特開2007−165111号公報
【特許文献3】特開2003−346906号公報
【特許文献4】特開平11−265731号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明は、マンガン酸化物を正極活物質として用いたリチウムイオン二次電池に対し、高温貯蔵した際の前記正極活物質からのマンガンの溶出を抑制し、前記リチウムイオン二次電池の容量低下や抵抗上昇、寿命減少を抑制することを目的とする。
【課題を解決するための手段】
【0014】
上記課題を解決する本発明のリチウムイオン二次電池は、正極活物質として少なくともマンガン酸化物を有する正極と、リチウムを吸蔵放出可能な負極と、リチウム塩を含有する非水系溶媒からなる電解液とを有し、前記電解液の質量をA(g)、前記マンガン酸化物の質量をB(g)とするとき、C = A/Bの値が0.96以上8.50以下であることを特徴とする。
【発明の効果】
【0015】
本発明によれば、高温貯蔵時におけるマンガンの溶出が抑制され、長寿命であるリチウムイオン二次電池を提供することが可能となる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0016】
【図1】本発明による実施例および比較例におけるマンガン酸化物質量あたりの電解液質量とマンガン酸化物質量あたりの溶出マンガン質量の評価結果を示すグラフ。
【図2】本発明によるリチウムイオン二次電池を一部断面により模式的に示す概略図。
【図3】本発明によるリチウムイオン二次電池を搭載した二次電池システムを示す図。
【図4】本発明によるリチウムイオン二次電池について、低温部用と高温部用のリチウムイオン二次電池を搭載した二次電池システムを示す図。
【発明を実施するための形態】
【0017】
本発明は、寿命特性に優れたリチウムイオン二次電池の活物質質量と電解液質量の比に関するものである。
【0018】
本発明は、安価で熱安定性の高いマンガン酸化物をリチウムイオン二次電池の正極活物質として適用するために、用いる電解液の量を規定している。これにより、高温貯蔵時に溶出するマンガンの量を抑制し、リチウムイオン二次電池としての長寿命化を実現できる。
【0019】
図2は、本発明の実施の形態の一例である、リチウムイオン二次電池を一部断面により模式的に示す概略図である。
【0020】
リチウムイオン二次電池10は、正極板1と負極板2との間にセパレータ3を介在させた構成を有する。これらの正極板1、負極板2およびセパレータ3が捲回され、非水系電解液と共にステンレス製またはアルミニウム製の電池缶4に封入される。
【0021】
正極板1には正極リード片7が、負極板2には負極リード片5が、それぞれ接続してあり、電流が取り出されるようになっている。正極板1と負極リード片5との間、及び負極板2と正極リード片7との間には、それぞれ絶縁板9が設置してある。また、負極リード片5と接触している電池缶4と正極リード片7と接触している密閉蓋部6との間には、電解液の漏れを防止するとともに、プラス極とマイナス極とを分けるパッキン8が設置してある。
【0022】
正極板1は、アルミニウム等で形成された集電体に正極合剤を塗布したものである。正極合剤は、リチウムの吸蔵放出に寄与する正極活物質、導電材、結着剤等を含む。
【0023】
正極活物質としては、リチウムを挿入可能又はリチウムの化合物を形成可能なマンガン酸化物を用いることができる。
【0024】
マンガン酸化物としては、スピネル構造を有するマンガン酸リチウム(代表的な化学式としてLiMn。以下、「スピネルマンガン」と略称する場合もある。)、岩塩構造を有するマンガン酸リチウム(代表的な化学式としてLiMO、MはMnに加え、Ni、Co等の遷移金属を含んでも良い。またはLiMO、MはMnに加え、Ni、Co等の遷移金属を含んでも良い。)、オリビン構造を有するマンガンリン酸リチウム(代表的な化学式としてLiMPO、MはMnに加え、Fe等の遷移金属を含んでも良い。)、マンガン置換をしたケイ酸リチウム(代表的な化学式としてLiMSiO、MはMnに加え、Fe等の遷移金属を含んでも良い。)、スピネル構造を有する二酸化マンガン(代表的な化学式としてλ−MnO))、ルチル構造を有する二酸化マンガン(代表的な化学式としてβ−MnO)などが挙げられる。これらのマンガン酸化物は、1種類で用いるだけでなく、2種類以上を組み合わせて用いることもできる。
【0025】
正極板1の活物質(正極活物質)の一つとして、スピネル構造を有するマンガン酸リチウム(スピネルマンガン)について詳述する。
【0026】
このスピネルマンガンとして、具体的には、一般式LiMn(但し、a+b+c=3、1.0≦a≦1.1、0<c≦0.07である。Mは、Al、Co、Cr、Ni、Fe、Zn、Mg及びCuからなる群より選ばれる少なくとも一種である。)で示されるものを用いる。
【0027】
前記スピネルマンガンは、LiMnを母材とし、M置換による劣化抑制を図ったものである。Li、Mn及びMの含有量の和a+b+cは、母材であるLiMnのスピネル構造を維持するため、a+b+c=3が好ましい。a+b+c≠3の場合には、スピネル構造が乱れてしまう。
【0028】
Liの含有量aは、1.0≦a≦1.1であるが、a<1.0の場合には、Liサイトを他の元素が占有するため、Liイオンの拡散が阻害される。また、1.1<aの場合には、正極活物質におけるマンガン等の遷移金属の含有量がLiの含有量に対して相対的に減少してしまい、リチウムイオン二次電池の容量が低下してしまう。更に好ましい範囲は、1.06≦a≦1.1である。
【0029】
M(Al、Co、Cr、Ni、Fe、Zn、Mg及びCuからなる群より選ばれる少なくとも一種)の含有量cは、0<c≦0.07であるが、c=0の場合、マンガンの平均価数が3.5未満となり、結晶構造が不安定になるため、充放電によって多量のマンガンが電解液中に溶出して劣化を促進する。一方、0.07<cの場合、Mは2価で置換されるので、電気的中性を保つためにマンガンの価数が大幅に増加する。スピネルマンガンの充放電はマンガンの価数変化によって行われるため、マンガンの価数が増加するとリチウムイオン二次電池の容量が低下してしまう。更に好ましい範囲は、0.01≦c≦0.03である。
【0030】
負極板2は、銅等で形成された集電体に負極合剤を塗布したものである。負極合剤は、リチウムの吸蔵放出に寄与する負極活物質、導電材、結着剤等を含む。
【0031】
負極活物質としては、金属リチウム、炭素材料、或いは、リチウムを挿入可能又はリチウムの化合物を形成可能な材料を用いることができ、炭素材料が特に好適である。
【0032】
炭素材料としては、天然黒鉛、人造黒鉛等の黒鉛類および石炭系コークス、石炭系ピッチの炭化物、石油系コークス、石油系ピッチの炭化物、ピッチコークスの炭化物等の非晶質炭素がある。好ましくは、上記の炭素材料に種々の表面処理を施したものが望ましい。
【0033】
これらの炭素材料は、1種類で用いるだけでなく、2種類以上を組み合わせて用いることもできる。また、リチウムを挿入もしくは化合物の形成が可能な材料としては、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウムなどの金属およびこれらの元素を含む合金、スズ、ケイ素などを含む金属酸化物が挙げられる。さらにまた、前述の金属や合金や金属酸化物と黒鉛系や非晶質炭素の炭素材料との複合材が挙げられる。
【0034】
リチウムイオン二次電池の作製方法の一例は、以下に示す通りである。
正極活物質を炭素材料粉末の導電材およびポリフッ化ビニリデン等の結着剤と共に混合してスラリーを作製する。導電材の質量(g)を正極活物質の質量(g)で割った値は、0.03〜0.10が望ましい。また、結着剤の質量(g)を正極活物質の質量(g)で割った値は、0.02〜0.10が望ましい。そして、正極活物質をスラリー中で均一に分散させるため、混練機を用いて充分な混練を行うことが好ましい。
【0035】
得られたスラリーは、例えばロール転写機などによって、厚み15μm〜25μmのアルミ箔上に両面塗布する。両面塗布した後、プレス乾燥することによって正極板1の電極版を形成する。正極活物質、導電材及び結着剤を混合した合剤部分の厚さは200μm〜250μmが望ましい。
【0036】
負極は、正極と同様に結着剤と混合して塗布し、プレス乾燥して電極を形成する。ここで、負極合剤の厚さは100μm〜150μmが望ましい。負極板2には、集電体として厚さ7μm〜20μmの銅箔を用いる。塗布する材料は、負極活物質の質量(g)と結着剤の質量(g)との比が、例えば、90:10〜98:2程度であることが望ましい。
【0037】
得られた電極板は所定の長さに切断し、電極を形成して、電流引き出し部のタブ部をスポット溶接または超音波溶接により形成する。タブ部は、長方形の形状をした集電体とそれぞれ同じ材質の金属箔からできており、電極から電流を取り出すために設置するものであり、正極リード片7および負極リード片5となる。
【0038】
タブ付けされた正極板1および負極板2の間に微多孔質膜、例えば、ポリエチレン(PE)やポリプロピレン(PP)などで形成されたセパレータ3を挟んで重ね、これを円筒状に捲いて電極群とし、円筒状容器である電池缶4に収納する。あるいは、セパレータに袋状のものを用いてこの中に電極を収納し、これらを順次重ねて角型容器に収納してもよい。容器の材質はステンレスまたはアルミニウムが望ましい。
【0039】
電池群を電池缶4に収納した後、非水系電解液を注入し、蓋部6およびパッキン8を用いて密封する。
【0040】
非水系電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルアセテート(MA)、メチルプロピルカーボネート(MPC)、ビニレンカーボネート(VC)等の溶媒に、リチウム塩としてリチウムヘキサフルオロホスフェート(LiPF)、リチウムテトラフルオロボレート(LiBF)、リチウムパークロレート(LiClO)、リチウムビス−オキサラトボレート(LiBOB)等のリチウム塩を溶解させたものを用いることが望ましい。リチウム塩の濃度は0.7mol/l〜1.5mol/lが望ましい。
【0041】
これにより、作製されたリチウムイオン二次電池は、一対の正極および負極が、セパレータおよび非水系電解液を介して対向した構成であって、高いエネルギー密度と優れたハイレート特性とを有するリチウムイオン二次電池を提供することができる。
【0042】
以下に、本発明の実施例を示す。本発明は、これらの実施例に限定されるものではないことは言うまでもない。
【0043】
[実施例1]
本発明において、正極活物質と電解液を組み合わせた実施例を紹介する。
正極活物質として、化学式がLi1.10Mn1.86Mg0.04で表されるマンガン酸リチウム(スピネルマンガン)を用いた。
【0044】
電解液として、エチレンカーボネート(EC)の体積(l)と、エチルメチルカーボネート(EMC)の体積(l)との比が、1:2となるよう混合した有機溶媒に、リチウムヘキサフルオロホスフェート(LiPF)を1.0mol/lの濃度となるよう溶解させたものを用いた。この電解液の密度は1.2g/cmであった。カールフィッシャー法で測定した電解液中の水分濃度は4wtppmであった。また、滴定法で測定した電解液中のフッ化水素(HF)濃度は6wtppmであった。
【0045】
最初に、正極活物質5.0gと電解液4.8gをフッ素樹脂容器に入れ、密封した。正極活物質とフッ素樹脂容器は事前に120℃で1時間真空乾燥を行った。さらにフッ素樹脂容器をアルミラミネート袋に入れて密封した上で、SUS製の気密容器中に封入した。以上の作業をAr雰囲気のグローブボックス内で行った。これにより、後述する高温貯蔵中に外部からの水分が電解液中へ混入する事を防いだ。
【0046】
次に、SUS製の気密容器を80℃の恒温槽の内部に高温貯蔵した。7日間貯蔵した後、気密容器を恒温槽から取出し、室温まで除冷した。容器から電解液を取出し、硫酸白煙まで加熱濃縮した後、希硝酸で加温溶解し、高周波誘導結合プラズマ発光分光分析装置でマンガンを定量した。電解液中に溶出したマンガンの質量(以下、溶出マンガン質量と称す)は1860μgだった。すなわち、実施例1において電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は0.96だった。また、溶出マンガン質量をD(μg)とするとき、E = D/Bの値は372だった。
【0047】
[実施例2]
正極活物質の質量を1.5gとした以外は、実施例1と同じ構成で評価した。溶出マンガン質量は305μgだった。すなわち、実施例2において電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は3.20だった。また、溶出マンガン質量をD(μg)とするとき、E = D/Bの値は203だった。
【0048】
[実施例3]
正極活物質の質量を1.0g、電解液を7.2gとした以外は、実施例1と同じ構成で評価した。溶出マンガン質量は35μgだった。すなわち、実施例3において電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は7.20だった。また、溶出マンガン質量をD(μg)とするとき、E = D/Bの値は35だった。
【0049】
[実施例4]
正極活物質の質量を1.0g、電解液を8.5gとした以外は、実施例1と同じ構成で評価した。溶出マンガン質量は198μgだった。すなわち、実施例4において電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は8.50だった。また、溶出マンガン質量をD(μg)とするとき、E = D/Bの値は198だった。
【0050】
[比較例1]
正極活物質の質量を5.0g、電解液を1.0gとした以外は、実施例1と同じ構成で評価した。溶出マンガン質量は2415μgだった。すなわち、比較例1において電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は0.20だった。また、溶出マンガン質量をD(μg)とするとき、E = D/Bの値は483だった。
【0051】
[比較例2]
正極活物質の質量を0.5gとした以外は、実施例1と同じ構成で評価した。溶出マンガン質量は629μgだった。すなわち、比較例2において電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は9.60だった。また、溶出マンガン質量をD(μg)とするとき、E = D/Bの値は1258だった。
【0052】
以上、実施例と比較例の結果をまとめて表1に示す。
【表1】

【0053】
表1の結果を、横軸を電解液質量(g)/マンガン酸化物質量(g)、縦軸を溶出マンガン質量(μg)/マンガン酸化物質量(g)として図1にグラフ化して表示する。
【0054】
これより、マンガン酸化物質量あたりの電解液質量が増加するのに従い、マンガン酸化物質量あたりの溶出マンガン質量が当初減少する。これは、水分がフッ化水素に変化する反応の速度が水分濃度の2乗に比例するのに対し、正極活物質に付着した水分が電解液で希釈され濃度が減少するのに従い前記反応の速度、すなわちフッ化水素の生成速度が減少することにより、溶出するマンガンの量が減少するからである。なお、スピネルマンガンとフッ化水素の反応では水が生成するため、反応全体としては水分量は一定である。すなわち、マンガンの溶出反応は水分の濃度に応じた反応速度で起こり続けるため、結果として、ある期間での溶出マンガン質量は水分の濃度と正の相関を持つ。
【0055】
一方で、マンガン酸化物質量あたりの電解液量がある値以上になると、マンガン酸化物質量あたりの溶出マンガン質量が増加する。これは、ある濃度だけ存在する電解液に含まれる水分の量が、電解液の量が増えていくのに従い増加し、水分から変化したフッ化水素の量が増加し、溶出マンガン質量が増加するためである。電解液に含まれる水分の濃度は一定のため溶出速度は変化しないが、電解液の量が増加するに従い水分の量が増加するため、溶出マンガン質量も増加する。
【0056】
この観点からすると、電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は0.96以上8.50以下が望ましい。この範囲から値が外れるとマンガン酸化物質量あたりの溶出マンガン質量が大きいため、マンガン酸化物の劣化が著しく、これを用いたリチウムイオン二次電池の性能が悪化してしまう。
【0057】
さらに、前記C = A/Bの値は3.00以上8.50以下がより好ましい。この範囲ではマンガン酸化物質量あたりの溶出マンガン質量が大きく減少するため、マンガン酸化物の劣化が小さく、これを用いたリチウムイオン二次電池の寿命をより長くすることができる。
【0058】
なお、本発明では、正極活物質の種類を2種類以上としても良い。また、マンガン酸化物以外の正極活物質を含んでも良い。この場合も、正極活物質質量あたりの電解液質量ではなく、マンガン酸化物質量あたりの電解液質量を前記の範囲とする。これは、マンガン酸化物以外の正極活物質ではマンガンの溶出が起こらないため、マンガン酸化物のみを考慮する必要があるためである。
【0059】
ここで、電解液中の水分濃度やフッ化水素濃度が本発明の条件よりも大きい場合について詳述する。電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値が6.00未満では、活物質由来の水分が反応し発生したフッ化水素によってマンガンの溶出が起こるため、電解液中の水分濃度やフッ化水素濃度は溶出マンガン質量には影響しない。前記C = A/Bの値が6.00以上では、電解液中の水分濃度やフッ化水素濃度による溶出マンガン質量への影響が支配的となるため、図1におけるカーブの傾きが本発明より大きくなり、効果が得られる前記Cの値の範囲が狭くなる。次に、電解液中の水分濃度やフッ化水素濃度が本発明の条件よりも小さい場合について詳述する。前記C = A/Bの値が6.00未満では、活物質由来の水分が反応し発生したフッ化水素によってマンガンの溶出が起こるため、電解液中の水分濃度やフッ化水素濃度は溶出マンガン質量には影響しない。前記C = A/Bの値が6.00以上では、電解液中の水分濃度やフッ化水素濃度による溶出マンガン質量への影響が支配的となるため、図1におけるカーブの傾きが本発明より小さくなり、効果が得られる前記Cの値の範囲が広くなる。ただし、電解液の量を多くすると電池の質量および体積が増加するため、電解液の量は電池形状への要件に応じて制限される。したがって、電解液中の水分濃度やフッ化水素濃度によらず効果を得るためには、前記C = A/Bの値は3.00以上6.00以下であることがさらに好ましい。
【0060】
図2は、本実施の形態で示したマンガン酸化物質量と電解液質量の規定を適用した、18650(直径18mm×高さ650mm)型電池を示したものである。以下に18650電池の製法を示す。
【0061】
最初に、正極活物質の質量(g)、炭素材料粉末の導電材の質量(g)、結着剤として用いたPVdFの質量(g)が、90:4.5:5.5となるように混合し、適量のNMPを加えてスラリーを作製する。この際の正極活物質としては、マンガン酸化物を用いる。作製されたスラリーをプラネタリーミキサーで3時間攪拌して、混練を行う。
【0062】
次に、混練されたスラリーを、ロール転写機の塗布機を用いて、厚さ20μmのアルミニウム箔の両面に塗布する。これをロールプレス機で合剤密度が2.70g/cmとなるようにプレスし、正極を得る。
【0063】
さらに、負極活物質として黒鉛の質量(g)、導電材としてカーボンブラックの質量(g)、結着剤として用いたPVdFの質量(g)が、92.2:1.6:6.2となるように混合し、スラリーミキサーで30分攪拌して混練を行う。混練されたスラリーを、塗布機を用いて、厚さ10μmの銅箔の両面に塗布し、乾燥した後に、ロールプレスでプレスし、負極を得る。
【0064】
正極および負極の電極を、それぞれ所定の大きさに裁断し、これらの電極においてスラリーを塗布していない部分(未塗布部)に超音波溶接によって集電タブを設置する。これらの正極および負極の電極の間に多孔性のポリエチレンフィルムを挟んで円筒状に捲回した後に、18650型電池缶に挿入する。
【0065】
集電タブと電池缶の蓋部とを接続した後、電池缶の蓋部と電池缶とをレーザー溶接により溶接して電池を密封する。
【0066】
最後に、電池缶に設けた注液口から非水系電解液を注入して18650型電池を得る。電解液としては、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)との混合溶媒にLiPF(リチウムヘキサフルオロホスフェート)を1.0mol/lの濃度となるよう溶解する。電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は0.96以上8.50以下となるようにする。
【0067】
なお、本実施形態で示したマンガン酸化物質量と電解液質量の規定を適用した電池は上記の構成に限られないことは言うまでもない。例えば、外装容器の形状を円筒形から角形すなわち直方体形としても良い。また、外装容器の材質をアルミラミネートとしても良い。
【0068】
外装容器にアルミラミネートを採用した場合について述べる。正極と負極との間にセパレータを介在させる。正極集電体及び負極集電体のタブ部には正極活物質及び負極活物質が未塗工である。タブ部は外部への集電端子にそれぞれ接続され、電池素子を形成する。電池素子の外周部はアルミラミネートシートが熱溶着により溶着されており、これにより電池素子が封止される。集電端子の位置は180度対向位置から延出させて配置してもよい。
【0069】
図3は、本実施形態で示したマンガン酸化物質量と電解液質量の規定を適用した、リチウムイオン二次電池を搭載した二次電池システムを示したものである。複数個のリチウムイオン二次電池10、例えば4〜8個が直列に接続され、リチウムイオン二次電池の組電池を形成する。更に、このリチウムイオン二次電池の組電池を複数接続してリチウムイオン二次電池群を構成する。
【0070】
セルコントローラ11は、こうしたリチウムイオン二次電池群に対応して形成され、リチウムイオン二次電池10を制御する。セルコントローラ11は、リチウムイオン二次電池10の過充電や過放電のモニタリングやリチウムイオン二次電池10の残存容量のモニタリングを行う。
【0071】
バッテリーコントローラ12は、セルコントローラ11に信号を、例えば、通信手段を使用して与えると共に、セルコントローラ11からの信号を、例えば、通信手段を使用して取得する。バッテリーコントローラ12は、セルコントローラ11に対する電力の入出力管理を行う。
【0072】
バッテリーコントローラ12は、例えば、最初のセルコントローラ11の入力部111に信号を与える。こうした信号が、セルコントローラ11の出力部112から他のセルコントローラ11の入力部111にシリーズに伝えられる。この信号は、最後のセルコントローラ11の出力部112からバッテリーコントローラ12に与えられる。こうしてバッテリーコントローラ12は、セルコントローラ11をモニタすることが可能となる。
【0073】
図4は、本実施形態で示したマンガン酸化物質量と電解液質量の規定を適用した、低温部用と高温部用のリチウムイオン二次電池を搭載した二次電池システムを示したものである。
【0074】
二次電池システムは、比較的高温となる高温部14と、比較的低温となる低温部15を有している。そして、二次電池システムの高温部14には、マンガン酸化物質量に対する電解液量が相対的に多いリチウムイオン電池(高温部用リチウムイオン二次電池110)が配置されている。一方、二次電池システムの低温部15には、マンガン酸化物質量に対する電解液量が相対的に少ないリチウムイオン電池(低温部用リチウムイオン二次電池113)が配置されている。これにより、省スペース化と寿命維持を兼ね備えた二次電池システムを作製できる。
【0075】
高温部用リチウムイオン二次電池110において、電解液の質量をA(g)、マンガン酸化物の質量をB(g)とするとき、C = A/Bの値は3.00以上8.50以下であることが望ましい。また、低温部用リチウムイオン二次電池113において、前記C = A/Bの値の値は0.96以上8.50以下であることが望ましい。
【0076】
上記構成を有するリチウムイオン二次電池及び二次電池システムによれば、高温貯蔵時におけるマンガンの溶出が抑制される。したがって、電池を50℃以上で保持した際や充放電サイクルを行った際に容量の低下や抵抗の上昇などが発生することを抑制でき、従来よりも長寿命化を図ることができる。
【0077】
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【産業上の利用可能性】
【0078】
本発明のリチウムイオン二次電池および二次電池システムは、従来の構成より長寿命化が期待でき、特に、大型定置用電源として有用である。
【符号の説明】
【0079】
1…正極板、2…負極板、3…セパレータ、4…電池缶、5…負極リード片、6…蓋部、
7…正極リード片、8…パッキン、9…絶縁板、10…リチウムイオン二次電池、11…セルコントローラ、12…バッテリーコントローラ、13…信号線、14…二次電池システム高温部、15…二次電池システム低温部、110…高温部用リチウムイオン二次電池、111…入力部、112…出力部、113…低温部用リチウムイオン二次電池

【特許請求の範囲】
【請求項1】
正極活物質として少なくともマンガン酸化物を有する正極と、リチウムを吸蔵放出可能な負極と、リチウム塩を含有する非水系溶媒からなる電解液とを有するリチウムイオン二次電池であって、
前記電解液の質量をA(g)、前記マンガン酸化物の質量をB(g)とするとき、C = A/Bの値が0.96以上8.50以下であることを特徴とするリチウムイオン二次電池。
【請求項2】
前記リチウム塩は、LiPFであることを特徴とする請求項1に記載のリチウムイオン二次電池。
【請求項3】
前記正極活物質は、LiMn(但し、a+b+c=3であり、Mは、Al、Co、Cr、Ni、Fe、Zn、Mg及びCuからなる群より選ばれる少なくとも一種類の元素である。)であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池。
【請求項4】
前記請求項1から請求項3のいずれか一項に記載のリチウムイオン二次電池を用いたことを特徴とする二次電池システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−89492(P2013−89492A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−229838(P2011−229838)
【出願日】平成23年10月19日(2011.10.19)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】