説明

リチウム二次電池用正極の製造法及びリチウム二次電池

【課題】 正極活物質の水性ペーストを集電用基板上に塗布し、ブレードにより一定の厚さの塗工層を形成し、乾燥してリチウム二次電池用正極を製造するに当たり、塗工層の表面に筋引きを生じたり、乾燥時に該塗工層に亀裂や集電用基板からの剥離を生ずることなく円滑且つ高能率に製造され、而も従来の製造法では不可能であった肉厚の体積効率の向上したリチウム二次電池用正極の製造法を提供する。
【解決手段】 5μm以上の造粒粒子又は凝集粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、これを該水性ペーストに含まれる大きな凝集粒子を加圧崩壊し乍ら20〜120μmの目開きを持つフィルターを通す裏ごし処理を行い、得られた裏ごしペーストを集電用基板に所望の厚さに塗工し、乾燥する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リチウム二次電池用正極の製造法及びリチウム二次電池に関する。
【背景技術】
【0002】
リチウム金属、リチウム合金或いはリチウムイオンを吸蔵、放出可能な物質を負極活物質とするリチウム二次電池は高い電圧と優れた可逆性を特徴としている。
特に正極活物質としてリチウムと遷移金属との複合酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池は従来の鉛二次電池やニッケル-カドミウム二次電池などに比較し、軽量で放電容量も大きいことから、電子機器に広く使用されている。
現在、リチウムイオン二次電池の正極活物質として、主にLiCoO2、LiNiO2、LiMnO2或いはLiMn2O4などの金属酸化物系が用いられているが、特に、出力特性の向上や高い安定性の観点から、オリビン型リン酸Mリチウム(Mは遷移金属)系材料、就中、産出量が多く安全供給の面から、リン酸鉄リチウムが正極活物質として好ましく用いられており、例えば、下記特許文献1に開示されている。
該特許文献1には、その発明に係るオリビン型化合物などの正極活物質を用い正極を製造するため、その粉末に結着剤粉末と混合し、更にこれに導電性を付与するため、これにアセチレンブラックなどの導電性粉末を混合したものを有機溶剤等の溶媒中に分散してスラリー状にして金属基板上に塗布して製造することが開示されている。
【特許文献1】特開平9-134725号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかし乍ら、ナノ粒子など微細な一次粒子から成る正極活物質粉体又はカーボンなどの微細な導電性粒子を含む正極活物質合剤の粉体を、水又はCMCなどのバインダーを含む水溶液と混練して水性ペーストを調製し、得られた水性ペーストを金属箔などの集電用基板に塗布し、ブレードにより一定の厚さの塗工層を形成した後、乾燥してペースト式の正極板を製造する場合に、その水性ペーストの調製過程において、該正極活物質粉体の微細粒子が凝集し、その大きな凝集粒子がブレードに引っかかったり、その結果、塗工層の表面に筋引きを生ずることがしばしば起こり、製造作業に支障を来たすと共に正極の製造ロスをもたらした。そこで、該水性ペーストに含有するブレードに引っかかる大きな凝集粒子を除くため、該水性ペーストを所定の寸法の目開きを有するフィルターで圧送して濾過することを試みたところ、大きな凝集粒子により該フィルターの目詰まりを起こし、濾過に支障を来たし、濾過作業を停止せざるを得ない不都合を生じ、製造効率良く、円滑に良好な正極が得られないことが判明した。
更にまた、水性ペーストであるため、その塗工層は乾燥時に大きな体積変化を生じ、塗工層に無数の亀裂を生じたり、該塗工層が集電用基板から剥がれたり、その後の取り扱いの過程で脱落したりする不都合をもたらした。
このように、従来のリチウム二次電池用正極の製造法では、円滑且つ高能率に良好な塗工層が形成できないばかりでなく、その塗工層の厚さに限界があり、それ以上肉厚の塗工層をもつ体積効率の向上したリチウム二次電池用正極を得ることは不可能であった。
上記従来の技術に鑑み、円滑且つ高能率に良好な塗工層が形成できると共に、その塗工層の厚さを増大し体積効率の向上したリチウム二次電池用正極の製造を可能にすることが望まれる。
本発明は、上記の従来技術の課題を解決し、上記の目的を達成することに在る。
【課題を解決するための手段】
【0004】
本発明は、請求項1に記載の通り、5μm以上の造粒粒子又は凝集粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、これを該水性ペーストに含まれる大きな凝集粒子を加圧崩壊し乍ら20〜120μmの目開きを持つフィルターを通す裏ごし処理を行い、得られた裏ごしペーストを集電用基板に所望の厚さに塗工し、乾燥することを特徴とするリチウム二次電池用正極の製造法に存する。
更に本発明は、請求項2に記載の通り、造粒粒子又は凝集粒子を含む正極活物質粉体に粒径5μm未満の微細粒子から成る正極活物質粉体を混合して成る混合粉体の水性ペーストを調製したことを特徴とする請求項1に記載のフィルターで裏ごし処理することを特徴とするリチウム二次電池用正極の製造法に存する。
更に本発明は、請求項3に記載の通り、正極活物質は粒径ナノオーダーのオリビン型リン酸Mリチウム(Mは遷移金属)の粉体又はである内部又は表面に析出したカーボンを含有した正極活物質粉体である請求項1又は2に記載のリチウム二次電池用正極の製造法に存する。
更に本発明は、請求項4に記載の通り、請求項1〜3のいずれか1つに記載の正極を具備したリチウム二次電池に存する。
【発明の効果】
【0005】
請求項1に係る発明によれば、上記の該裏ごし処理により、20〜120μmの目開きを持つフィルターの目詰まりを生ずることなく、良好な裏ごし効率を維持し円滑且つ迅速に濾過することができると共に、ブレードに引っかかることなく且つ表面に筋引きを生ずることなく良質の塗工層を所定の厚さの塗工層を集電用基板上に得られ、特に、後記に明らかにするように、裏ごしペーストに含有する5μm〜120μmの範囲の造粒粒子又は凝集粒子は漆喰として作用するので、該塗工層は、乾燥時に亀裂を生ぜず且つ集電用基板から剥離しない安定良好な塗工層が得られるばかりでなく従来に比し著しく増大した体積効率の増大した肉厚の塗工層から成るリチウム二次電池用正極が得られる。
請求項2に係る発明によれば、造粒粒子又は凝集粒子を含む正極活物質に粒径5μm未満の微細粒子から成る正極活物質粉体を混合して成る混合粉体の水性ペーストを用い、請求項1に記載のように、20〜120μmの目開きのフィルターを通して得られた裏ごしペーストを塗工層とした場合でも、後記に明らかにするように、粒径5μm以上の粒子の漆喰作用により、混在する5μm未満の微細粒子を結着維持し、請求項1の発明と同様に乾燥時に亀裂や集電用基板からの剥離のない肉厚の塗工層が得られる。
請求項3に係る発明によれば、後記に明らかにするように、カーボンを含まない正極活物質を正極とした電極に比し、放電容量の大きな電池をもたらすリチウム二次電池用正極を製造することができる。
請求項4に係る発明によれば、電池特性の良好なリチウム二次電池が得られる。
【発明を実施するための最良の形態】
【0006】
本発明のリチウム二次電池用正極の製造法に用いる原料である正極活物質としては、上記の背景技術に記載した種々の正極活物質を用いることができるが、特に、オリビン型リン酸Mリチウム(Mは遷移金属)系の正極活物質、就中、産出量が多く安価に供給できる鉄を組成材料とするリン酸鉄リチウム或いはリン酸鉄リチウムの鉄の一部を他の元素で置換したものを用いることが好ましい。この場合、特に出力特性を向上せしめるため、ナノ粒子のものに製造したものが好ましく用いられる。しかし乍ら、かかるナノ粒子(一次粒子)から成る正極活物質を導電性向上のため通常添加されるカーボンなどの導電剤粉と共に水又はCMCなどのバインダーの水溶液で練って水性ペーストとし、これを集電用基板に塗布、乾燥してペースト式正極を製造するときに生ずる上記した種々の不都合を解消するため、本発明は、先ず、かかる微細な粒子から成る正極活物質粉体を、公知の造粒法又は凝集法により造粒粒子又は凝集粒子とする。
造粒法としては、ヘンシェルミキサーを用いる方法、ハイブリタイザーを用いる方法、一旦小粒径粉で均一な従来の水性ペーストを作製してから乾燥して、乾燥塊を粉砕分級する方法、カーボン源と共に不活性又は還元雰囲気下で焼成する固相合成法で得られた塊状生成物を粉砕分級する方法等が挙げられる。
凝集法としては、粒子同士の摩擦による静電凝集法がある。
【0007】
次に、このようにして得られた造粒粒子又は/及び凝集粒子から成る正極活物質粉体又はカーボン含有の正極活物質粉体を水又はバインダー水溶液と練って水性ペーストを調製し、これを集電用基板にブレードで一定の厚さに塗布し、その塗工層を乾燥してリチウム電池用正極板を製造することを試みたところ、水性ペースト調製中に生成した大きな造粒粒子や凝集粒子が該ブレードに引っかかったり、或いは塗工層の表面に筋引きを生じ、適正な塗工層が得られず、正極板の製造ロスをもたらした。
そこで、該水性ペーストを圧送により特定の目開きのフィルターで濾過することを試みたところ、該フィルターの目開きより大きな造粒粒子や凝集粒子により該フィルターの目詰まりを起こし、正極板の製造が円滑且つ高能率に行うことができないことを知見した。
【0008】
上記の現象につき種々試験研究の結果、該水性ペーストを調製過程で、造粒粒子や凝集粒子が凝集して大きな凝集粒団となり、少なくとも120μm以上の大きな凝集粒子を生じた場合に、これらの大きな凝集粒子がブレードに引っかかり、筋引きを生じさせ、或いはフィルターの目を詰めることを知見した。本発明は、この知見に基づきなされたもので、上記のように調製された水性ペーストを目開き20〜120μmの範囲のフィルターで裏ごし処理することにより、上記の不都合を解消し得ると共に、集電用基板上に従来では不可能であった肉厚の塗工層が得られ且つ該塗工層を構成する造粒粒子又は凝集粒子は強い漆喰作用を有するため、その乾燥時に従来生じていた亀裂や該集電用基板からの剥離のない安定堅牢な塗工層が形成されたリチウム二次電池用正極板が得られた。茲で、裏ごし処理とは、該水性ペーストを上記のフィルターを通すに当たり、該水性ペーストをへらなどの加圧部材で加圧し凝集粒団を崩壊し乍ら、換言すれば、ほぐし乍ら濾過し、粒径120μm以下の造粒粒子又は凝集粒子の裏ごしペーストを得ることを意味する。尚、フィルターとして、目開き20μm未満のフィルターを用いた場合には、裏ごし効率が著しく低下するので、高能率な裏ごし作業を行うには、20μm以上の目開きを有するフィルターを用いる必要がある。
【0009】
次に、本発明の実施例を含む詳細な試験例及び比較試験例につき以下詳述する。
試験例1
正極活物質の製造:
オリビン型リン酸鉄リチウムを、均一なナノ粒子を酸化の影響を抑制して作製可能な水熱法により以下のように合成した。
リン酸鉄リチウムは次のようにして得た。リン酸リチウム486g、及び2価の鉄化合物としての2価の塩化鉄4水和物795gを、オートクレーブ中に蒸留水2000mlと入れ、アルゴンガス置換した後に密閉した。この耐圧容器を180℃のオイルバス中で、48時間反応させた。室温まで放冷した後、内容物を取り出し、100℃で乾燥させて粉末試料を得た。得られた粉末はX線回折パターンにより、リン酸鉄リチウムであり、走査型電子顕微鏡(SEM)観察から、20nmから200nmの一次粒子の粒径を有していることが確認された。この粉体を粉体aと表示する。
【0010】
正極活物質粉体の造粒:
得られたリン酸鉄リチウム粉体a 10gと炭素源としてショ糖を主成分として転化糖が添加された市販の砂糖1gとを混合した。この混合物に蒸留水を10ml投入して、良く混合後、100℃で2時間乾燥し、その乾燥粉を磁製ルツボに入れ、真空ガス置換炉に投入した。窒素ガスで充分に置換後、真空状態にして、300℃で2時間の仮焼成後、600℃で3時間の焼結処理を実施した。次いで、これを室温まで放冷後に、ルツボを取り出して中の試料を採取した。試料は塊状であり、これをコーヒーミルで粉砕後に目開き5,8,50及び100ミクロンの夫々の篩を通して分級し、造粒粒子から成る夫々の粉体を得た。その夫々の粉体を粉体b、粉体c、粉体d及び粉体eと表示する。各粉体には、熱重量分析によるカーボン含有量の測定では1.5%のカーボンを含有していることが確認された。夫々の粉体b,c,d,eは、上記の各目開きに応じて、夫々粒径3,5,40,90ミクロンを最大とする造粒粒子集団であることを確認した。
【0011】
正極の製造:
上記の粉体b〜eの夫々につき、該粉体と導電剤としてアセチレンブラック、CMC水溶液、水分散性バインダーを質量比100:10:2:5で配合し、プラネタリ方式のミキサーで混練し、水性ペーストを調製した。該水性ペースト中の固形分は50%であった。該水性ペーストを目開き40ミクロンのスクリーンで裏ごし処理した。かくして、上記の4種類の粉体B,C,D,Eの各裏ごしペーストを得た。次いで、各裏ごしペーストをドクターブレード方式の簡易塗工機で厚さ15ミクロンの集電用アルミニウム箔に100g/m2になるように塗工し、次いで、100℃の温度で10分間乾燥し、4種類の電極B,C,D,Eを製造した。
更に、上記のナノ粒子から成る粉体aと上記の造粒粒子から成る粉体dを質量比1:1の割合で配合した混合粉体を調製した。この混合粉体を粉体adと表示する。該粉体adにつき、上記の電極の製造法と同じ条件で電極を製造した。この電極を電極ADと表示する。
【0012】
試験例2
カーボン被覆正極活物質の製造:
実施例1で製造した正極活物質粉体a 10gに、窒素雰囲気中、600℃でショ糖蒸気を作用させ、カーボンを気相析出法により粒径20μm〜200μmの粒子表面に析出させた正極活物質粉体を得た。この粉体には、熱重量分析によるカーボン含有量の測定では1.5%のカーボンを含有していることが確認された。このカーボン被覆正極活物質粉体を得た。該粉体を粉体fと表示する。
【0013】
正極活物質粉体の造粒:
上記の粉体fに1%CMC水溶液を5cc投入して乳鉢で混練後に取り出し、乾燥機内で100℃で30分乾燥した。乾燥後の塊をコーヒーミルで粉砕後、目開き20ミクロンの篩を通した粒径15ミクロンを最大とする造粒粒子から成る粉体を得た。この粉体を粉体gと表示する。
【0014】
正極の製造:
上記のようにして得た粉体g単独及び粉体gと試験例1の正極活物質粉体aとを質量比1:1の割合で配合した混合粉体を調製した。該混合粉体を粉体gaと表示する。該粉体g及び該粉体gaにつき、夫々、実施例1と同様に、夫々の水性ペーストを調製し、目開き40ミクロンのスクリーンで裏ごしし、該アルミ箔に100g/m2になるように塗工し、100℃の温度で10分間乾燥し、夫々の電極を製造した。前者の電極を電極Gと表示し、後者の電極を電極GAと表示する。
【0015】
比較試験例1
上記のナノ粒子から成る粉体aにつき、試験例1と同様に、アセチレンブラック、CMC水溶液、水分散性バインダーを質量比100:10:2:5で混練して成る固形分50%の水性ペーストを調製した後、該水性ペーストを直径1mmのメディアを使用したビーズミルで該水性ペースト中に含まれる大きな凝集粒子の細砕分散を実施した。得られた微細粒子から成る該水性ペーストを試験例1と同様にアルミ箔に100g/m2になるように塗工し、100℃の温度で10分間乾燥して電極を製造した。該電極を電極Aと表示する。
比較試験例2
上記のナノ粒子から成るカーボン被覆正極活物質粉体fにつき、比較試験例1と同様にして微細粒子から成る水性ペーストを作製し、同様に塗工して正極を製造した。該電極を電極Fと表示する。
【0016】
上記のようにして製造した電極B,C,D,E,AD,G,GA,A,F及び比較用電極A,Fの夫々の塗工層の表面亀裂及び剥離の有無の状況を調べた。その結果を下記表1に示す。
【0017】
【表1】

【0018】
上記表1から明らかなように、最大粒径3ミクロン以下の微細粒子から成る正極活物質粉体bの裏ごしペースト及び粉体a,粉体fの水性ペーストを夫々100g/m2で塗工した厚い塗工層を形成した電極B,A,Fでは、乾燥により該塗工層の表面に細かい無数の亀裂が発生したり、アルミ箔からの剥離を生じ、その後の取り扱い時には、アルミ箔から塗工層の一部の脱落を生じ、目的とする体積効率の向上したリチウム二次電池用正極の製造は不可能であった。
これに対し、最大粒径が6ミクロン以上を含む造粒粒子から成る正極活物質粉体c,d,e,ad,g,gaの夫々の水性ペーストを、上記の実施例1及び2により100g/m2で塗工した厚い塗工層を形成した電極C,D,E,AD,G,GAでは、乾燥による塗工層の表面亀裂や剥離は全くなく、表1には記載しなかったが、筋引きも勿論ない良好な肉厚の塗工層が該集電用基板に強固に結着された体積効率が著しく向上したリチウム二次電池用正極が円滑良好に製造できた。
多くの試験を行った結果、最大粒径5ミクロンを含む造粒粒子から成る正極活物質粉体により、上記の良好な肉厚の塗工層が確実に得られることを確認した。
また、表1から明らかなように、5ミクロン未満の微細粒径のみから成る粉体bを用いた電極Bの塗工層は亀裂や剥離を生ずるが、電極AD又はGAのように、一次粒子から成る正極活物質粉体を単独ではなく、漆喰作用の大きな5ミクロン以上の造粒粒子から成る粉体に混ぜて裏ごしペーストとし塗工するときは、亀裂や剥離のない良好な塗工層が得られることが判明し、このことから、上記の粉体bを単独でなく5ミクロン以上の造粒粒子に1:1の割合で混ぜたものを電極ADやGAと同様に製造するときは、粒径5ミクロン以上の造粒粒子の漆喰作用により、亀裂や剥離のない塗工層をもつ電極が得られることも確認した。
【0019】
リチウム二次電池の製造:
上記の本発明の電極B,C,D,AD,G,GAを2cm2の円盤状に打ち抜いたものを正極として用いた6種類のコイン型リチウム二次電池を下記詳述するように作製した。負極としては、次のように製造したものを用いた。即ち、人造黒鉛(平均粒径5μm、d002=0.337nm、Lc=58nm)及びポリフッ化ビニリデン(PVdF)を質量比95:5の割合で混合し、N-メチル-2-ピロリドン(NMP)を加えて充分混練し、負極ペーストを調製し、次いで、該負極ペーストを厚さ15μmの集電用銅箔上に塗布し、25℃の常温で自然乾燥後、更に減圧下130℃で12時間乾燥し、次いで、ロールプレスで圧延加工し、2cm2の円盤状に打ち抜いて負極を製造した。
セパレータとしては、厚み15μmの多孔質ポリエチレンフィルムから成る円形セパレータを用いた。
電解液としては、次のように調製したものを用いた。即ち、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1Mの濃度で溶解し、電解液を作製した。電解液中の水分量は15ppm未満とした。
各コイン型リチウム二次電池の作製に当たり、露点が-50℃以下の雰囲気下で、上記の正極、負極、電解液及びセパレータを常法により組み込み、正,負各極は集電体の付いた電槽缶に圧着し、直系25mm、厚さ1.6mmのコイン型リチウム二次電池を上記の6種類の電極C,D,E,AD,G,GAに対応する6種類の電池を作製した。これら電池を夫々電池C′,D′,E′,AD′,G′,GA′と表示する。
【0020】
リチウム二次電池の放電特性試験:
上記の各電池を多数作製し、その夫々について、低率での充放電を10サイクル行い、10サイクル目の0.1CAの低率放電容量を測定した。このときの充電条件は、電流0.1CA、電圧3.8Vの定電流定電圧とし、放電条件は、電流0.1CA、終止電圧2.0Vの定電流放電とした。11サイクル目は高率放電試験を実施し、5CAの高率放電容量を測定した。容量は充填した活物質1g当たりの容量とした。尚、試験温度は全て25℃とした。その測定結果の平均値を下記表2に示す。
【0021】
【表2】

【0022】
上記表2から明らかなように、本発明の製造法で製造した上記の電極は、全て高い放電容量をもつリチウム二次電池をもたらすことが確認された。この場合、表面にカーボン被覆正極活物質を用いた電極G,GAを具備した電池G′,GA′は、カーボン被覆がないものに比し高い放電容量をもつことが確認された。

【特許請求の範囲】
【請求項1】
5μm以上の造粒粒子又は凝集粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、これを該水性ペーストに含まれる大きな凝集粒子を加圧崩壊し乍ら20〜120μmの目開きを持つフィルターを通す裏ごし処理を行い、得られた裏ごしペーストを集電用基板に所望の厚さに塗工し、乾燥することを特徴とするリチウム二次電池用正極の製造法。
【請求項2】
造粒粒子又は凝集粒子を含む正極活物質粉体に粒径5μm未満の微細粒子から成る正極活物質粉体を混合して成る混合粉体の水性ペーストを調製したことを特徴とする請求項1に記載のフィルターで裏ごし処理することを特徴とするリチウム二次電池用正極の製造法。
【請求項3】
正極活物質は粒径ナノオーダーのオリビン型リン酸Mリチウム(Mは遷移金属)の粉体又はである内部又は表面に析出したカーボンを含有した正極活物質粉体である請求項1又は2に記載のリチウム二次電池用正極の製造法。
【請求項4】
請求項1〜3のいずれか1つに記載の正極を具備したリチウム二次電池。

【公開番号】特開2010−113874(P2010−113874A)
【公開日】平成22年5月20日(2010.5.20)
【国際特許分類】
【出願番号】特願2008−283952(P2008−283952)
【出願日】平成20年11月5日(2008.11.5)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成18年度独立行政法人科学技術振興機構革新技術開発研究事業、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005382)古河電池株式会社 (314)
【出願人】(305027401)公立大学法人首都大学東京 (385)
【出願人】(000183266)住友大阪セメント株式会社 (1,342)
【Fターム(参考)】