説明

ロボット型ステッキ装置

【課題】ユーザーの直立位置における歩行及び起立を能動的に援助するロボット型ステッキを提供する。
【解決手段】ロボット型ステッキ100は、グリップハンドル110と、グリップハンドル110から延在するステッキ本体111と、ステッキ本体111の第2端部に結合された動力付き全方向式ホイール134と、バランス制御センサと、コントローラモジュールと、を包含する。バランス制御センサは、ロボット型ステッキ100の向きに対応したバランス信号を供給する。コントローラモジュールは、バランス制御センサからバランス信号を受信し、且つ、バランス信号及び倒立振り子制御アルゴリズムに基づいて動力付き全方向式ホイール134のバランス速度を算出する。コントローラモジュールは、算出されたバランス速度に従って、動力付き全方向式ホイール134に駆動信号を更に供給可能であり、ロボット型ステッキ100を実質的に直立した位置に維持する。

【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、一般に、人々を物理的に援助するユーザー援助装置に関し、且つ、更に詳しくは、ユーザーの直立位置における歩行及び起立を援助するロボット型ステッキに関する。
【背景技術】
【0002】
負傷した、高齢の、及び障害を有する人々にとって、物理的な援助なしには、起立及び歩行が困難な場合がある。これらの人々は、多くの場合に、1本脚型のステッキ、4本脚型のステッキ、歩行器、及び車椅子などの援助装置を頼りにしている。援助装置は、起立又は歩行できるようにユーザーに支持を提供する。動力付き車椅子やユーザー搬送装置などの動力付き装置によれば、ユーザーは、自身の労力を最小限に止めつつ、地点Aから地点Bに移動可能となろう。しかしながら、これらの装置は、リハビリの効果や自立の感覚をユーザーに提供しない。例えば、下肢における軽度から中程度の障害を有するユーザーは、歩行及び起立の方法を再度学習するために使用されるリハビリ運動の利益を享受可能である。このような動力付きの装置に乗るだけの人は、援助に完全に依存してしまい、歩行や起立を試みる際のリハビリ運動又は手順の利益を享受することができない。更には、多くの場合に、ユーザーは、独立した状態で起立すること又は所定距離だけ歩行することを所望し、従って、援助装置に対する依存を最小限にしたいと考えていよう。従って、人が直立位置において歩行及び/又は起立するのを支援するのに物理的な援助を能動的に提供する代替的な援助装置に対するニーズが存在する。
【発明の概要】
【0003】
一実施形態において、ロボット型ステッキは、グリップハンドルと、ステッキ本体の第1端部におけるグリップハンドルから延在するステッキ本体と、ステッキ本体の第2端部に結合された動力付き全方向式ホイール(motorized omni-directional wheel)と、バランス制御センサと、コントローラモジュールと、を含みうる。バランス制御センサは、ロボット型ステッキの向きに対応したバランス信号を供給する。コントローラモジュールは、バランス制御センサからバランス信号を受信し、且つ、バランス信号及び倒立振り子制御アルゴリズムに少なくとも部分的に基づいて動力付き全方向式ホイールのバランス速度を算出する。又、コントローラモジュールは、算出されたバランス速度に従って動力付き全方向式ホイールに駆動信号を供給する。算出されたバランス速度は、ロボット型ステッキを実質的に直立位置に維持するための動力付き全方向式ホイールの速さ及び方向に関係する。
【0004】
別の実施形態においては、ロボット型ステッキは、グリップハンドルと、ステッキ本体の第1端部におけるグリップハンドルから延在するステッキ本体と、ステッキ本体の第2端部に結合された少なくとも1つのホイールを具備する動力付きホイールアセンブリと、近接検出器と、コントローラモジュールと、を含みうる。近接検出器は、ロボット型ステッキに対するユーザーの位置に対応した近接信号を供給可能である。コントローラモジュールは、近接検出器から近接信号を受信し、近接信号に少なくとも部分的に基づいてユーザーからロボット型ステッキまでの距離を算出し、且つ、ロボット型ステッキがユーザー追跡モードにおいて既定の距離においてユーザーに追随するように、動力付きホイールアセンブリに駆動信号を供給する。
【0005】
更に別の実施形態においては、ロボット型ステッキは、グリップハンドルと、ステッキ本体の第1端部におけるグリップハンドルから延在するステッキ本体と、ステッキ本体の第2端部に結合された動力付き全方向式ホイールと、バランス制御センサと、グリップハンドルと関連付けられた把持力センサと、コントローラモジュールと、を含みうる。バランス制御センサは、ロボット型ステッキの向きに対応したバランス信号を供給し、且つ、把持力センサは、グリップハンドルに印加される把持力値に従って、コントローラモジュールに把持力信号を供給しうる。コントローラモジュールは、バランス制御センサからバランス信号を受信し、且つ、バランス制御センサから供給されるバランス信号に少なくとも部分的に基づいてロボット型ステッキの方向角を監視可能である。コントローラは、ロボット型ステッキの方向角を閾値角と比較し、把持力センサから把持力信号を受信し、且つ、把持力値を把持力閾値と比較しうる。把持力値が把持力閾値を超過している場合には、バランス制御センサによって通知されるユーザー重量投影(user weight projection)とは反対の反力が動力付き全方向式ホイールによって供給されるように、転倒防止モードにおいて、倒立振り子制御アルゴリズムのフィードフォワード制御ループに従って、転倒防止駆動信号がコントローラモジュールによって動力付き全方向式ホイールへ供給されうる。
【0006】
本明細書に記述されている実施形態によって提供されるこれらの及び更なる特徴については、添付図面との関連において、以下の詳細な説明を参照することにより、更に十分に理解することができよう。
【0007】
添付図面に示されている実施形態は、事実上、例証と例示を目的としたものであり、従って、請求項に規定されている主題を制限することを意図したものではない。例示用の実施形態に関する以下の詳細な説明は、添付図面との関連において参照された際に理解可能であり、添付図面においては、同一の構造が同一の参照符号によって示されている。
【図面の簡単な説明】
【0008】
【図1】本明細書に図示及び記述されている1つ又は複数の実施形態に係る、直立位置におけるロボット型ステッキを示す。
【図2】本明細書に図示及び記述されている1つ又は複数の実施形態に係る、全方向式ホイールを具備した動力付きホイールアセンブリを示す。
【図3】本明細書に図示及び記述されている1つ又は複数の実施形態に係る、展開位置にある引き込み可能な補助支持部を具備した直立位置にあるロボット型ステッキを示す。
【図4】本明細書に図示及び記述されている1つ又は複数の実施形態に係る、角度のついた向きにおけるロボット型ステッキの側面図を示す。
【図5】本明細書に図示及び記述されている1つ又は複数の実施形態に係る、ロボット型ステッキ電気制御システムの概略図を示す。
【図6】本明細書に図示及び記述されている1つ又は複数の実施形態に係る、ロボット型ステッキのコントローラモジュールの概略図を示す。
【図7A】ユーザーと、本明細書に図示及び記述されている1つ又は複数の実施形態に係る、角度のついた向きにおけるロボット型ステッキと、を示す。
【図7B】ユーザーと、本明細書に図示及び記述されている1つ又は複数の実施形態に係る、転倒防止モードにおいて作動するロボット型ステッキと、を示す。
【発明を実施するための形態】
【0009】
図1は、ユーザーの歩行又は起立を援助するロボット型ステッキの一実施形態を概略的に示している。ロボット型ステッキは、概して、グリップハンドルと、ステッキ本体と、動力付きホイールアセンブリと、コントローラモジュールと、を有する。ロボット型ステッキは、バランス制御センサを更に有することが可能であり、且つ、動力付きホイールアセンブリは、単一の全方向式ホイールを有することができる。以下、ロボット型ステッキの様々な実施形態及びロボット型ステッキの動作について更に詳細に説明することとする。
【0010】
まず、図1を参照すれば、ロボット型ステッキ100の一実施形態が示されている。ステッキは、概して、ステッキ本体111に機械的に結合された全方向式ホイール134を具備する動力付きホイールアセンブリ130を有する。ステッキ本体111は、角度のついたグリップハンドル110において終端している。ユーザーは、グリップハンドル110を把持可能であり、且つ、歩行又は起立している際にロボット型ステッキを使用して自身の体重を支持可能である。
【0011】
図2は、図1に示されている全方向式ホイール134を有する動力付きホイールアセンブリ130を示している。尚、本明細書においては、単一の全方向式ホイールを具備した動力付きホイールアセンブリにからめて実施形態について記述することになるが、実施形態は、これに限定されるものではない。動力付きホイールアセンブリは、ユーザーを支持及び支援するべく使用可能な任意の数のホイールを具備可能である。例えば、全方向式ホイールを参照して後述するように、ロボット型ステッキが、倒立振り子制御を伴うことなしに直立位置に留まることができるように、ロボット型ステッキは、3つ又は4つの動力付きホイールを具備可能である。
【0012】
図1及び図2を参照すれば、動力付きホイールアセンブリ130は、ホイールハウジング132内に配設された動力付き全方向式ホイール134を有することができ、ホイールハウジング132は全方向式ホイール134による床などの支持表面との接触を実現する開口部136を具備する。ホイールハウジング132は、例えば、ステンレススチールやアルミニウムなどの金属材料から、又は成型されたプラスチック材料から製造可能である。動力付き全方向式ホイール134は、その外周部に複数の動力付きローラー要素138が配置されたホイール139として構成可能である。ホイール139は、金属又は剛性プラスチック材料から製造可能である。図1及び図2の両方を参照すれば、ホイール139は、1つ又は複数の駆動信号163(図5及び図6参照)を駆動モーター(図示せず)に印加することにより、矢印Aによって示されている角度方向において回転可能である。角度方向Aにおけるホイール139の回転により、ロボット型ステッキ100は、図1に示されている方向140及び142において移動する。
【0013】
複数のローラー要素138のそれぞれは、矢印Bによって示されている角度方向において回転可能である。ローラー要素138は、個別に又は協働して回転可能である。それぞれのローラー要素138の回転の角度方向は、ホイール139の回転の角度方向に対して垂直である。一実施形態においては、それぞれのローラー要素138は、そのローラー要素138の回転を開始するための駆動信号の印加によって作動可能な個別のローラー要素モーター(図示せず)に機械的に結合されている。ローラー要素138の回転により、ロボット型ステッキは、方向141及び143において移動可能となるが、これら方向は、ホイール139の回転によって提供される方向140及び142に対して垂直である。ローラー要素は、全方向式ホイール134と支持表面との間の摩擦を増大させるゴム材料又は類似の材料から製造された外側部分を具備可能である。
【0014】
後程詳述するように、ホイール139とローラー要素138が協働して回転し、複数の方向におけるロボット型ステッキ100の移動を可能にし、これにより、ロボット型ステッキ100が、ユーザーの意図した移動方向に従って移動すると共に倒立バランス制御を使用してそのバランスを保持するべく移動するように、駆動信号163を動力付き全方向式ホイール134に供給可能である。その他の全方向式ホイールの構成及び制御を動力付きホイールアセンブリ130に組み込むことも可能であり、且つ、実施形態は、図1〜図3に示されている全方向式ホイールに限定されるものではない。一実施形態においては、全方向型の機能を提供するべく、ローラー要素138の回転との組合せにおいて又はこの代わりに、ホイール139が矢印Cによって示されている方向において制御可能に回転することができるように、動力付きホイールアセンブリ130をステッキ本体111に回転可能に結合してもよい。この実施形態においては、動力付きホイールアセンブリ130は、ユーザーの意図した移動方向の方向に旋回可能である。
【0015】
図1を再度参照すれば、動力付きホイールアセンブリ130は、ステッキ本体111に結合されている。ステッキ本体111は、1つのコンポーネントとしてホイールハウジング132と一体をなしたものであってもよく(例えば、ステッキ本体111とホイールハウジング132を1つのコンポーネントとして成型可能であり)、或いは、留め具によって機械的に1つに結合される別個のコンポーネントであってもよい。ステッキ本体111は、軽量の金属又はプラスチックから製造可能である。又、前述のように、動力付きホイールアセンブリ130は、動力付きホイールアセンブリ130がステッキ本体111に対して回転することができるように、ステッキ本体111に対して回転可能に結合することも可能である。図示の実施形態においては、ステッキ本体111は、動力付きホイールアセンブリ130に結合された下部セクション116と、中間セクション114と、ロボット型ステッキ100がほぼ鉛直向きにある際にグリップハンドル110が支持表面に対してほぼ垂直になるように湾曲した及び角度付けされた上部セクション112と、を有する。尚、ロボット型ステッキ100は、3つのセクションからなるステッキ本体を具備するものとして示されているが、実施形態は、これに限定されるものではない。実施形態は、例えば、単一のセクションを具備したステッキ本体111を有することも可能である。一実施形態においては、下部セクション116に沿って中間セクション114を平行運動させることにより、ロボット型ステッキ100の高さを調節することができるように、中間セクション114を下部セクション116に対して摺動可能に結合することができる。
【0016】
ステッキ本体111は、バランス制御センサ122やコントローラモジュール160などの様々な電子コンポーネントを収容可能である。後程詳述するように、バランス制御センサ122及びコントローラモジュール160は、ロボット型ステッキがほぼ鉛直向きにそのバランスを保持し、ユーザーの重量の少なくとも一部分を支持し、且つ、ユーザーの意図した移動方向に応じた方向において移動できるように、動力付き全方向式ホイールに印加される駆動信号を生成すべく協働ししうる。
【0017】
グリップハンドル110は、把持力センサ120を有することが可能であり、且つ、ステッキ本体111の上部セクション112と一体をなすものであってもよく、或いは、別個のコンポーネントであってもよい。一実施形態においては、グリップハンドル110は、ステッキ本体111の上部部分112の端部を取り囲む円筒形状のゴム製(又はその他の類似の材料の)グリップ115を具備する。任意の数のグリップハンドル構成を利用可能である。
【0018】
把持力センサ120は、ユーザーによってグリップハンドル110に印加される把持力の量を検出するグリップハンドル110上の任意の場所に配置された力感知触覚センサであってよい。例えば、把持力センサ120は、アナログ電圧信号の形態の把持力信号121(図5参照)を生成可能であり、ユーザーによって大きな把持力がグリップハンドル110に印加された際には、大きな電圧信号が生成される。逆に、把持力が小さい際には、小さな電圧信号を把持力センサ120によって生成可能である。又、把持力センサ120は、グリップハンドルに印加された把持力のレベルを示すデジタル把持力信号121を生成することも可能である。後述するように、把持力センサ120は、コントローラモジュール160が把持力センサ120から把持力信号121を受信することができるように、コントローラモジュール160に対して通信可能に結合されている。
【0019】
図3を参照すれば、単一の動力付き全方向式ホイール134を具備した動力付きホイールアセンブリ130を有するロボット型ステッキ100は、ロボット型ステッキがパワーオフモード(即ち、支持モード)にある際に鉛直向きのロボット型ステッキの維持を支援する引き込み可能な補助支持部137を更に有する。補助支持部136は、倒立振り子制御が無効であるか又はロボット型ステッキがパワーオンされていない際にロボット型ステッキ100が倒れないように、支持表面と係合するホイール又はストッパを含みうる。補助支持部137は、ホイールハウジング132内に維持可能であり、且つ、パワーオフされた際に又は緊急事態にある際に、自動的に展開可能である。一実施形態においては、補助支持部137は、ロボット型ステッキ100の動作の際に、ホイールハウジング132内に折り畳み可能であり、且つ、次いで、ロボット型ステッキがパワーオフされた際に、ホイールハウジング132から支持表面に向かって旋回可能である。図1は、車両ハウジング内の引込み位置にある補助支持を具備したロボット型ステッキを示している。
【0020】
動力付き車両アセンブリ130は、コントローラモジュール160によって生成及び供給される1つ又は複数の駆動信号の印加によって制御されうる。図5は、ロボット型ステッキ電子制御システムの概略を示しており、図6は、コントローラモジュール160の概略を示している。図5及び図6の両方を参照すれば、コントローラモジュール160は、マイクロコントローラ162、メモリ164、及び駆動信号電子回路166と、を有しうる。コントローラモジュール160は、マイクロコントローラ162が受信する前に入力信号161を調整するための入力信号調整回路やアナログ入力信号161をデジタル信号に変換するアナログ−デジタルコンバータなどの図示されていないその他のコンポーネントを包みうる。いくつかの実施形態においては、マイクロコントローラ162は、統合されたアナログ−デジタル及びデジタル−アナログコンバータを有しうる。
【0021】
入力信号161は、様々なセンサから供給される入力信号を包みうる。例えば、図5に示されているコントローラモジュールは、把持力センサから把持力信号121を、バランス制御センサ122からバランス信号123を、力センサ126から力信号127を、そして、近接検出器124から近接信号125を、受信する。図6においては、これらの様々な入力信号を入力信号161として総合的に呼称している。マイクロコントローラ162は、これら入力信号161を受信し、動力付きホイールアセンブリ130に対して回転するように如何に命令するかを決定する。メモリ164は、マイクロコントローラ162によって読み込まれてされて実行された際に、動力付きホイールアセンブリ130に供給される駆動信号163をコントローラモジュールに生成させるコンピュータ読込み可能命令168を保存するべく作動可能である。単一の動力付き全方向式ホイール134を利用する実施形態においては、実行可能な命令の組168は、バランス信号123に基づいた動力付き全方向式ホイールのバランス速度を算出する倒立振り子制御アルゴリズムを包みうる。
【0022】
駆動信号電子回路166は、マイクロコントローラ162から信号を受信し且つロボット型ステッキ100の運動及びバランス制御を制御すべく動力付きホイールアセンブリ130に送信される駆動信号163を生成するために、設けられる。駆動信号電子回路166は、マイクロコントローラ162からの命令に従って電圧又は電流を出力すべく構成されたトランジスタ又はその他のスイッチング装置を包みうる。動力付きホイールアセンブリ130に供給される1つ又は複数の駆動信号163は、動力付きホイールアセンブリの特定のタイプ及び構成によって左右されることになる。別の実施形態においては、駆動制御電子回路166は、マイクロコントローラ162から供給されるデジタル信号をアナログ信号に変換して動力付きホイールアセンブリ130に供給されるアナログ駆動信号163を生成すべく動作可能なデジタル−アナログコンバータを更に有することができる。
【0023】
ここで図4を参照すると、バランス制御センサ122は、ロボット型ステッキ100の向き及び運動を測定する。バランス制御センサ122は、鉛直向きに対するロボット型ステッキ100の向きと、ロボット型ステッキ100の加速度とを測定する能力を有する1つ又は複数のジャイロスコープ及び/又は加速度計を有することができる。バランス制御センサ122から供給されるバランス信号123は、ロボット型ステッキ100の中心軸と鉛直向きとの間の方向角θと、ロボット型ステッキ100の中心軸から全方向式ホイールの回転軸までの支持表面170に沿ったオフセット水平距離dと、に対応している。例えば、バランス信号123は、ロボット型ステッキ100が倒れつつある方向及び加速度に関係した情報、又はユーザーの重量シフト及び所望の移動の方向及び速さに関係した情報を供給する。
【0024】
全方向式ホイール134を利用する実施形態においては、ユーザーの介入を伴わない自律的な起立動作の際にほぼ直立した位置においてバランスした状態でロボット型ステッキ100を維持し、且つ、ユーザー援助動作においてユーザーをバランスした状態に維持するための反力を供給するべく、コントローラモジュール160は、メモリ164内に保存された倒立振り子制御アルゴリズムを具備する。自律的な起立動作とユーザー援助動作の際には、いずれの場合にも、コントローラモジュール160は、ロボット型ステッキ100をほぼ直立した位置に維持する。倒立振り子制御アルゴリズムは、ファジー制御ロジック、H制御ロジック、又はほぼ直立した位置においてロボット型ステッキ100を維持するための全方向式ホイール134のバランス速度を算出する任意のその他のフィードバック法に基づいたものであってよい。倒立振り子制御に従って、全方向式ホイールは、回転し、ロボット型ステッキ100をわずかに運動させ、ステッキが直立状態に留まるようにステッキの転倒運動に対抗させる。図4を参照すれば、図示のロボット型ステッキ100は、比較的に大きな方向角θで方向付けられている。ファジー制御ロジック又はH制御ロジックを使用することにより、コントローラモジュール160は、ロボット型ステッキ100を直立位置に維持するために全方向式ホイール134を回転させるべき角速度及び方向を示すバランス速度を算出する。次いで、コントローラモジュールの駆動電子回路166は、ホイールが相応して回転し、その結果、ホイールが水平距離dだけ(即ち、右方向に)移動し、これにより、方向角θ及びオフセット距離dがゼロに等しくなるように、1つ又は複数の駆動信号を全方向式ホイール134に供給する。従って、倒立振り子制御アルゴリズムにより、全方向式ホイールは、連続的な補正回転を実行し、ユーザーの介入なしに、ステッキを実質的に直立した状態に維持することができる。
【0025】
ユーザー援助モードにおいては、コントローラモジュール160は、駆動信号を全方向式ホイール134に供給してロボット型ステッキ100を直立状態に維持するのみならず、ロボット型ステッキ100によってユーザーを起立位置において支持するか、或いは、ロボット型ステッキ100を、ユーザーの所望の移動の方向及び速さに適合した方向及び速さで移動させる。図1に下向きの矢印150によって総合的に示されているように、ユーザーは、起立位置において留まるか又は特定の方向に歩行するべくロボット型ステッキ100を使用して自身を援助することにより、略下向きの力をグリップハンドル120においてロボット型ステッキ100に対して印加しうる。
【0026】
ユーザーは、ステッキがほぼ直立した位置に留まった状態でユーザーと同一の方向及び速さにおいて移動するように、グリップハンドル110においてステッキを保持した状態で歩行しうる。バランス制御センサ122のセンサ装置から供給されるバランス信号123は、ユーザーによってグリップハンドル110においてロボット型ステッキ100に印加された力又は重量投影(weight projection)を通知する。重量投影は、所望の移動の方向及び速さに対応している。ユーザーがロボット型ステッキ100を前方に押し出した際に、方向角θは、ユーザーが歩行を所望している方向及び速さに対応したユーザーの重量投影をコントローラモジュールに対して示すことになる。コントローラモジュール160は、バランス信号123を受信し、且つ、ユーザーの重量投影を算出し、且つ、ロボット型ステッキ100をユーザーの速さ及び方向において移動させることになる全方向式ホイール134の角速度及び方向を決定する。次いで、コントローラモジュール160は、これに相応し、駆動信号を全方向式ホイールに対して出力する。ユーザーと共に移動しつつほぼ直立した位置に留まることにより、ロボット型ステッキ100は、グリップハンドル110に対して反力を供給し、且つ、歩行しているユーザーを支持する。
【0027】
別の実施形態においては、意図した移動の方向及び速さは、グリップハンドル110内に維持されている力入力装置126(図5)によって供給可能である。力入力装置126は、力の大きさ及び方向の両方を検出する多軸センサであってよい。力入力装置126は、グリップハンドル110に印加された力を検出し、且つ、力入力信号127をコントローラモジュール160に供給する。コントローラモジュール160は、力入力信号127を使用し、ロボット型ステッキをユーザーの意図した歩行の速さ及び方向において移動させる駆動信号を算出して供給する。
【0028】
又、コントローラモジュール160は、ユーザーの転倒投影(falling projection)に対して反力を迅速に供給する転倒防止モードにおいてロボット型ステッキ100を作動させるようにプログラムすることも可能である。ステッキ又は歩行器などのその他の支持装置のユーザーが自身のバランスをまさに失おうとしている際には、彼らは、ステッキ又は歩行器を強く把持することによって本能的に反応する。実施形態では、グリップハンドル110に対して印加されるユーザーの把持力におけるこの突然の変動を使用して、ユーザーがバランスを失いつつあることを予測すると共に、ユーザー援助モードから転倒防止モードに切り替えることにより、相応して反応しうる。
【0029】
把持力センサ120は、ユーザーによってグリップハンドル110に印加される力の突然の増大に応答して把持力信号121を供給可能である。コントローラモジュール160は、把持力信号121を受信する。例えば、把持力信号121が把持力閾値を上回っている場合には、コントローラモジュール160は、メモリ内に保存されているコンピュータ実行可能命令に従って、動作制御モードをユーザー援助モードから転倒防止モードに切り替える。転倒防止モードにおいては、コントローラモジュール160は、ユーザー援助モードにおけるサンプリング頻度を上回る増大した頻度においてバランス制御センサのバランス信号122をサンプリングし、ユーザーの潜在的な転倒に対して迅速に反応しうる。コントローラモジュール160は、前述のように、バランス信号122をサンプリングし、ロボット型ステッキの向きを算出する。ロボット型ステッキの向きは、ユーザーの重量投影を示している。
【0030】
図7Aを参照すると、矢印Dによって示されている方向において自身のバランスを失いつつある状態のユーザー180が示されている。転倒の開始時点におけるユーザーの重量投影(矢印E)により、ロボット型ステッキ100は、方向角θと、動力付きホイールアセンブリ130の全方向式ホイールの回転軸からロボット型ステッキ100の中心軸までの正のオフセット水平距離dと、を具備することになる。グリップハンドルにおける力の突然の増大に基づいて転倒防止モードに切り替わった後に、コントローラモジュール160は、ロボット型ステッキの向きを測定し、且つ、測定されたステッキの向きに従って、全方向式ホイールに対して印加される転倒防止駆動信号を算出する。転倒防止モードは、フィードバック制御ループに加えて、フィードフォワード制御ループ(即ち、オープン制御ループ)を利用して、ユーザーの重量投影を迅速に測定し、且つ、転倒防止駆動信号を算出する。
【0031】
ユーザー援助モードとの関連において前述したように、駆動信号を印加してホイールアセンブリ130をモーターによって駆動してロボット型ステッキ100を直立位置に復帰させるのではなく、転倒防止駆動信号の場合には、ロボット型ステッキ100は、ロボット型ステッキ100がユーザーを支持できるように、転倒の際にユーザーの重量投影に対して反力を供給する角度に方向付けられる。次に、図7Bを参照すれば、図7Aに示されている転倒の際にユーザー180を支持するためのロボット型ステッキ100の向きが示されている。転倒防止駆動信号により、ロボット型ステッキ100は、ロボット型ステッキが実質的に直立した位置に対応する位置を過ぎて移動するように、オフセット距離dを上回る距離だけ矢印Fによって示されている方向に迅速に平行運動せしめられる。ロボット型ステッキ100は、動力付きホイールアセンブリ130の全方向式ホイールの回転軸からロボット型ステッキ100の中心軸までの負の距離−dが得られるように、平行運動する。従って、転倒防止駆動信号により、ロボット型ステッキ100は、ユーザーの重量投影によって提供された方向角θとは反対の方向角−θで方向付けられる。このロボット型ステッキの向きは、矢印Gによって示されている反力を重量投影Eに対して提供する。この結果、ロボット型ステッキは、潜在的な転倒の早期の時点においてユーザーを支持可能である。この結果、ユーザーは、自身のバランスを取り戻して安定した起立位置に復帰し、且つ、グリップハンドル110に対する自身の把持力を緩和しうる。コントローラモジュール160は、把持力信号121及びバランス信号123を継続的に監視してユーザーが安定していることを判定し、且つ、次いで、転倒防止モードからユーザー援助モードに戻るように切り替える。
【0032】
又、実施形態は、特定の距離においてユーザーに追随するようにロボット型ステッキ100がプログラムされるユーザー追跡モードにおいて作動してもよく、この距離は、ユーザーによってプログラム可能であってよい。距離は、ロボット型ステッキ100上の入力装置を使用することにより、或いは、ロボット型ステッキに対して通信可能に結合されるコンピュータを使用することにより、プログラムされうる。このユーザーに追随するロボット型ステッキ100の能力は、ユーザーが独力での歩行を試みているが、依然として、よろめいた場合には、身近なステッキを必要としており、且つ、援助ためにステッキを把持する必要がある物理療法又はリハビリのセッションにおいて有利であろう。同様に、ユーザー追跡モードは、援助を伴わない歩行における独立性を依然として感じることができるように、障害を有する又は高齢の人々が使用することも可能である。
【0033】
ロボット型ステッキ100には、ロボット型ステッキ100とユーザーとの間の距離に対応した近接信号125をコントローラモジュール160に供給する近接検出器124を装備可能である。コントローラモジュール160は、ロボット型ステッキ100がほぼ直立した位置において留まると共に既定の距離においてユーザーに自律的に追随するように、近接信号125を受信し、この信号を使用して駆動信号163を算出するべくプログラム可能である。
【0034】
近接検出器は、様々な形態をとることができる。一実施形態においては、近接検出器は、ユーザーと関連付けられたRFIDタグと通信するステッキ本体111上に配置されたRFIDタグリーダー装置である。RFIDリーダー装置又はコントローラモジュール160は、RFIDリーダー装置とRFIDタグの間において通信されるRF信号に基づいて、ロボット型ステッキとの関係におけるユーザーの位置を測定可能である。別の実施形態においては、近接検出器123は、ロボット型ステッキとユーザーとの間の距離を検出するステッキ本体111上に配置された1つ又は複数の赤外線距離センサとして構成される。この結果、1つ又は複数の赤外線距離センサは、1つ又は複数の近接信号をコントローラモジュールに供給可能である。その他の近接検出器装置を使用することも可能である。例えば、無線通信装置をロボット型ステッキ上の無線受信機によって受信される無線ビーコン信号を放出するユーザーと関連付け可能である。無線受信機又はコントローラモジュールは、受信された無線ビーコン信号に基づいて、ロボット型ステッキとの関係におけるユーザーの位置を測定しうる。
【0035】
いくつかの実施形態には、登録されたユーザーのみがロボット型ステッキを動作させることができるように、ユーザー識別装置を装備可能である。ユーザー識別装置は、数字又は英数字パッド、指紋検証装置、又は顔面認識装置であってよい。ユーザーの身元が検証されたら、ロボット型ステッキ100は、1つ又は複数のユーザーパラメータに従って自動的に設定されうる。例えば、ロボット型ステッキ100が特定の登録ユーザーにとって適切な高さとなるように、ステッキ本体111の長さを自動的に調節しうる。例えば、特定のユーザー用の最大速さと転倒防止モードの無効化などのその他のパラメータを設定することも可能である。
【0036】
いまや、本明細書に記述されているロボット型ステッキの実施形態を使用して歩行及び起立の援助をユーザーに対して提供可能であることが理解されたであろう。例えば、一実施形態においては、ロボット型ステッキは、ほぼ直立した状態に留まると共にユーザーの歩行運動に対応した方向及び速さで移動すべく駆動される単一の全方向式ホイールを具備した動力付きホイールアセンブリを有する。又、実施形態は、ユーザーの転倒の開始に応答して反力を供給するべく迅速に方向付けすることも可能である。又、ロボット型ステッキが既定の距離においてユーザーに追随するように、追跡モードを提供することも可能である。
【0037】
「ほぼ」及び「略」という用語は、本明細書においては、量的な比較、値、計測値、又はその他の表現に帰することができる不確実性の固有の程度を表すべく利用されている場合があることに留意されたい。又、これらの用語は、本明細書においては、量的表現が、対象の主題の基本的な機能の変化を結果的にもたらすことなしに、記述されている基準から変化することができる程度を表すためにも、利用されている。
【0038】
以上、特定の実施形態について図示及び記述したが、特許請求されている主題の精神及び範囲を逸脱することなしに、様々なその他の変更及び変形を実施可能であることを理解されたい。更には、本明細書においては、特許請求されている主題の様々な態様について記述しているが、これらの態様の組合せとしての利用は必須ではない。従って、添付の請求項は、特許請求されている主題の範囲に含まれるそれらすべての変更及び変形を包含するものと解釈されたい。

【特許請求の範囲】
【請求項1】
ロボット型ステッキであって、
グリップハンドルと、
ステッキ本体であって、前記ステッキ本体の第1端部における前記グリップハンドルから延在するステッキ本体と、
前記ステッキ本体の第2端部に結合された動力付き全方向式ホイールと、
バランス制御センサであって、前記ロボット型ステッキの向きに対応したバランス信号を供給するバランス制御センサと、
前記バランス制御センサから前記バランス信号を受信し、前記バランス信号及び倒立振り子制御アルゴリズムに少なくとも部分的に基づいて前記動力付き全方向式ホイールのバランス速度を算出し、且つ、前記算出されたバランス速度に従って前記動力付き全方向式ホイールに駆動信号を供給するコントローラモジュールであって、前記算出されたバランス速度は、ほぼ直立した位置に前記ロボット型ステッキを保持するための前記動力付き全方向式ホイールの速さ及び方向と関係している、コントローラモジュールと、
を有するロボット型ステッキ。
【請求項2】
前記コントローラモジュールは、前記バランス信号及び前記倒立振り子制御アルゴリズムに少なくとも部分的に基づいて、ユーザーによって提供されるユーザー重量投影を更に算出し、且つ、前記ユーザー重量投影に従って、前記動力付き全方向式ホイールに前記駆動信号を供給し、
前記ユーザー重量投影は、望ましいユーザーの方向及び望ましい移動の速さに対応しており、且つ、
前記駆動信号は、前記ロボット型ステッキが実質的に前記望ましいユーザーの方向及び前記望ましい移動の速さにおいて移動するように、前記動力付き全方向式ホイールを制御する請求項1に記載のロボット型ステッキ。
【請求項3】
前記倒立振り子制御アルゴリズムは、ファジー制御ロジック又はH制御ロジックを有する請求項1に記載のロボット型ステッキ。
【請求項4】
複数の引き込み可能な補助支持部を更に有し、前記複数の引き込み可能な補助支持部は、前記ロボット型ステッキが支持モードにおいて作動する際に、前記複数の引き込み可能な補助支持部が支持表面と係合するように、係合位置にあり、且つ、前記複数の引き込み可能な補助支持部は、前記ロボット型ステッキが非支持モードにおいて作動する際に、前記複数の引き込み可能な補助支持部が前記支持表面から係合解除されるように、非係合位置にある請求項1に記載のロボット型ステッキ。
【請求項5】
前記グリップハンドルに印加された把持力値に従って前記コントローラモジュールに把持力信号を供給するべく前記グリップハンドルと関連付けられた把持力センサを更に有し、
前記コントローラモジュールは、
前記把持力センサから前記把持力信号を受信し、
前記把持力値を把持力閾値と比較し、且つ、
前記把持力値が前記把持力閾値を超過している場合に、前記動力付き全方向式ホイールに転倒防止駆動信号を供給し、
前記転倒防止駆動信号は、前記動力付き全方向式ホイールが前記バランス制御センサによって通知されたユーザー重量投影とは反対の反力を供給するように、前記把持力信号と、前記バランス信号と、前記倒立振り子制御アルゴリズムのフィードフォワードループと、に少なくとも部分的に基づいて決定される請求項1に記載のロボット型ステッキ。
【請求項6】
ロボット型ステッキであって、
グリップハンドルと、
ステッキ本体であって、前記ステッキ本体の第1端部における前記グリップハンドルから延在するステッキ本体と、
前記ステッキ本体の第2端部に結合された少なくとも1つのホイールを有する動力付きホイールアセンブリと、
近接検出器であって、前記ロボット型ステッキとの関係におけるユーザーの位置に対応した近接信号を供給する近接検出器と、
前記近接検出器から前記近接信号を受信し、前記近接信号に少なくとも部分的に基づいて前記ユーザーからの前記ロボット型ステッキの距離を算出し、且つ、前記ロボット型ステッキが所定の距離において前記ユーザーに追随するように、前記動力付きホイールアセンブリに駆動信号を供給するコントローラモジュールと、
を有するロボット型ステッキ。
【請求項7】
力入力装置を更に有し、前記力入力装置は、援助モードにおいて前記グリップハンドルに印加される力の大きさ及び方向に対応した力信号を供給し、且つ、
前記コントローラモジュールは、
前記力信号をバランス制御センサから受信し、
前記力信号に少なくとも基づいてユーザー速度を算出し、且つ、
前記ロボット型ステッキが前記援助モードにおいて作動している際に、前記ロボット型ステッキが実質的に所望のユーザーの方向及び移動の速さにおいて移動するように、前記算出されたユーザー速度に従って、前記動力付きホイールアセンブリに前記駆動信号を供給する請求項6に記載のロボット型ステッキ。
【請求項8】
バランス制御センサを更に有し、
前記バランス制御センサは、前記ロボット型ステッキの向きに対応したバランス信号を供給し、
前記動力付きホイールアセンブリは、全方向式ホイールを有し、且つ、
前記コントローラモジュールは、前記バランス制御センサから前記バランス信号を受信し、且つ、前記ロボット型ステッキが直立位置に留まるように、前記バランス信号及び倒立振り子制御アルゴリズムに従って、前記動力付きホイールアセンブリに前記駆動信号を供給する請求項6に記載のロボット型ステッキ。
【請求項9】
前記グリップハンドルに印加された把持力値に従って前記コントローラモジュールに把持力信号を供給するべく前記グリップハンドルと関連付けられた把持力センサを更に有し、
前記動力付きホイールアセンブリは、動力付き全方向式ホイールを有し、且つ、
前記コントローラモジュールは、
前記把持力センサから前記把持力信号を受信し、
前記把持力値を把持力閾値と比較し、且つ、
前記把持力値が前記把持力閾値を超過している場合に、前記動力付き全方向式ホイールに転倒防止駆動信号を供給し、前記転倒防止駆動信号は、前記動力付き全方向式ホイールがバランス制御センサによって通知されるユーザー重量投影とは反対の反力を供給するように、前記把持力信号と、バランス信号と、倒立振り子制御アルゴリズムのフィードフォワードループと、に少なくとも部分的に基づいて判定される請求項6に記載のロボット型ステッキ。
【請求項10】
ロボット型ステッキであって、
グリップハンドルと、
ステッキ本体であって、前記ステッキ本体の第1端部における前記グリップハンドルから延在するステッキ本体と、
前記ステッキ本体の第2端部に結合された動力付き全方向式ホイールと、
バランス制御センサであって、前記ロボット型ステッキの向きに対応したバランス信号を供給するバランス制御センサと、
前記グリップハンドルに印加された把持力値に従って把持力信号を供給するべく前記グリップハンドルと関連付けられた把持力センサと、
前記バランス制御センサから前記バランス信号を受信し、前記バランス制御センサによって供給される前記バランス信号に少なくとも部分的に基づいて前記ロボット型ステッキの方向角を監視し、前記把持力センサから前記把持力信号を受信し、前記把持力値を把持力閾値と比較し、且つ、前記把持力値が前記把持力閾値を超過している場合に、前記動力付き全方向式ホイールが前記バランス制御センサによって通知されたユーザー重量投影とは反対の反力を供給するように、転倒防止モードにおいて、倒立振り子制御アルゴリズムのフィードフォワード制御ループに従って前記動力付き全方向式ホイールに転倒防止駆動信号を供給するコントローラモジュールと、
を有するロボット型ステッキ。
【請求項11】
前記バランス制御センサは、前記転倒防止モードにおいては、前記ロボット型ステッキが前記転倒防止モードにおいて動作していない際を上回るサンプリング頻度において前記ロボット型ステッキの前記向きをサンプリングする請求項10に記載のロボット型ステッキ。
【請求項12】
前記転倒防止駆動信号により、前記ロボット型ステッキは、前記反力を供給する方向角において方向付けられ、且つ、
前記ロボット型ステッキは、前記把持力値が前記把持力閾値を下回った際に、ほぼ直立した位置に復帰する請求項5、9、又は10に記載のロボット型ステッキ。
【請求項13】
前記コントローラモジュールは、前記ロボット型ステッキが直立位置に留まるように、前記バランス信号と、前記倒立振り子制御アルゴリズムのフィードバックループとに従って前記動力付き全方向式ホイールを制御するべく更に動作可能である請求項12に記載のロボット型ステッキ。
【請求項14】
前記コントローラモジュールは、前記バランス信号及び前記倒立振り子制御アルゴリズムに少なくとも部分的に基づいて、ユーザーによって提供される前記ユーザー重量投影を算出し、且つ、前記ユーザー重量投影に従って、前記動力付き全方向式ホイールに駆動信号を供給し、
前記ユーザー重量投影は、望ましいユーザーの方向及び望ましい移動の速さに対応しており、且つ、
前記駆動信号は、前記ロボット型ステッキが実質的に前記望ましいユーザーの方向及び前記望ましい移動の速さにおいて移動するように、前記動力付き全方向式ホイールを制御する請求項10に記載のロボット型ステッキ。
【請求項15】
前記ロボット型ステッキは、既定の距離内においてユーザーに自律的に追随する請求項1又は10に記載のロボット型ステッキ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate


【公開番号】特開2012−35076(P2012−35076A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−167444(P2011−167444)
【出願日】平成23年7月29日(2011.7.29)
【出願人】(507342261)トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド (135)
【出願人】(511185715)イリノイ インスティテュート オブ テクノロジー (3)
【Fターム(参考)】