説明

レトロウイルスベクター

【課題】非分裂標的細胞に感染し、形質転換する能力を有するベクター粒子を作製するためのシステムを提供する。
【解決手段】レンチウイルスを基にしたベクター粒子を作製するための、レトロウイルスベクター作製システムであって、1以上の補助遺伝子、たとえばHIV-1の場合には、vpr,vif,tat,nefのような補助遺伝子が存在しないシステム。このシステムおよびその結果得られるレトロウイルスベクター粒子は、従来のシステムおよびベクターよりも安全性が向上した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レトロウイルスベクター作製システムおよびそのシステムによって作製されるレトロウイルスベクター粒子に関する。より詳細には、特定のレトロウイルス補助因子を欠いたシステムおよびベクター粒子に関する。また、本発明は、レトロウイルスベクターの使用、特に遺伝子治療への使用に関する。
【背景技術】
【0002】
レトロウイルスベクターは、臨床的な遺伝子導入のための伝達媒体として選択されているが、その理由はレトロウイルスベクターの効率、安全性、および安定した長期間の遺伝子発現による。1996年9月に発行された米国国立衛生研究所RACリポート(Rossら、1996)によると、NIHが調査した107の研究のうち76例がマウス白血病ウイルス(MLV)に由来するベクターシステムに基づいていた。
【0003】
上記ウイルスの一つの重大な欠点は、ニューロン、マクロファージや造血幹細胞といった非増殖細胞に感染することができないことである。これらの細胞は遺伝子治療の重要なターゲットである。
【0004】
ヒト免疫不全ウイルス1型(HIV-1)はレトロウイルス科のレンチウイルス亜科に属し、他のレンチウイルスと同様に、HIVは静止細胞に感染することができる。このため、レンチウイルスは遺伝子治療にとって魅力的なベクターとなる。
【0005】
HIV-1が非分裂細胞に感染するためのウイルス決定因子はp17マトリクスタンパク質(MA)およびvprにあると考えられる(Gallayら、1996)。MAは、保存された一定の塩基残基によって与えられる細胞核親和性を有し、核局在化シグナル(NLS)を構成する(Bukrinskyら、1993)。また、vprも別のNLSを含有する(Mahalingamら、1995)。MA-NLS変異体ウイルスは、機能性vpr遺伝子が存在しないとマクロファージ内で十分に複製することができない(Heinzingerら、1994)。これらのデータは、MAのみならずvprもHIV-1の細胞核親和性決定因子として機能することを意味すると解釈される。vprが存在しないと、単球由来マクロファージの形質導入効率は機能性MA存在下で50%以上減少する(Naldiniら、1996)。
【0006】
1989年にLeverらが報告した、HIV-1のパッケージングのために必要な配列を明らかにした研究以後、HIV-1を基にした遺伝子治療ベクターの開発に多くの関心が寄せられてきた。複製能欠損HIV-1ベクターによるヒトT細胞系への外来遺伝子の導入が、Poznanskiらによって実証された(Poznanskyら、1991)。他の研究グループは、tat誘導性のHIV-1ベクター(Buchschacher,Jr.およびPanganiban,1992)、または異種プロモーターを用いたHIV-1ベクター(Shimadaら、1991)をデザインした。しかしながら、これらのベクターを用いて得られたウイルス力価は低く(最大でも1ml当り103感染粒子)、そのベクターシステムによってヘルパーウイルスを含まないベクターを確実に作製できるか否かは明らかでなかった。最近では、ヘルパーウイルスのないベクターを作製するための新しい試みが、3-プラスミド同時トランスフェクションに基づいて行なわれた(Richardsonら、1995)。水疱性口内炎ウイルス糖タンパク質(VSV-G)を用いてHIVベクターをシュードタイピング(pseudotyping)することができ、上記粒子は超遠心による濃縮後も感染性を保持する(Akkinaら、1996)。VSV-Gによるシュードタイピングは宿主の範囲を広げ、野生型HIVエンベロープを生じるような組換えが起こる可能性を除去する。非分裂ニュ一ロン細胞のin vivo形質導入が3-プラスミド同時トランスフェクションシステムにおけるHIV-1のVSV-Gシュードタイピングを用いて実証された(Naldiniら、1996およびNaldiniら、1996a)。
【0007】
HIV-1は9個の遺伝子を含有し、そのうち3個gag,polおよびenvはすべてのレトロウイルスに見出される。これらは構造遺伝子である。他の6個vif,vpu,vpr,nef,tatおよびrevは補助遺伝子と呼ばれる。他のレトロウイルスは、その野生型ゲノム中に異なる補助遺伝子群を有する。他のレトロウイルスの補助遺伝子の一部は、文献では必ずしも同じ名前がつけられているわけではないが、HIV-1の補助遺伝子に類似している。類似補助遺伝子は、ヌクレオチド配列に相同性を有し、同一のまたは同様の機能を果す。HIV-2およびSIV株は通常HIV-1のenv,vpr,vif,tatおよびnef遺伝子に類似した同遺伝子を含有する。HIV-2および一部のSIV株は、vprを欠いた一部のSIV株においてvprに類似していると考えられるvpxも含有する。HIV-1以外のレンチウイルスはHIV-1補助遺伝子とは類似しない補助遺伝子も含有する。レトロウイルス補助遺伝子は、たとえば、TomonagaおよびMikami(1996)によって、さらにFields Virology,Vol2でJoagらによって概説される。
【0008】
現在までのところ、HIVを基にしたすべてのベクター系はHIV補助遺伝子の一部またはすべてを含有する。revはRNA輸送タンパク質として機能し、tatはプロウイルスの長い末端反復配列(LTR)の主要なトランス作用因子である。補助遺伝子はウイルスの複製および病原性に重要な役割を果す。補助遺伝子は、これまで十分には特性決定されておらず、またその機能も明らかにされていない。
【0009】
しかしながら、補助遺伝子の一部は、HIV-1の病原性に関わると考えられる。tatはカポージ肉腫の発生に関係している(Barillariら、1993;Ensoliら、1990)。HIVvprは細胞の分裂停止およびアポトーシスを引き起こすことが明らかになり、これがエイズ患者にみられるT細胞機能不全の原因であると提唱された(Jowettら、1995)。末梢血液中に存在する細胞外vprはHIV感染に伴う組織特異的病理の一因となるが、これはvprが細胞の増殖および分化を誘導するためであることが示唆されている(Levyら、1993およびLevyら、1995)。
【0010】
補助遺伝子の役割は明らかではないが、補助遺伝子はおそらく病原性に重要な役割を担っていると考えられるので、十分高いレトロウイルス力価と非増殖細胞への形質導入能力が維持されるならば、HIV-1ベクター作製システムから補助遺伝子を除去することが望ましい。
【0011】
Naldiniらのデータはvpuの有無がベクター粒子の力価に影響を与えないことを示す。すなわち、彼らの使用したパッケージングシステムは、VSV-Gを用いてシュードタイピングしたとき、4x105の力価を生じたが、このシステムはenvおよびvpuを含まないものであった。envのみを含まない別のシステムにおいても、同じ力価が得られた(Naldiniら、1996およびNaldiniら、l996a)。しかしながら、すでに検討したように、vpuのみならずvprも含まないNaldiniらの別のシステムでは、形質導入効率がvprを含むシステムに比べて50%低下した。
【先行技術文献】
【非特許文献】
【0012】
【非特許文献1】Ross, G., Erickson, R., Knorr, D., Motulsky, A.G., Parkman, R., Samulski, J., Straus, S.E., and Smith, B.R. (1996). Hum. Gene Ther. 7, 1781-1790.
【非特許文献2】Gallay, P., Stitt, V., Mundy, C., Oettinger, M., and Trono, D. (1996). J. Virol. 70, 1027-1032.
【非特許文献3】Bukrinsky, M.l., Haggerty, S., Dempsey, M.P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., and Stevenson, M. (1993).
【非特許文献4】Mahalingam, S., Collman, R.G., Patel, M., Monken, C.E., and Srinivasan, A.(1995). Virology 212, 331-339.
【非特許文献5】Heinzinger, N.K., Bukinsky, M.l., Haggerty, S.A., Ragland, A.M., Kewalramani, V., Lee, M.A., Gendelman, H.E., Ratner, L., Stevenson, M., and Emerman, M. (1994). Proc. Natl. Acad. Sci. U. S. A. 91,7311-7315.
【非特許文献6】Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D. (1996). Science 272, 263-267.
【非特許文献7】Lever, A., Gottlinger, H., Haseltine, W., and Sodroski, J. (1989). J. Virol. 63, 4085-4087.
【非特許文献8】Poznansky, M., Lever, A., Bergeron, L., Haseltine, W., and Sodroski, J.(1991). J. Virol. 65, 532-536.
【非特許文献9】Buchschacher, G.L., Jr. and Panganiban, A.T. (1992). J. Virol. 66, 2731-2739.
【非特許文献10】Shimada, T., Fujii, H., Mitsuya, H., and Nienhuis, AW. (1991). J. Clin. Invest. 88, 1043-1047.
【非特許文献11】Richardson, J.H., Kaye, J.F., Child, L.A., and Lever, A.M. (1995). J. Gen. Virol. 76, 691-696.
【非特許文献12】Akkina, R.K., Walton, R.M., Chen, M.L., Li, Q.X., Planelles, V., and Chen I.S. (1996). J. Virol. 70, 2581-2585.
【非特許文献13】Naldini, L., Blomer, U., Gage, F.H., Trono, D., and Verma, I.M. (1996).
【非特許文献14】Tomonaga, K. and Mikami, T. (1996). J. GeneralVirol. 77, 1611-1621.
【非特許文献15】Joag, S.V., Stephens, E.B. and Narayan, O. in Fields Virology, Vol 2, 19701982 (Lippincott-Raven Publishers).
【非特許文献16】Barillari, G., Gendelman, R., Gallo, R.C., and Ensoli, B. (1993). Proc. Natl. Acad. Sci. U. S. A. 90, 7941-7945.
【非特許文献17】Ensoli, B., Barillari, G., Salahuddin, S.Z., Gallo, R.C., and Wong Staal, F. (1990). Nature 345, 84-86.
【非特許文献18】Jowett, J.B., Planelles, V., Poon, B., Shah, N.P., Chen, M.L., and When, l.S. (1995). J. Virol. 69, 6304-6313.
【非特許文献19】Levy, D. N., L. S. Fernandes, W. V. Williams, and D. B. Weiner (1993), Cell, 72, 541-50.
【非特許文献20】Levy, D. N., Y. Refae; and D. B. Weiner (1995), J. Virol., 69, 1243-52.
【発明の概要】
【課題を解決するための手段】
【0013】
ここで、本発明者らは、レトロウイルスベクター作製システムから補助遺伝子の一部またはすべてを除去しても、ベクター粒子力価やベクター粒子の非分裂細胞への形質導入能力が有意に損なわれることはないことを見出した。
【図面の簡単な説明】
【0014】
【図1】第1図は、293T細胞の3-プラスミド同時トランスフェクションを用いた、本発明のベクター作製システムを示す。
【図2】第2図は、HIVベクターゲノムを示す。番号はHXB2と同様のものである。HCMVプロモーター(-597から-1まで)。HXB2からのHIV配列(455から1415まで;5743(H3Z)または5881(H4Z)から6403まで;7621から8897まで;8897から9720まで)。内部プロモーターとしてHCMVプロモーター(900bp)。クローニングサイト(XhoI)。バックボーン;pBluescriptKS+。
【図3】第3図は、HIV-1 gag-pol遺伝子発現プラスミドを示す。HIV-1 gagpolコード領域およびRREがpCI-neo(PROMEGA)に、XhoIおよびNotI部位においてクローニングされた。
【図4】第4図は、非分裂細胞の形質導入を示す。H4Zベクターの形質導入効率はX-gal染色によって測定され、Y軸にl.f.u./mlとして示す。Gl/S期停止細胞ば、細胞をアフィジコリン(5μg/ml)で処理することによって調製した。
【発明を実施するための形態】
【0015】
したがって、この発明は、ある態様において、遺伝子治療のためにレンチウイルスを基にした複製能欠損ベクター粒子を作製するためのレトロウイルスベクター作製システムであって、前記ベクター粒子は哺乳動物の非分裂標的細胞に感染及び形質導入することができ、前記システムは前記ベクターの成分をコードする一組の核酸配列を含んでなり、HIV-1補助遺伝子vpr,vif,tatおよびnefから、または前記ベクター粒子の基になるレンチウイルスに通常存在する他のレンチウイルスの類似補助遺伝子から選択された1以上の機能性遺伝子が前記システムに存在しない、前記レトロウイルスベクター作製システムを提供する。作製システムがHIV-1を基にしたベクターのためのものであり、vprおよびvpuが両方とも存在しない場合には、他の補助遺伝子のうちの1つも存在しないという条件のもとで機能性vpu遺伝子が存在しなくてもよい。
【0016】
別の態様において、本発明は本明細書中に記載したレトロウイルスベクター粒子作製システムによって作製されるレトロウイルスベクター粒子を提供する。
【0017】
さらに別の態様において、本発明は、本明細書中に記載したレトロウイルスベクター作製システムにおいて使用するためのDNA構築物を提供する。このDNA構築物は、レトロウイルスベクター粒子に関するパーケージ可能なRNAベクターゲノムをコードし、かつ機能し得るようにプロモーターに結合している。ここで、機能性レトロウイルス補助遺伝子のうち、場合によって存在するrev以外のすべてがこの構築物には存在しない。ベクター粒子の構造成分の一部またはすべてをコードする一組のDNA構築物の一部として上記のDNA構築物が提供されてもよい。
【0018】
別の態様において、本発明は、本明細書中に記載したレトロウイルス粒子の遺伝子治療への使用、および遺伝子治療のための薬剤調製における使用を提示し、さらに標的細胞に遺伝子治療を実施する方法を提供する。ここで、この方法は、本明細書中に記載したレトロウイルスベクター粒子を用いて標的細胞に感染および形質導入することを含んでなる。さらに本発明は、これらの使用および方法の結果得られる形質導入された標的細胞を提供する。このように本発明は、医学に使用するための遺伝子送達システムを提供する。
【0019】
「レンチウイルスを基にした」という表現は、ベクター粒子がレンチウイルスに由来することを意味する。ベクター粒子のゲノムは、バックボーンとしてレンチウイルス由来の成分を含んでなる。ベクター粒子は全体として、RNAゲノムに適合するベクター必須成分を含有し、これには逆転写および組込みシステムが包含される。通常、これらはレンチウイルスに由来するgagおよびpolタンパク質を包含する。
【0020】
レンチウイルスに由来するため、レトロウイルスベクター粒子は非分裂細胞に感染および形質導入する能力を有する。したがって、ベクター粒子は、治療上活性を有する遺伝子のような選択された一または複数の遺伝子を標的細胞のゲノムに送達することができる。感染過程で、レンチウイルスは、インテグラーゼ、コアタンパク質およびプロウイルスDNAを含有する標的細胞の細胞質において組込み前複合体(pre-integration complex)を形成する。この複合体は、そのタンパク質のシグナル配列によって、標的細胞の核膜を通り抜けることができる。レンチウイルスでないレトロウイルスは、上記タンパク質を欠いているか、またはそのタンパク質を有しているが適当なシグナル配列を欠いている。
【0021】
レンチウイルスの例は、HIV-1およびHIV-2、SIV、FIV、BLV、EIAV、CEVおよびビスナウイルスである。これらのうち、HIVおよびSIVが現在もっともよく理解されている。しかしながら、遺伝子治療への使用のためには、免疫不全ウイルス以外のウイルスが望ましい。これは、免疫不全ウイルスでは、それにともなって安全性の考慮と先入観をもたらすことが避けられないためである。
【0022】
レトロウイルスベクター作製システムに機能性補助遺伝子が存在しないということは、こうした機能性遺伝子がそのシステムによって作製されたレトロウイルスベクター粒子にも存在しないことを意昧する。また、こうした遺伝子によってコードされ、ベクター粒子内に取り込まれる補助タンパク質は、ベクター粒子にはまったく存在しないであろう。公知のレトロウイルスベクター作製システムにおいて、補助遺伝子は、ベクターゲノムをコードするDNAの一部として、またはパッケージング成分とともに存在してもよい。ベクター作製システムにおける補助遺伝子の位置は、部分的には、他のレトロウイルス成分との関係によって決まる。たとえば、vifはしばしば、パッケージング細胞のgag-polパッケージングカセットの一部として存在する。このように、本発明の目的のために機能性補助遺伝子を除去することには、パッケージング成分から、またはベクターゲノムから、あるいはおそらくはその両者から、機能性補助遺伝子を除去することが包含されてもよい。
【0023】
機能性補助遺伝子を除去することは、その遺伝子全体の除去を必ずしも必要としない。通常、遺伝子の一部の除去、または何か他の方法による遺伝子の破壊で十分である。機能性補助遺伝子が存在しないことは、ここでは、遺伝子が機能性補助タンパク質をコードすることができる形態で存在しないことを意味すると理解される。
【0024】
本発明の望ましいシステムにおいて、ベクター粒子の基になったレンチウイルスに通常存在する機能性vprおよびtat遺伝子または類似の遺伝子は、いずれも存在しない。上記二つの補助遺伝子は、遺伝子治療ベクターとして特に望ましくないレンチウイルスの特性に関わっている。しかし、本発明において、上記以外の場合には、存在しない補助遺伝子の組み合わせは限定されない。HIV-1を基にしたベクター粒子を作製するための本発明のシステムにおいて、任意の組み合わせの3つまたは望ましくは4つ以上の遺伝子が、機能的形態で存在しなくてもよい。もっとも望ましくは、5つの補助遺伝子、vpr,vif,tat,nefおよびvpuのすべてが機能的形態で存在しない。同様に、他のレンチウイルスに関するシステムについても、すべての補助遺伝子が機能的形態で存在しないことがもっとも望ましい(rev/RPEシステムに類似したシステムによって置き換えられない場合に存在することが望ましいrevを除く)。
【0025】
ベクターゲノムのRNA転写物の核から細胞質への効率のよい輸送を保証するために、ベクターゲノム内に機能性revおよびrev応答エレメント(RRE)配列を包含することが望ましく、または、rev/RREシステムと同じ機能を果す別の配列をゲノム内に包含することが望ましい。たとえば、rev/RREシステムに機能的に類似したシステムが、Mason-Pfizerサルウイルスに見出される。これは、CTEとして知られており、感染細胞内の因子と相互作用すると考えられているゲノム内のRRE-型配列からなっている。細胞の因子はrev類似体と考えられる。このように、CTEをrev/RREシステムの代わりとして利用することができる。
【0026】
上記から明らかなように、ベクターとして機能するためには、本明細書中に記載したレトロウイルス粒子が、プロウイルスへの変換および二本鎖DNAの標的細胞ゲノムへの組込みを可能にする逆転写システム(適合する逆転写とプライマー結合部位)および組込みシステム(適合するインテグラーゼおよび組込み部位)を有している必要がある。さらに、ベクターゲノムは、パッケージングシグナルを含有する必要がある。これらのシステムおよびシグナルは、一般に、ベクターの基になったレンチウイルスに由来する。本発明のベクターがレンチウイルスを基にしていても、ベクター内に取り込まれるレンチウイルスの成分が遺伝的に、またはその他の点で、野生型レンチウイルスにおける成分の改変形であってもよいのは明白である。RNAゲノムまたは他のレトロウイルスベクター粒子作製システムの成分を操作することによって、改変を起こすことができる。たとえば、ベクターとして必要でないレンチウイルスゲノムの部分を排除することができる。また、ベクター作製システムでは、たとえばレンチウイルスenv遺伝子の代替物を利用することもでき、その結果ベクターに異なった範囲の標的細胞を与えることができる(これはシュードタイピングとして知られている)。
【0027】
本発明のレトロウイルス粒子は、標的細胞に送達するように選択された1以上の遺伝子を運ぶ。選択された遺伝子は、達成しようとする効果にしたがって選ばれる。遺伝子治療目的では、治療又は予防が必要な症状に対して活性を有する遺伝子産物をコードする、少なくとも1つの治療上活性を有する遺伝子がある。さらに、検出可能な産物をコードすることによってマーカーとして作用する、選択された遺伝子もある。治療のための遺伝子は、たとえば、アンチセンスRNA、リボザイム、標的とするタンパク質のトランス優性ネガティブ変異体(transdominant negative mutant)、毒素、条件毒素(conditional toxln)、抗体またはヘルパーT細胞または細胞傷害性T細胞を誘導する抗原、一本鎖抗体または腫瘍抑制タンパク質をコードすることができる。
【0028】
ベクターゲノムの構築は、DNAプロウイルスにおいて、治療のための1または複数の遺伝子が5' LTRの転写制御を受けるか、そうでなければベクター由来の他のいかなるプロモーターにも機能し得るように連結していないものが好ましい。このように、上記の1または複数の遺伝子の発現は、単一の転写ユニットの中で起こる。また、5' LTRは、プロモーター機能がtat依存性でない修飾されたレンチウイルスLTRであることも望ましい。これは、RおよびU3レンチウイルスプロモーター機能を、別のレトロウイルス由来の又は非レトロウイルス起源の代替プロモーター機能によって置き換えることによって達成することができる。このための戦略はCannonら、1996および実施例に記載されている。
【0029】
「遺伝子」という用語はここでは広く使用されており、望ましいポリペプチドまたはRNAをコードしたあらゆる核酸を包含する。通常、本発明のベクターによって送達される遺伝子はcDNAである。
【0030】
また、本発明のレトロウイルスベクター粒子は、ゆっくり分裂する細胞やMLVのようなレンチウイルスでないウイルスが効率よく感染及び形質導入することができない細胞に、感染および形質導入することができる。ゆっくり分裂する細胞は、およそ3日から4日ごとに1回分裂する。哺乳動物の非分裂細胞およびゆっくり分裂する細胞は、脳細胞、幹細胞、最後まで分化したマクロファージ、肺上皮細胞、およびさまざまな他の細胞型を包含する。また、ある種の腫瘍細胞も包含される。腫瘍は早く分裂する細胞を含有するが、腫瘍細胞の一部、特に腫瘍の中心部にある細胞は、まれにしか分裂しない。
【0031】
本明細書中に記載したベクターゲノムをコードするDNA構築物はCMVプロモーターのような効率のよいプロモーターに連結されることが望ましい。ほかにも効率のよいプロモーターが知られている。このことがレトロウイルスベクター作製システムによるベクタ−RNAの高度の発現を実現する。
【0032】
本発明のレトロウイルスベクター作製システムに利用するための適当な宿主または生産細胞(producer cell)は、当業界でよく知られている。多くのレトロウイルスは複製能欠損ゲノムおよびパッケージング成分にすでに分割されている。技術力のない者は、それを利用することができる。生産細胞は、ベクターゲノムによってコードされていないウイルス成分、たとえば、gag,polおよびenvタンパク質をコードする。gag,polおよびenv遺伝子を生産細胞に導入し、安定な状態で細胞ゲノムに組み込んで、パッケージング細胞系を得ることができる。次に、レトロウイルスベクターゲノムをトランスフェクションまたは形質導入によってパッケージング細胞系に導入し、レトロウイルスベクター粒子を作製するために必要なDNA配列のすべてを有する安定な細胞系を創り出すことができる。別の方法では、たとえば、envコード配列、gag-polコード配列および欠損レトロウイルスゲノムのような、レトロウイルスベクター粒子を作製するために必要な異なるDNA配列を同時に、一過性三重トランスフェクションによって細胞内に導入することができる。本発明の望ましいシステムにおいて、構造成分とベクターゲノムの両方が、宿主細胞ゲノムに安定に組み込まれたDNAによって、すべてコードされている。
【0033】
添付の図面において、
第1図は、293T細胞の3-プラスミド同時トランスフェクションを用いた、本発明のベクター作製システムを示す:
第2図は、本発明において使用したHIVに基づくベクターゲノムを示す;
第3図は、本発明において使用したHIV-1 gag-pol遺伝子発現プラスミドを示す;
第4図は、5つの補助因子を欠いた本発明のベクターの形質導入効率を示す。
【0034】
すべての不要な遺伝子を欠いた安全なHIVパッケージングシステムを作製するために、本発明者らは、vpr,nef,tat,vifまたはvpuを含有しないシステムを開発した(第1図)。パッケージング成分は、3の別々のプラスミドに入れ、重複配列は最小になるようにして、組換えやヘルパーウイルスの産生が起こらないことを保証した。このHIVベクターはアフィジコリン処理した非分裂細胞にvpr不存在下で形質導入できることが示された。すべての補助遺伝子を含有するシステムに関するNaldiniらの力価と同様の力価が得られた(Naldiniら、1996a)。
【0035】
これが、最初の最小レンチウイルスベクターシステムである。このシステムで高い力価が観察されたことは、高い力価を生じるためおよび非分裂細胞を形質導入するためには補助遺伝子(rev以外)が不要であることを示す。これは、高力価のウイルス系が作製される原因がウイルス粒子への補助タンパク質(たとえばnef)の取り込みにあるという、Naldiniらによってなされた想定とは反対である。
【0036】
このシステムは、HIV治療に対してさらなる利点を有する。HIV-1 LTRを別のプロモーター、たとえば構成的なHCMVプロモーターで置き換えることによって、Tatトランス優性変異体(Echetebuら、1994)やTARデコイ(TAR decoys)(Lisziewiczら、1993)のようなアンチTat分子を治療薬として利用することが、これらがベクター作製に影響を及ぼさないため可能になる。
【0037】
本明細書中に記載の、野生型ウイルス補助遺伝子のすべてを欠いた最小レンチウイルスベクターをワクチンとしても応用できることは明らかである。
【実施例】
【0038】
材料および方法
プラスミドの構築
pGP-RRE1はpW13(Kimら、1989)由来のgag-pol vif発現プラスミドである。SmaIによって切断されたpBluescript KS+に、pW13のRRE(受入れ番号:U26942)を、StyI/StyI断片(7720-8050)を平滑末端にすることによって挿入し、pBSRREを作製した。pW13のNarI/Eco R1断片(637-5743)をClaIおよびEco RIで切断したpBSRREに挿入し、pBSGPRRE1を作製した。XhoI/NotI断片(gagpolおよびRRE含有)を発現プラスミドpCl-Neoに挿入し、pGR-RRE1を作製した。vifコード領域を除去するために、pBSGPRRE1をNdeIおよびSmaIで切断して平滑末端とし、pBSGPRRE2を作製した。gagpol遺伝子およびRREをXhoIおよびNotIサイト内のpCl-neoに挿入し、pGPRRE2を作製した。
【0039】
pTIN406,pTIN408およびpTIN414の構築は、すでに記載されている(Cannonら、1996)。pH3ZおよびpH4Zの5' LTRは、U3位置、およびHIV RおよびU5領域に、CMVプロモーターを含有する。ClaIサイトを平滑末端にすることによってHIVgpt(Pageら、1990)からHIVdgeを作製し、フレームシフト変異を生じさせた。HIVdgeをBglIIおよびPstI(473-1414)で切断し、pTIN406に挿入した。pTIN406はCMV,R(HIV)およびU5(MLV)のLTR構造を有する。pBS5'とよばれる、HIV由来のCMV,R,およびU5を含有するハイブリッドLTRを作製した。プラスミドにrevおよびRREを供与するために、Eco RI/XhoI断片(5743-8897)を、NdeIからBglII(6403-7621)までの欠失を有するHIVdge誘導体であるHIVdge1.2から切り出し、pBS5'に挿入してpBS5'Rを作製した。3' LTRは、pBS3'のNotI/XhoI断片をpBS5'Rに挿人してpH2を作製することによって与えられた。pBS3'は、pWI3のXhoI/HindIII断片、pTIN408のHindIII/KpnI断片の、pBluescriptKS+(XhoI/KpnI)への、3者の連結反応によって作製された。CMVプロモーターは、pSPCMV(SalI/XhoI)由来のpH2の唯一のXhoIサイトに挿入され、pH2CMVが作製された。pSPCMVはpLNCX(受入れ番号:M28246)(PstI/HindIII)をpSP72(Promega)に挿入することによって作製された。β−ガラクトシダーゼ遺伝子は、pTIN414からpSP72(XhoI/SphI)に挿入され、pSPlacZが作製された。pSPlacZのXhoI/SalI消化によって、pH2-CMVに挿入されたβ−ガラクトシダーゼをコードする領域を与え、pH3Zを得た。tat-欠損ベクターを作製するために、pH4Zを構築した。pH3内のEcoRI(5743)-SpeI断片を、PCRプライマ−DELT5(5'-CGTGAATTCGCCTAAAACTGCTTGTACCA-3')およびDELT3(5'-GAACTAATGACCCCGTAATTG-3')を用いて増幅したEcoRI(5881)-SpeI PCR産物で置き換えることによって、tatコード領域の最初の50bpを除去し、pH4を作製した。pH4由来のNsiI/SpeI断片をpH3Zに挿入しpH4Zを作製した。
【0040】
vpr発現プラスミドは、下記のプライマーを用いた、pNL4.3(受入れ番号:U26942)由来vprコード領域のPCR増幅によって構築された。
【0041】
5'プライマー:GCGAATTCGGATCCACCATGGAACAAGCCCCAGAAGAC(5563-5583)および3'プライマー:GCGAATTCGGATCCTCTAGGATCTACTGGCTCCATT(5834-5853)
上記の増幅物をpLIGATOR(R & D Systems)にクローニングした。vprコード領域を含有するMluIおよびXhoI断片をpCI-Neo(Promega)に挿入することによって、発現プラスミドpCI-vprを作製した。
【0042】
pAC29.1をBam HIで切断し、pSA91(BglII)に挿入されるVSV-Gコード領域を生成させた。
【0043】
細胞系
293T(293ts/Al609)(DuBridgeら、1987)細胞は、ダルベッコ改変イーグル培地(GIBCO)で維持し、HeLa細胞および208F細胞はMEM(GIBCO)で維持した。
【0044】
すべての培地は、抗生物質を添加した10%(v/v)ウシ胎児血清を含有する。
【0045】
ベクターの作製およびアッセイ
レトロウイルスベクター系は、本発明者らのすでに出版されたプロトコール(Soneokaら、1995)にしたがって予め作製しておいた。簡単に述べると、ヒト腎臓293T細胞(1.5x106)を10-cmプレートにプレーティングし、15mgの各プラスミド(ベクタープラスミドとともにgag-polおよびenv発現プラスミド)を用いて、リン酸カルシウムDNA沈澱法(ChenおよびOkayama,1987)によって一過性のトランスフェクションを行なった。培養上清を36時間後に回収し、0.45mmを通して濾過し、ただちに使用するか、または-70℃で冷凍した。8mg/mlポリブレンの存在下で、ウイルスを標的細胞に添加することによって形質導入を2時間行ない、次いで新鮮な培地を添加した。既述のように(Soneokaら、1995)、5-ブロモ-4-クロロ-3-インドリルーβ-D-ガラクトシド(X-Gal)を用いて、β−ガラクトシダーゼの48時間後の発現を測定した。1mlあたりのlacZ(青色の点)形成単位の数を計数することによって力価が得られた(1.f.u./ml)。感染の24時間前、次いで実験の間を通じて毎日、アフィジコリン(5mg/ml)を添加することによって、Gl/S期停止培養物を調製した。
【0046】
結果
HIVベクター作製
H3Z(tat陽性)およびH4Z(tat陰性)は、293T細胞への3プラスミド同時トランスフェクションによって作製されるように設計された、HIV-1を基にしたベクターである(第2図)。HIVコアによる効率のよいパッケージングのために、上記ベクターはgagの最初の778塩基を含有するが、ATG開始コドンから40bpに導入されたフレームシフト変異によりgagタンパク質の発現は妨げられる。RREは、パッケージング効率を高めるために包含されており、revはHIV mRNAの輸送を支えるためにベクターから発現される。レポーター遺伝子として働くように、内在するCMVプロモーターで駆動されるβ−ガラクトシダーゼ遺伝子が挿入された。どちらについても、ベクターゲノムの転写は、5'LTR U3を置き換えるために用いられたCMVプロモーターによって駆動される。これによってベクターゲノムはtat非依存性となる。二つのHIV-1gagpol構築物が作製された(第3図);pGP-RREI(vif陽性)およびpGP-RRE2(vif陰性)。CMVで駆動される発現プラスミドであるpCI-neoにgagpol遺伝子が挿入されているため、gagpol発現はtatに依存しない。pRV67、VSV糖タンパク質構築物をシュードタイピングのために使用した。異なるプラスミドに別の遺伝子を載せることによって、組換えにより複製コンピテントウイルスを生じる可能性を最小にすることができる。
【0047】
ベクターの形質導入効率
上記の3プラスミドを用いてヒト腎臓293T細胞を一過性同時トランスフェクションすることによって、複製能欠損レトロウイルス粒子を作製し、これをただちに使用するか、または-70℃で冷凍した。異なるベクター構築物を用いてウイルスを作製した。最小構築物(H4ZおよびpGP-RRE2)が、vif,vpr,nefおよびtat陽性ウイルスと同等の力価を与えることが明らかになった(第1表)。
【0048】
この最小システムをさまざまな細胞系について試験したところ、力価はさまざまに異なっていた(第2表)。ベクターは、293T細胞において、ポリブレン処理した場合には3.2x1051.f.u./ml、ポリブレン処理しない場合には9.1x104l.f.u./mlの力価を与えた。同じベクターが、HeLaおよび208F細胞においては、ポリブレン無しで、それぞれ9.6x103l.f.u./mlおよび8.3x1031.f.u./mlを与えた。これらの力価はNaldiniら、1996(Naldiniら、1996)によって得られた値に匹敵し、これまでに公表された最高値である。
【0049】
アフィジコリン処理細胞の形質導入へのvprの影響
非分裂細胞形質導入へのvprの影響を調べるために、pH4Z,pGP-RRE2およびpRV67プラスミドをともに使ったpCI-vprの同時トランスフェクションによってvprをパッケージングシステム内に入れた。生成したウイルス粒子の形質導入効率は、293T細胞およびHeLa細胞の増殖細胞および増殖停止細胞についてアッセイされた(第4図)。MLV由来のパッケージングおよび形質導入ベクター(Soneoka、1995)を対照として用いた。HeLa細胞および293T細胞は、アフィジコリン処理によってGl/S期で増殖停止状態となった。最小HIVベクターH4Zは増殖中のHeLaおよび293T細胞と比較して、Gl/S期停止細胞の形質導入に際しても同等の有効性を示したが、MLVを基にしたベクターは、わずかに0.002%しか有効ではなかった。
【0050】
vpr欠損H4Zは増殖停止細胞に、vpr含有ベクターと同等の効率で形質導入することができたが、このことは、ベクターが非分裂細胞に形質導入することができるためには、HIV-1 MAで十分であることを示唆する。
【0051】
結論
発明者らは、HIV-1を基にしたベクター作製システムを確立した。このシステムはvpr,vpu,nef,vifおよびtatを含有せず、3プラスミド同時トランスフェクション法に基づく。このベクターは、増殖細胞を3.2x105l.f.u./mlまでの力価で形質導入することができ、この力価はほかのMLVを基にしたベクターに匹敵するが、さらに超遠心を用いた濃縮によって容易に増加することができる(データ示さず)。ヘルパーウイルスは検出されなかった(データ示さず)。
【0052】
この最小ベクターは増殖停止HeLa細胞および293T細胞に、vpr,vif,nefおよびtat含有ベクターと同様に効率よく形質導入することが明らかになった。したがって、HIVを基にした高力価のベクターを作製するためにはrevのみが必要であり、こうしたベクターは非分裂細胞に形質導入することができると結論づけられる。
【0053】
これは、非分裂細胞に形質導入できる高力価最小レンチウイルスベクターの構築に関する最初の報告である。6つの補助遺伝子から5つを除去すること(rev以外)およびプラスミド間の配列重複を最小にすることによって、このシステムは、遺伝子治療のためのHIVベクターを作製するために、現在までのところもっとも安全なものとなっている。
【0054】
参考文献



【表1】

【表2】


【特許請求の範囲】
【請求項1】
遺伝子治療のためにレンチウイルスに由来する複製能欠損ベクター粒子を作製するためのレトロウイルスベクター作製システムであって、前記ベクター粒子は哺乳動物の非分裂標的細胞に感染及び形質導入することができ、前記システムは前記ベクターの成分をコードする一組の核酸配列を含んでなり、前記一組の核酸配列は、前記ベクターのRNAゲノム、GagおよびPolタンパク質、Envタンパク質またはその機能的代替物をコードし、補助遺伝子vpu,vpr,vif,tat,revおよびnef、または補助遺伝子vpu,vpr,vif,tat,revおよびnefと同一のもしくは同様の機能を果たすそれらに類似した補助遺伝子をコードする核酸配列が、これら補助遺伝子が機能的補助タンパク質をコードできないように破壊されているか、または前記システムより除去されている、上記レトロウイルスベクター作製システム。
【請求項2】
ベクターのRNAゲノムをコードする核酸配列が、1以上の治療上活性を有する遺伝子を含んでなる、請求項1に記載のレトロウイルスベクター作製システム。
【請求項3】
ベクターが、HIV-1、HIV-2、SIV、FIV、BLV、EIAV、CEVまたはビスナレンチウイルスに由来する、請求項1または2に記載のレトロウイルスベクター作製システム。
【請求項4】
宿主細胞中の、請求項1〜3のうちいずれか1項に記載のレトロウイルスベクター作製システム。
【請求項5】
機能し得るようにプロモーターに結合した、パッケージ可能なRNAベクターゲノムをコードし、機能し得る補助遺伝子vpu,vpr,vif,tat,revおよびnef、または補助遺伝子vpu,vpr,vif,tat,revおよびnefと同一のもしくは同様の機能を果たすそれらに類似した機能し得る補助遺伝子を含まない、請求項1〜4のいずれか1項に記載のシステムにおいて使用されるDNA構築物。
【請求項6】
プロモーターが非レンチウイルス性のプロモーターである、請求項5に記載のDNA構築物。
【請求項7】
請求項5または6に記載のDNA構築物並びにGagおよびPolタンパク質をコードするDNA構築物を含んでなる、請求項1〜4のいずれか1項に記載のシステムにおいて使用されるDNA構築物の組合わせ物。
【請求項8】
Envタンパク質またはその代替物をコードするDNA構築物をさらに含んでなる、請求項7に記載のDNA構築物の組合わせ物。
【請求項9】
1以上の発現ベクター中に、請求項5または6に記載のDNA構築物を含んでなる、請求項1〜4のいずれか1項に記載のシステムにおいて使用されるDNA構築物。
【請求項10】
遺伝子治療のためにレンチウイルスに由来する複製能欠損ベクター粒子を作製するためのレトロウイルスベクター作製システムであって、前記ベクター粒子は哺乳動物の非分裂標的細胞に感染及び形質導入することができ、前記システムは前記ベクターの成分をコードする一組の核酸配列を含んでなり、前記一組の核酸配列は、前記ベクターのRNAゲノム、GagおよびPolタンパク質、Envタンパク質またはその機能的代替物をコードしている、上記システムを作製するための方法であって、補助遺伝子vpu,vpr,vif,tat,revおよびnef、または補助遺伝子vpu,vpr,vif,tat,revおよびnefと同一のもしくは同様の機能を果たすそれらに類似した補助遺伝子を、前記一組の核酸配列から除去するかまたは破壊して、これら補助遺伝子が機能的補助タンパク質をコードできなくさせるステップを含む、上記方法。
【請求項11】
ベクターが、HIV-1、HIV-2、SIV、FIV、BLV、EIAV、CEVまたはビスナレンチウイルスに由来する、請求項10に記載の方法。
【請求項12】
請求項10または11に記載の方法によって作製されるレトロウイルスベクター作製システム。
【請求項13】
レトロウイルスベクター粒子を作製するための方法であって、請求項1〜9のいずれか1項に記載される一組の核酸配列またはDNA構築物を宿主細胞に導入すること、およびレトロウイルスベクター粒子を回収すること、を含む、上記方法。
【請求項14】
請求項1〜4または10〜13のいずれか1項に記載のシステムまたは方法によって作製されるレトロウイルスベクター粒子。
【請求項15】
非分裂細胞に形質導入することができる高力価のレトロウイルスベクター粒子を作製するための、請求項1〜4もしくは12のいずれか1項に記載のレトロウイルスベクター作製システムまたは請求項5〜9のいずれか1項に記載のDNA構築物の使用。
【請求項16】
請求項14に記載のレトロウイルスベクター粒子を含む医薬組成物。
【請求項17】
請求項14に記載のレトロウイスベクター粒子に感染したまたは該粒子を用いて形質導入された、単離された標的細胞。
【請求項18】
標的の感染および形質導入による遺伝子治療のための医薬の製造における、請求項14に記載のレトロウイルスベクター粒子の使用。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−291205(P2009−291205A)
【公開日】平成21年12月17日(2009.12.17)
【国際特許分類】
【出願番号】特願2009−183045(P2009−183045)
【出願日】平成21年8月6日(2009.8.6)
【分割の表示】特願平10−519086の分割
【原出願日】平成9年10月17日(1997.10.17)
【出願人】(306034996)オックスフォード バイオメディカ(ユーケー)リミテッド (8)
【Fターム(参考)】