説明

並列する偏光子/偏光子ゾーンを有する多層光学フィルム

反射フィルムが、強め合う干渉又は弱め合う干渉によって光を選択的に反射する内部層を備え、これらの層はフィルムの第1のゾーンから第2のゾーンへと延びる。第1のゾーンにおいて、これらの層は第1の反射偏光子特性をもたらし、第2のゾーンにおいて、これらの層は、実質的に異なる反射偏光子特性をもたらす。第2のゾーンは、これらの層の少なくとも一部が、第1のゾーンにおける複屈折性と比べて低減された複屈折性を有することを特徴とする。一部の例において、第1の反射偏光子特性は、第2の反射偏光子特性の通過軸線に実質的に直交する通過軸線を有してもよい。このフィルムは、第1のゾーンと第2のゾーンにおいて実質的に同じ厚さを有してもよく、あるいは、第2のゾーンにおいて、第1のゾーンと比べて実質的に低減された厚さを有してもよい。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、2008年12月22日出願の米国特許仮出願第61/139,736号「空間選択的な複屈折低減を用いた内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films Using Spatially Selective Birefringence Reduction)」、及び2009年3月6日出願の米国特許仮出願第61/157,996号「並列するミラー/偏光子ゾーンを有する多層光学フィルム(Multilayer Optical Films Having Side-by-Side Mirror/Polarizer Zones)」、及び2009年3月6日出願の米国特許仮出願第61/158,006号「二層内部パターン形成に好適な多層光学フィルム(Multilayer Optical Films Suitable for Bi-Level Internal Patterning)」の利益を主張するものであり、これらの米国特許仮出願の開示内容は参照によって本願に組み込まれる。
【0002】
(発明の分野)
本発明は、広義には光学フィルムに関し、具体的には、反射特性の大部分が、フィルム内に配置された層の間の境界面、すなわちフィルムの内部で反射された光の強め合う干渉と弱め合う干渉によって決まる、そのようなフィルムの応用に関する。本発明はまた、それに関連する物品、システム、及び方法に関する。
【背景技術】
【0003】
多層光学フィルム、すなわち、層間の境界面で反射された光の強め合う干渉及び弱め合う干渉の結果として光を選択的に反射及び透過させるように、種々の屈折率と好適な厚さの複数の個別の層を備えるフィルムが知られている。一部の例において、そのようなフィルムは、二酸化チタンなどの高屈折率の無機材料と、二酸化ケイ素などの低屈折率の無機材料との交互層を、ガラス基材又は他の硬質な基材の上に真空蒸着することによって形成される。
【0004】
他の例において、そのようなフィルムは、交互層の構成をなす種々の有機ポリマー材料をダイに通して共押出しし、その押出し物を冷却してキャストウェブを形成し、そのウェブを好適な最終厚さへと薄くするためにキャストウェブを伸張することによって形成される。一部の例において、この伸張はまた、交互に並ぶポリマー材料の一方又は両方を複屈折性にするような方式で実施されてもよく、すなわち、所与の材料が、ある方向に沿って偏光された光に対して有する屈折率は、異なる方向に沿って偏光された光に対する屈折率とは異なるものである。
【0005】
この複屈折性の結果として、完成したフィルムは、第1の平面内方向(x軸又は遮断軸線と呼ばれることもある)に沿った、隣接する層の間における大きな屈折率の不整合と、第2の平面内方向(y軸又は通過軸線と呼ばれることもある)に沿った、隣接する層の間における実質的な屈折率の整合を有するものとなり、そのフィルム上で、第1の方向に沿って偏光された垂直入射光は大いに反射され、第2の方向に沿って偏光された垂直入射光は大いに透過される。例えば、米国特許第3,610,729号(ロジャース(Rogers))、同第4,446,305号(ロジャース(Rogers)ら)及び同第5,486,949号(シュレンク(Schrenk)ら)を参照されたい。そのようなフィルムは通常、反射偏光子と呼ばれる。
【0006】
また、その複屈折性の結果として、平面外方向に沿った(すなわち、フィルムに対して垂直な軸線に沿った)、隣接する層の間における屈折率の差が生じ、この屈折率の差は、一方又は両方の平面内方向に沿った、隣接する層の間における屈折率の差とは著しく異なるものである。この後者の状況の例は、直交する平面内方向(x及びy)の両方に沿った、隣接する層の間における実質的に同じ大きな屈折率の不整合を有し、そのため、いかなる偏光状態の垂直入射光も大いに反射されるが、平面外方向(z)に沿った隣接する層の屈折率が、実質的に整合しており、そのため、いわゆる「p偏光」光(入射平面内で偏光された光)に対する界面反射率が実質的に一定であるフィルムである。例えば、米国特許第5,882,774号(ジョンザ(Jonza)ら)を参照されたい。そのようなフィルムは通常、いかなる偏光状態の垂直入射光についても反射率が高いことから、ミラー又はミラー様フィルムと呼ばれ得る。ジョンザ(Jonza)らは、とりわけ、ブルースター角(境界面におけるp偏光光の屈折率がゼロになる角度)が非常に大きくなるか又は存在しなくなる多層スタックの構成が可能となるように、いかにして、隣接するミクロ層の間における屈折率のz軸方向の不整合、より簡潔に言えば、z方向の不整合又はΔnzが調整され得るかについて教示している。次に、これにより、p偏光光に対する界面反射率が、入射角の増加と共に徐々に減少するか、又は入射角とは無関係であるか、又は入射角が垂直方向から離れると共に増加する多層ミラー及び偏光子の構成が可能となる。その結果として、ミラーの場合にはいかなる入射方向に関しても、また偏光子の場合には選択された方向に関して、広範なバンド幅にわたって、s偏光光(入射平面に垂直に偏光された光)とp偏光光との両方に対して反射率の高い多層フィルムが実現され得る。
【0007】
また、多層光学フィルムにパターンを付与して、しるしを形成することが知られている。例えば、米国特許第6,045,894号(ジョンザ(Jonza)ら)「無色乃至有色セキュリティフィルム(Clear to Colored Security Film)」、同第6,531,230号(ウェーバー(Weber)ら)「カラーシフトフィルム(Color Shifting Film)」、及び同第6,788,463号(メリル(Merrill)ら)「二次成形性多層光学フィルム及び成形の方法(Post-Formable Multilayer Optical Films and Methods of Forming)」を参照されたい。エンボス加工ダイなどを用いて、圧力がフィルムに選択的に加えられて、選択された領域又はゾーンでフィルムが薄化され、所望のパターンが生じる。5%超又は約10%超の厚さの低減を生じ得るこの選択的な薄化は、選択された領域においてフィルムの厚さ全体にわたって効果的であり、そのため、フィルムの内部にある光学的に薄い層(「ミクロ層」)のスタック(そのミクロ層が、観測される反射及び透過特性に寄与する)もまた、フィルムの隣接領域に対して、選択された領域で薄化される。こうしてミクロ層を薄化すると、ミクロ層全体にわたる光路長の差がより小さくなる結果として、ミクロ層に関連付けられる任意の反射バンドがより短い波長にシフトする。反射バンドのこのシフトは、エンボス加工領域と非エンボス加工領域との間における反射又は透過される色の相違として観測者に明らかとなり、そのため、パターンは容易に知覚される。
【0008】
例えば、メリル(Merrill)らへの米国特許第6,788,463号は、エンボス加工されたカラーシフトセキュリティフィルムについて記載するものであり、ここで、418層の内部ミクロ層を備える多層ポリマーフィルム(209層のミクロ層それぞれに2つのパケット)が、選択された領域でエンボス加工されている。エンボス加工の前に、及びエンボス加工後の非エンボス加工領域において、ミクロ層は、短波長側のバンド端が入射角(視角)と共に、垂直における無色の外観、45度における青緑色、60度における明るい青緑色に対応して、垂直入射における720nmから、45度の視角における640nm、60度の視角における更に短い波長へとシフトした反射バンドを生成した屈折率及び厚さを有していた。これらの非エンボス加工領域において、フィルムは3.4ミル(86.4マイクロメートル)、すなわち0.0034インチ(0.086mm)の厚さを有していた。フィルムは次いで、149℃のロールと、選択された領域において約3.0ミル(76.2マイクロメートル)へとフィルムを薄化するための、予熱されたエンボス加工板との間でエンボス加工された。エンボス加工領域は、垂直入射において明るい金色を呈したが、これはバンド端が720nmからそれより短い波長へとシフトしたことを示すものである。エンボス加工領域において観測される色は、斜めの視角において青緑色又はより深い青色へと変化した。
【発明の概要】
【課題を解決するための手段】
【0009】
とりわけ、本発明者らは、本明細書において多層光学フィルムについて説明するが、その多層光学フィルムは、第1の反射偏光子と第2の反射偏光子とを、少なくとも平面内方向において第1の偏光子から第2の偏光子へと連続的又は一体的となる並列構成で、フィルム構造内に組み込み得るものである。第1及び第2の偏光子の反射特性は、実質的に、強め合う干渉又は弱め合う干渉によって光を選択的に反射する複数のミクロ層によって与えられる。フィルムの1つのゾーン内に配置され得る第1の偏光子のすべて又は相当な部分を形成する同じミクロ層が、フィルムの異なる第2のゾーン内に配置され得る第2の偏光子のすべて又は相当な部分を形成してもよい。第1及び第2の偏光子の反射特性は、実質的に異なっており、例えば、それらは、直交する通過軸線(及び直交する遮断軸線)を有することができ、又は、それらは、それぞれの通過軸線及び遮断軸線に対し、実質的に異なる相対反射性を有することができる。第1の偏光子と第2の偏光子とは共に広帯域であって、例えば、可視スペクトルを含む広範な波長バンドにわたって反射するものであってもよく、又は、共に比較的狭帯域であって、例えば、反射光及び/又は透過光において有色の外観をもたらすように、可視スペクトルの一部分のみにわたって反射するものであってもよい。各偏光子に対し、そのような反射は、いずれの場合にも、第1の偏光状態に垂直な第2の偏光状態(通過偏光状態又は単に通過状態と呼ばれる)の光に対するよりもむしろ、圧倒的に又は独占的に、第1の偏光状態の光(遮断偏光状態又は単に遮断状態と呼ばれる)に対して生じる。第1及び第2の偏光子は、所望のパターン、例えばしるしを画定する平面内形状を有するゾーン内に構成され得る。これらのゾーンは、フィルムの少なくともいくつかの部分にわたって相補的であってよく、そのため、第1の偏光子は、例えば、背景を形成してもよく、第2の偏光子は、しるしの前景を形成してもよい。
【0010】
第1及び第2の偏光子を形成するミクロ層は、第1の材料から構成された第1の組のミクロ層と、異なる第2の材料から構成された第2の組のミクロ層とを備えることができる。第1のゾーンにおいて、第1の組のミクロ層と第2の組のミクロ層とは共に、複屈折性であってもよい。第2のゾーンにおいて、ミクロ層の少なくとも一部は、第1のゾーンにおける複屈折性と比べて低減された複屈折性を有する。一部の例において、ミクロ層の組の一方は、複屈折性が実質的に低減されたことを特徴としてもよく、例えば、それらは第2のゾーンにおいて実質的に等方性であってもよく、ミクロ層の他方の組は、第1のゾーンと比べて、第2のゾーンにおいて複屈折性がほとんど又は全く低減されないことを特徴としてもよい。
【0011】
開示される反射偏光子フィルムは、第1のゾーンと第2のゾーンにおいて実質的に同じ厚さを有してもよく、又は、第2のゾーンにおいて、第1のゾーンと比べて実質的に低減された厚さを有してもよい。
【0012】
偏光子/偏光子フィルムと呼ばれ得るこの一体型の多層フィルムは、複数のポリマー層を共押出しすること、層状の押出し物をキャスティングすること、及びキャストフィルムを伸張するかあるいは配向して、光学的に薄い層の固有のスタック又はパケットを形成する少なくとも一部の層内に複屈折性を誘発することを含むプロセスを用いて製作されてもよい。伸張されたフィルムは、この時点では、実質的にその全面積にわたって、狭帯域又は広帯域の第1の反射偏光子であってもよく、この第1の反射偏光子は、遮断偏光状態の選択された波長の垂直入射光については高い反射率を、通過偏光状態の選択された波長の垂直入射光については、低い反射率を有する。通過偏光状態と遮断偏光状態との反射率の差は、フィルム内の光学的に薄い層が複屈折性である結果である。続く工程において、選択された(「処理された」)ゾーンにおけるフィルム内の層構造の物理的完全性を維持すると同時に、フィルムの残りの部分における複屈折性を低減することなく、選択されたゾーン内の層の少なくとも一部におけるこの複屈折性を低減又は排除するように、フィルムのうちの選択された部分又はゾーンが選択的に加熱されてよい。低減された複屈折性は結果として、選択された又は処理されたゾーン内に、改善された層パケットを生じることができ、その層パケットは、第1の反射偏光子とは実質的に異なる第2の反射偏光子として光を反射する。例えば、第1及び第2の反射偏光子は、直交する通過軸線と、直交する遮断軸線とを有してもよく、あるいは、第1及び第2の反射偏光子は、それぞれの通過軸線及び遮断軸線について、実質的に異なる反射率を有してもよい。
【0013】
開示されるフィルムは、染料又は顔料などの吸収剤を備えてもよい。例示的な実施形態において、吸収剤は、第1及び第2の反射偏光子の反射バンドの外側にある波長の光を優先的に吸収する。
【0014】
また、関連する方法、システム、及び物品についても議論する。
【0015】
本願のこれらの態様及び他の態様は、以下の詳細な説明から明らかとなろう。しかしながら、いかなる場合も、上記の要約は、請求する主題を限定するものとして見なされるべきではなく、その主題は、手続処理の間に補正され得るが、添付の特許請求の範囲によってのみ定義される。
【図面の簡単な説明】
【0016】
【図1】第1の反射偏光子特性を有する多層光学フィルムのロールであって、この多層光学フィルムは、しるしを形成するように、フィルムの種々の部分又はゾーンに第2の反射偏光子特性をもたらすように内部にパターン形成されているロールの斜視図。
【図2】多層光学フィルムの一部分の概略側面図。
【図3】図1の多層光学フィルムの一部分の概略断面図。
【図4】内部パターンを有する別の多層光学フィルムの一部分の概略断面図。
【図5A】内部にパターン形成された様々な一体型偏光子/偏光子フィルムの種々の製造段階についての、2層型光学的反復単位の各層の各屈折率(nx、ny、nz)を示す理想的なプロット。
【図5B】内部にパターン形成された様々な一体型偏光子/偏光子フィルムの種々の製造段階についての、2層型光学的反復単位の各層の各屈折率(nx、ny、nz)を示す理想的なプロット。
【図5C】内部にパターン形成された様々な一体型偏光子/偏光子フィルムの種々の製造段階についての、2層型光学的反復単位の各層の各屈折率(nx、ny、nz)を示す理想的なプロット。
【図5D】内部にパターン形成された様々な一体型偏光子/偏光子フィルムの種々の製造段階についての、2層型光学的反復単位の各層の各屈折率(nx、ny、nz)を示す理想的なプロット。
【図5E】内部にパターン形成された様々な一体型偏光子/偏光子フィルムの種々の製造段階についての、2層型光学的反復単位の各層の各屈折率(nx、ny、nz)を示す理想的なプロット。
【図6】多層光学フィルムを選択的に加熱して内部パターン形成を達成するための装置の概略側面図。
【図7A】パターン形成された多層フィルムの種々の第2のゾーンの概略頂面図であり、各図の上に、描写ゾーンの形成が可能なフィルムに対して光ビームが取り得る経路が重ねられている図。
【図7B】パターン形成された多層フィルムの種々の第2のゾーンの概略頂面図であり、各図の上に、描写ゾーンの形成が可能なフィルムに対して光ビームが取り得る経路が重ねられている図。
【図7C】パターン形成された多層フィルムの種々の第2のゾーンの概略頂面図であり、各図の上に、描写ゾーンの形成が可能なフィルムに対して光ビームが取り得る経路が重ねられている図。
【図8A】光ビームの相対的強度を、光ビームがフィルムの中に伝播する深さの関数として示す理想的なプロットであり、異なる3つの多層光学フィルムに対して3つの曲線が示されている図。
【図8B】局所的な吸収係数を、フィルム内への深さ又は軸方向位置の関数として示す理想的なプロットであり、3つの曲線は、図8Aの3つの曲線に対応している図。
【0017】
これらの図において、同様の参照符号は同様の要素を示すものである。
【発明を実施するための形態】
【0018】
少なくとも一部の実施形態において、開示される一体型偏光子/偏光子多層光学フィルムは、フィルムの選択的薄化に依存せずにパターン形成を達成するパターン形成技術を用いて作製され得る。例えば、1つ以上の第2の反射偏光子ゾーンが、以下で更に議論する吸収加熱技術を用いて、初期には空間的に均一である反射偏光フィルム内に形成されてよく、その吸収加熱技術において、選択されたゾーンにおけるフィルムの反射特性を隣接するゾーンに対して変化させるように、選択された(処理された)ゾーンにおける層構造の物理的完全性を実質的に維持する一方で、少なくともいくつかの内部層の複屈折性が、選択されたゾーンにおいては低減又は排除されるが、隣接するゾーンにおいては低減も排除もされないような方式で、多層光学フィルムは、圧力を選択的に加えることなく、好適な有向放射線にフィルムを暴露することによって、少なくとも1つのゾーンで選択的に加熱される。フィルムの様々な処理されたゾーン及び未処理ゾーンは、実質的に同じ全体的フィルム厚さを有してもよく、又はいずれにせよ、種々のゾーン間における反射特性の相違は実質的に、ゾーン間におけるフィルム厚さのいかなる差にも起因し得るものではない。それぞれ参照によって本願に組み込まれる、2008年12月22日出願の米国特許出願第61/139,736号「空間選択的な複屈折低減を用いた内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films Using Spatially Selective Birefringence Reduction)」(代理人整理番号64847US002)、本願と同じ日に出願される国際特許出願第US2009/XXXXXX号(代理人整理番号64847WO003)「空間選択的な複屈折低減を用いた内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films Using Spatially Selective Birefringence Reduction)」、及び国際特許出願第US2009/XXXXXX号(代理人整理番号65848WO002)「複数の複屈折層を有する内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films With Multiple Birefringent Layers)」を参照する。しかしながら、説明する一体型偏光子/偏光子多層光学フィルムは、吸収加熱製作技術で作製されるものに限定されることを意図せず、例えば好適に実現されるエンボス加工技術など、他の好適な技術によって作製される実施形態を包含することに、読者は留意されたい。
【0019】
図1は、内部層(図1には示さず)の少なくとも一部の空間選択的な複屈折低減を用いて内部にパターン形成された、又は空間的に調整された多層光学フィルム110を示している。内部パターン形成は、図示のしるし「3M」を形成するように付形された個々のゾーン112、114、116を画定している。本明細書で説明する方法論は有利にも、大量のロールツーロールプロセスに適合可能であるため、フィルム110は、巻いてロールにされた長い可撓性材料として示されている。しかしながら、この方法論は、可撓性のロール品に限定されるものではなく、小さな部品又はサンプル、並びに非可撓性のフィルム及び物品に対して実施され得るものである。
【0020】
異なるゾーン112、114、116が、異なる反射特性を有しているため、「3M」のしるしが視認可能となっている。図示の実施形態において、ゾーン112は、第1の反射偏光子を代表する第1の反射特性を有し、ゾーン114、116は、第1の反射特性とは異なる第2の反射特性を有しており、第2の反射特性は、異なる第2の反射偏光子を代表するものである。この点に関して、反射偏光子は、本願の目的において、ある平面内の軸線(「遮断軸線」と呼ぶ)に沿って偏光された垂直入射光を、その波長がパケットの反射バンド内にある場合に強く反射し、直交する平面内の軸線(「通過軸線」と呼ぶ)に沿って偏光された光を強く透過させる光学体であると見なされてよい。「強く反射する」及び「強く透過させる」は、目的の用途又は利用分野によっては異なる意味を有することもあるが、多くの場合、反射偏光子は、遮断軸線に対して少なくとも70%、80%、又は90%の反射率を有し、通過軸線に対して少なくとも70%、80%、又は90%の透過(30%、20%、又は10%未満の反射)を有する。図1に示す実施形態において、第1の反射偏光子は第1の通過軸線(矢印120を参照)を有し、第2の反射偏光子は第2の通過軸線(矢印122、124)を有しており、第1の通過軸線と第2の通過軸線とは、互いに実質的に直交している。
【0021】
留意されたいこととして、非偏光光で照明するという条件下でフィルム110を見る場合には、また第1及び第2の反射偏光子の平均反射率及び透過率によっては、通常の観測者が、ゾーン114、116をゾーン112と区別するのに困難を感じることがあり、「3M」のしるしを確認できないこともある。しかしながら、光源が非偏光のものから偏光のものに変更された場合、及び/又は、観測者が通常の偏光子を通じてフィルム110を見る場合、しるしは明確に視認可能となろう。
【0022】
他の実施形態において、第1及び第2の反射偏光子は、実質的に互いに直角でない通過軸線を有してもよいが、実質的に互いに異なる対応する第1及び第2の反射率を有してもよい。この点に関し、第1の反射偏光子の(垂直入射における)通過軸線反射率は、第2の反射偏光子の対応する(垂直入射における)通過軸線反射率とは実質的に異なるものであってもよい。別法として、第1の反射偏光子の(垂直入射における)遮断軸線反射率は、第2の反射偏光子の対応する(垂直入射における)遮断軸線反射率とは実質的に異なるものであってもよい。いずれの場合の反射率の差も、例えば、少なくとも5%、10%、若しくは20%、又は、目的の用途に適切な反射特性の相違を生じるのに十分な他の任意の値であってよい。そのような相違は、第1の反射偏光子が、ゼロ又はゼロに近い反射率を、通過軸線に平行に偏光された垂直入射光について有し、第2の反射偏光子が、それよりも相当に大きな反射率を、通過軸線に平行に偏光された垂直入射光について有するか、あるいはその逆となる実施形態において発生し得る。通過軸線に関連する相当な反射率を有する反射偏光子が、以下で説明するように、いわゆる部分偏光子となるか、又は部分偏光子を備え得る。
【0023】
必ずしもそうではないが通常、フィルム110は、少なくとも部分的に光透過性があり、その場合、ゾ―ン112、114、116もまた、それぞれの反射特性に対応する種々の透過特性を有する。一般には、言うまでもなく、透過率(T)+反射率(R)+吸収率(A)=100%、つまりT+R+A=100%である。一部の実施形態において、フィルムは完全に、波長スペクトルの少なくとも一部分にわたって低い吸収率を有する材料から構成される。このことは、熱の送達を促進するために吸収染料又は顔料を添加したフィルムに対しても当てはまることがあるが、それは、一部の吸収材料は吸収率において波長に依存するからである。例えば、近赤外線の波長領域では選択的に吸収するが、可視スペクトルでは非常に小さな吸収率を有する赤外染料の利用が可能である。スペクトルのもう一方の側で、多層光学フィルムの文献において低損失と見なされている多くのポリマー材料は、可視スペクトルの全体にわたって低損失を有するが、特定の紫外線波長では相当な吸収性を有する。したがって、多くの場合、多層光学フィルム110は、可視スペクトルなど、波長スペクトルのうちの少なくとも限定的な部分にわたって、小さな又は無視できる吸収率を有することができ、この場合、その限定的な範囲にわたる反射率と透過率とは、T+R=100%−Aであるため、かつAが小さく、T+R≒100%であるので、相補的な関係を持つ。
【0024】
以下で更に説明するように、第1及び第2の反射特性はそれぞれ、フィルムの表面に施されたコーティング又は他の表面の特徴による結果ではなく、むしろ、フィルム110の内部にある構造的特徴による結果である。開示するフィルムのこの態様では、内部の特徴を複写又は偽造することが困難となるため、フィルムは、セキュリティ用途(例えば、フィルムは、確実性の指標として、製品、パッケージ、又は文書に用いることが意図される)に有利となっている。
【0025】
第1の反射特性と第2の反射特性とは、観測者又は機械によるパターンの検出が可能となるように、少なくともいくつかの目視条件下では知覚可能となるような方式で異なっている。一部の例においては、可視波長における第1の反射特性と第2の反射特性との相違を最大化して、それにより、ほとんどの目視及び照明条件下でそのパターンが人間の観測者にとって目立つものとなるようにすることが望ましい場合もある。他の例において、第1の反射特性と第2の反射特性とのわずかな相違のみを与えるか、又は、特定の目視条件下でのみ目立つ相違を与えることが望ましい場合もある。第1の反射特性と第2の反射特性との相違は、場合によっては、主として、フィルムの種々の隣接ゾーンにおける多層光学フィルムの内部層の屈折率特性の相違に起因し得るものであり、主として隣接ゾーンの間の厚さの差に起因し得るものではない。
【0026】
人間である観測者又は他の観測システムは、第1の反射特性と第2の反射特性との区別を容易にするために、すなわち、フィルム110の第1の偏光子部分と第2の偏光子部分との区別を容易にするために、分析用偏光子又は単に検光子と呼ばれる別個の偏光子を用いてもよい。検光子は、検光子の通過軸線がフィルムの第1の偏光子部分(ゾーン112)の通過軸線120と整列するか又は平行となる第1の向きから、検光子の通過軸線が、第1の偏光子の遮断軸線と整列するか又は平行となり、フィルムの第2の偏光子部分(ゾーン114、116)の通過軸線(矢印122、124)と垂直となる第2の向きへと回転されてもよい。ゾーン112、114、116が色付きに見えるように、フィルム110の第1及び第2の反射特性が、狭帯域の電磁スペクトルに限定されている場合、例えば、検光子を通じてフィルム110を観測すると、可視領域において部分的に遮断されている偏光成分のみを目視することにより、それぞれの偏光子の明らかな彩度が容易に強調され得る。また、これらの観測条件により、フィルム110の第1の偏光子部分(ゾーン112)とフィルム110の第2の偏光子部分(ゾーン114、116)とのコントラストが強調され得る。検光子を90度回転することにより、フィルムの種々の偏光子部分のコントラストが切り替わり得る。検光子を取り除き、フィルム110によって透過又は反射された光のすべての偏光を観測することにより、検光子を使用したときに観測され得る2つの極限の間にある彩度と色のコントラストが結果として観測される。
【0027】
一般に、屈折率のゾーン間での差は、多層光学フィルムの設計によっては、第1の反射特性と第2の反射特性との間の様々な相違を生じることがある。一部の例において、第1の反射特性は、所与の中心波長、バンド端、及び最大反射率を有する第1の反射バンドを有してもよく、第2の反射特性は、中心波長及び/又はバンド端においては第1の反射バンドと同様であるが、第1の反射バンドとは(大きいか小さいかに関わらず)相当に異なる最大反射率を有する第2の反射バンドを有することによって、第1の反射特性とは異なっていてもよく、又は、第2の反射バンドは、第2の反射特性に実質的に存在しなくてもよい。これらの第1及び第2の反射バンドは、フィルムの設計に応じて、ある1つの偏光状態の光と、又は任意の偏光状態の光と関連付けられてよい。
【0028】
一部の例において、第1及び第2の反射特性は、視角への依存性において異なっていてもよい。例えば、第1の反射特性は、垂直入射における所与の中心波長、バンド端、及び最大反射率を有する第1の反射バンドを有してもよく、第2の反射特性は、垂直入射における第1の反射バンドのこれらの態様に非常に類似した第2の反射バンドを有してもよい。しかしながら、入射角が増加すると、第1の反射バンドと第2の反射バンドとは共に、より短い波長へとシフトし得るが、それぞれの最大反射率は、互いに大いにかけ離れ得る。例えば、第1の反射バンドの最大反射率は、入射角が増加しても依然として一定であるか、又は入射角の増加と共に増加し得るが、第2の反射バンドの最大反射率、又は少なくとも第2の反射バンドのp偏光成分は、入射角の増加と共に減少し得る。
【0029】
上で議論した、第1の反射特性と第2の反射特性との相違が、可視スペクトルの一部分をカバーする反射バンドに関連する場合、これらの相違は、フィルムの第1のゾーンと第2のゾーンとの間の色の相違として知覚され得る。
【0030】
ここで図2を参照すると、内部層を含むフィルムの構造が明らかとなるように、多層フィルム210の一部分が概略側面図で示されている。フィルムは、局所的なx−y−zデカルト座標系と関連させて示されており、フィルムはx軸及びy軸と平行に延び、z軸は、フィルム及びその構成層に垂直であり、フィルムの厚さ軸と平行である。留意されたいこととして、フィルム210は完全に平坦である必要はなく、湾曲していても、あるいは平面からかけ離れるように付形されていてもよく、これらの場合においても、任意に、フィルムの小さな部分又は領域が、図示のように局所的なデカルト座標系と関連付けられ得る。フィルム210は、一般に、ゾーン112、114、116のいずれかにおける図1のフィルム110を表していると見なされてよいが、これは、フィルム110の個々の層が好ましくは、そのようなゾーンのそれぞれから次のゾーンへと連続的に延びているからである。
【0031】
多層光学フィルムは一般に(反射偏光フィルムとなるように調整されたものを含むが、それらに限定はされない)、種々の屈折率を有する個別の層を含んでおり、そのため、一部の光は、隣接する層の間の境界面で反射される。「ミクロ層」と呼ばれることもあるこれらの層は十分に薄いものとなっており、そのため、複数の境界面で反射された光は、強め合う干渉又は弱め合う干渉を受けて、多層光学フィルムに所望の反射又は透過特性を与えるようになっている。紫外線、可視線、又は近赤外線の波長にある光を反射させるように設計された多層光学フィルムの場合、各ミクロ層は一般に、約1μm未満の光学的厚さ(物理的厚さに屈折率を掛けたもの)を有している。しかしながら、多層光学フィルムの外表面のスキン層、又は、ミクロ層の固有のグルーピング(「スタック」又は「パケット」として知られる)を分離するために多層光学フィルム内に配置された保護境界層(PBL)など、より厚い層も含まれ得る。図2において、ミクロ層は「A」又は「B」と記されており、「A」層はある材料から構成され、「B」層はそれとは異なる材料から構成されており、これらの層は、交互に並ぶ構成で積み重ねられて、図示のように光学的反復単位又は単位セルORU 1、ORU 2、...ORU 6を形成している。通常、完全に高分子材料で構成された多層光学フィルムは、高反射率が望まれる場合、6より更に多くの光学的反復単位を含むことになる。留意されたいこととして、最上部の「A」層を除いて、図2に示す「A」及び「B」のミクロ層のすべてがフィルム210の内部層であり、この最上部の「A」層の上部表面は、この図示の例において、フィルム210の外表面210aと一致している。図の下部の相当に厚い層212は、外側のスキン層、又は、図に示すミクロ層のスタックをミクロ層の別のスタック又はパケット(図示せず)から分離するPBLを表し得るものである。所望により、2枚以上の別々の多層光学フィルムが、例えば1枚以上の厚い接着剤層で、あるいは圧力、熱、又は積層体若しくは複合フィルムを形成する他の方法を用いて、互いに積層され得る。
【0032】
いくつかの例において、ミクロ層は、1/4波スタックに対応する厚さ及び屈折率値を有することが、すなわち、光学的な厚さの等しい2つの隣接するミクロ層を各々が有する光学的反復単位に構成されることができ(f比=50%であり、このf比は、構成層「A」の光学的厚さと完全な光学的反復単位の光学的厚さとの比である)、そのような光学的反復単位は、波長λが光学的反復単位の全体的な光学的厚さの2倍である強め合う干渉光によって、効果的に反射するものであり、ここで、物体の「光学的厚さ」は、その物理的厚さに屈折率を掛けたものを指す。他の例において、光学的反復単位におけるミクロ層の光学的厚さは、互いに異なっていてもよく、それによりf比は50%超にも50%未満にもなる。図2の実施形態において、「A」層は、全体的に、「B」層よりも薄いものとして示されている。図示した各光学的反復単位(ORU 1、ORU 2など)は、それらを構成する「A」層及び「B」層の光学的厚さの合計に等しい光学的厚さ(OT、OTなど)を有し、各光学的反復単位は、波長λがその全体的な光学的厚さの2倍である光を反射する。一般的には多層光学フィルムにおいて、具体的には、本明細書で議論する内部パターン形成多層フィルムにおいて使用されるミクロ層のスタック又はパケットによって与えられる反射性は、ミクロ層の間の境界面が概して滑らかで鮮明であり、かつ典型的な構造で使用される材料の曇り度が低い結果として、乱反射的ではなく、むしろ実際には相当に鏡面反射的である。しかしながら、一部の例において、完成した物品は、例えば、スキン層及び/若しくはPBL層に拡散材料を使用して、並びに/又は、例えば1つ以上の表面拡散構造若しくはテクスチャ表面を使用して、任意の所望の散乱度を有するように調整されていてもよい。
【0033】
いくつかの実施形態において、各光学的反復単位の光学的厚さの2倍に等しい波長を中心とする、高反射率の狭い反射バンドを設けるために、層スタック内の光学的反復単位の光学的厚さは、すべて互いに等しくてもよい。他の実施形態において、光学的反復単位の光学的厚さは、z軸又はフィルムの厚さ方向に沿った厚さ勾配にしたがって異なっていてもよく、それにより、光学的反復単位の光学的厚さは、スタックの一方の側(例えば上部)からスタックの他方の側(例えば下部)へと進むにつれて、増加するか、減少するか、又は他の機能的関連性に従う。そのような厚さ勾配を使用すると、拡大した反射バンドを設けて、対象となる延長した波長バンドにわたって、及びまた対象となるすべての角度にわたって、光の透過及び反射をスペクトルに関して実質的に平坦にすることができる。また、米国特許第6,157,490号(ホイートリー(Wheatley)ら)「先鋭化したバンド端を有する光学フィルム(Optical Film With Sharpened Bandedge)」で論じられているように、高反射率と高透過率との間の波長の遷移において、バンド端を先鋭化するように調整された厚さ勾配も使用され得る。高分子多層光学フィルムの場合、反射バンドは、先鋭化されたバンド端並びに「平頂」反射バンドを有するように設計されることができ、反射特性は、用途の波長範囲の全体にわたって基本的に一定となる。また、f比が50%とは異なる2層のミクロ層の光学的反復単位を有する多層光学フィルム、又は光学的反復単位が2層を超えるミクロ層を有するフィルムなど、他の層構成も企図される。これらの代替的な光学的反復単位の設計は、ある高次の反射を低減するように、又は励起するように構成されることができ、これは、所望の反射バンドが赤外線波長内に存在するか、あるいは赤外線波長の付近に延びる場合に有用となり得る。例えば、米国特許第5,103,337号(シュレンク(Schrenk)ら)「赤外反射光学干渉フィルム(Infrared Reflective Optical Interference Film)」、同第5,360,659号(アレンズ(Arends)ら)「2成分赤外反射フィルム(Two Component Infrared Reflecting Film)」、同第6,207,260号(ホイートリー(Wheatley)ら)「多成分光学体(Multicomponent Optical Body)」、及び同第7,019,905号(ウェーバー(Weber))「高次反射を抑制した多層反射体(Multi-layer Reflector With Suppression of High Order Reflections)」を参照されたい。
【0034】
したがって、厚さ勾配及び光学的反復単位の設計は、開示する実施形態の偏光子に、限られたスペクトルバンドで相当な反射率(それぞれの偏光子の遮断偏光状態に対して)を与えるよう所望により調整されてもよい。例えば、実質的な反射率は、実質的に1つのスペクトルバンドにわたって、少なくとも50%、又は少なくとも60%、70%、80%、又は90%以上となり得るものであり、このバンドは、スペクトルの可視部分又は他の任意の所望の部分に設けられる。このバンドは、例えば、200nm未満、150nm、100nm、又は50nm以下のバンド幅を有してもよく、これらのバンド幅はそれぞれ半値全幅(FWHM)反射率として測定されてもよい。上記のように、バンドは、0次反射と関連付けられてもよく、あるいは、光学的反復単位が好適に設計されている場合、所望の高次の反射と関連付けられてもよい。
【0035】
上述のように、多層光学フィルムの隣接するミクロ層は種々の屈折率を有しており、そのため、隣接する層の間の境界面で一部の光が反射される。本発明者らは、主軸のx軸、y軸、及びz軸に沿って偏光された光に対する、ミクロ層のうちの1つ(例えば図2の「A」層)の屈折率をそれぞれ、n1x、n1y、及びn1zと呼んでいる。x軸、y軸、及びz軸は、例えば、材料の誘電テンソルの主方向に対応してもよい。典型的に、かつ議論の都合上、種々の材料の主方向は一致しているが、一般にはそうである必要はない。本発明者らは、同じ軸に沿った、隣接するミクロ層(例えば図2の「B」層)の屈折率をそれぞれ、n2x、n2y、n2zと呼んでいる。本発明者らは、これらの層の間の屈折率の差を、x方向に沿ったΔnx(=n1x−n2x)、y方向に沿ったΔny(=n1y−n2y)、及びz方向に沿ったΔnz(=n1z−n2z)と呼んでいる。これらの屈折率の差の性質が、フィルム内(又はフィルムの所与のスタック内)のミクロ層の数及びミクロ層の厚さ分布と相まって、所与のゾーンにおけるフィルムの(又はフィルムの所与のスタックの)反射及び透過特性を制御する。例えば、隣接するミクロ層が、ある平面内方向に沿って、大きな屈折率の不整合(Δnxが大)を有し、それに直交する平面内方向に沿って、小さな屈折率の不整合(Δny≒0)を有する場合、フィルム又はパケットは、垂直入射光について反射偏光子として作用することができる。
【0036】
本願の目的において、ある材料が、対象とする波長範囲、例えば、スペクトルの紫外、可視、及び/又は赤外部分にある選択した波長又はバンドにわたって、異方性の誘電テンソルを有する場合、その材料は「複屈折性」であると見なされる。別の言い方をすれば、ある材料の主屈折率(例えば、n1x、n1y、n1z)がすべて同じでない場合、その材料は「複屈折性」であると見なされる。
【0037】
別の例において、隣接するミクロ層は、両方の平面内軸線に沿って、大きな屈折率の不整合(Δnxが大かつΔnyが大)を有してもよく、この場合、フィルム又はパケットは軸上のミラーとして作用することができる。
【0038】
上記の実施形態の変形例において、隣接するミクロ層は、z軸に沿って、屈折率の整合及び不整合を呈してもよく(Δnz≒0又はΔnzが大)、その不整合は、平面内の屈折率の不整合と同じ極性又は符号であっても、逆の極性又は符号であってもよい。Δnzをそのように調整することは、斜め入射光のp偏光成分の反射率が、入射角の増加に伴って増加するか、減少するか、又は依然として同じであるかにおいて、重要な役割を果たす。
【0039】
種々の軸に沿って、取り得る屈折率の差の並び替えが多数あることを鑑みると、層の総数及び層の厚さの分布、多層光学フィルムに含められるミクロ層パケットの個数及び種類、利用可能な多層光学フィルム210及びそのパケットの多様性は、一般に広範となる。この点に関し、本願において引用する特許文献(特許されたか否かにかかわらず、また米国特許局によって公開されたか、別の国又は特許当局によって公開されたかにかかわらない)のいずれか、並びに以下の文書に開示されている多層光学フィルムを参照する。その文書とは、米国特許第5,486,949号(シュレンク(Schrenk)ら)「複屈折干渉偏光子(Birefringent Interference Polarizer)」、米国特許第5,882,774号(ジョンザ(Jonza)ら)「光学フィルム(Optical Film)」、米国特許第6,045,894号(ジョンザ(Jonza)ら)「無色乃至有色セキュリティフィルム(Clear to Colored Security Film)」、米国特許第6,179,949号(メリル(Merrill)ら)「光学フィルム及びその製造方法(Optical Film and Process for Manufacture Thereof)」、米国特許第6,531,230号(ウェーバー(Weber)ら)「カラーシフトフィルム(Color Shifting Film)」、米国特許第6,939,499号(メリル(Merrill)ら)「実質的に一軸性の特徴を有する、横方向に延伸されたフィルムを作製するための方法及び装置(Processes and Apparatus for Making Transversely Drawn Films with Substantially Uniaxial Character)」、米国特許第7,256,936号(へブリンク(Hebrink)ら)「計画したカラーシフトを有する光学偏光フィルム(Optical Polarizing Films with Designed Color Shifts)」、米国特許第7,316,558号(メリル(Merrill)ら)「ポリマーフィルムを伸張するための装置(Devices for Stretching Polymer Films)」、国際公開第2008/144136 A1号(ネビット(Nevitt)ら)「直下型バックライト用のランプ隠蔽アセンブリ(Lamp-Hiding Assembly for a Direct Lit Backlight)」、国際公開第2008/144656 A2号(ウェーバー(Weber)ら)「バックライト及びそのバックライトを使用するディスプレイシステム(Backlight and Display System Using Same)」であり、これらは参照によって本願に組み込まれる。
【0040】
多層光学フィルムの少なくとも1つのパケット内のミクロ層の少なくとも一部は、フィルムの少なくとも1つのゾーン(例えば図1のゾーン112)において複屈折性である。したがって、光学的反復単位における第1の層が複屈折性(すなわち、n1x≠n1y、又はn1x≠n1z、又はn1y≠n1z)であってもよく、光学的反復単位における第2の層が複屈折性(すなわち、n2x≠n2y、又はn2x≠n2z、又はn2y≠n2z)であってもよく、第1の層と第2の層との両方が複屈折性であってもよい。更に、1層以上のそのような複屈折性は、少なくとも1つのゾーンにおいて、別のゾーン、例えば隣接するゾーンに対して減少する。場合によっては、これらの層の複屈折性は、ゾーンのうちの1つにおいては光学的に等方性となる(すなわち、n1x=n1y=n1z又はn2x=n2y=n2z)が、隣接するゾーンにおいては複屈折性となるように、ゼロにまで減少してもよい。両方の層が初期には複屈折性である場合、材料の選択及び加工条件に応じて、それらの層は、層のうちの1つの複屈折性のみが実質的に減少するか、又は両方の層の複屈折性が減少し得るような方式で加工されてもよい。
【0041】
例示的なミクロ層光学フィルムは、ポリマー材料から構成され、共押出し、キャスティング、及び配向加工を用いて製作されてもよい。米国特許第5,882,774号(ジョンザ(Jonza)ら)「光学フィルム(Optical Film)」、米国特許第6,179,949号(メリル(Merril)ら)「光学フィルム及びその製造方法(Optical Film and Process for Manufacture Thereof)」、及び同第6,783,349号(ニービン(Neavin)ら)「多層光学フィルムを作製するための装置(Apparatus for Making Multilayer Optical Films)」を参照する。多層光学フィルムは、上記の参照文献のいずれかに記載されているように、ポリマーの共押出しによって形成されてもよい。様々な層のポリマーが好ましくは、同様の流動学的性質、例えば融解粘度を有するように選択され、そのため、これらのポリマーは、著しい流れの乱れを伴うことなく共押出しされることができる。押出し条件は、それぞれのポリマーを、連続的かつ安定した方式で供給流又は溶融流として、適切に供給、溶融、混合、及び圧送するように選択される。溶融流の各々を形成及び維持するために用いられる温度は、温度範囲の下端において凝固、結晶化、又は不当に大きな圧力低下を回避し、範囲の上端において材料劣化を回避する範囲内となるように選択されてもよい。
【0042】
簡潔にまとめると、その製作方法は、(a)完成したフィルムにおいて使用される第1及び第2のポリマーに対応する樹脂の少なくとも第1及び第2の流れを供給する工程と、(b)(i)第1及び第2の流路を備える傾斜板であって、第1の流路は、流路に沿って第1の位置から第2の位置へ向かって変化する横断面積を有する、傾斜板と、(ii)第1の流路と流体連通する複数の第1の導管と、第2の流路と流体連通する複数の第2の導管とを有する供給管板であって、各導管は、それ自体の各スロットダイに供給し、各導管は、第1の端部と第2の端部とを有し、導管の第1の端部は流路と流体連通し、導管の第2の端部はスロットダイと流体連通する、供給管板と、(iii)前記導管に対して基部側に位置する任意選択の軸方向ロッドヒーターと、を備えるものなど、好適な供給ブロックを使用して複数の層の中へと、第1及び第2の流れを分割する工程と、(c)複合材料の流れを押出しダイに通して多層ウェブを形成する工程であって、各層は隣接する層の主表面に概ね平行である、工程と、(d)ときにキャスティングホイール又はキャスティングドラムと呼ばれるチルロールの上に多層ウェブをキャストして、多層キャストフィルムを形成する工程と、を含んでもよい。このキャストフィルムは、完成したフィルムと同じ数の層を有してもよいが、キャストフィルムの層は通常、完成したフィルムの層よりも、かなり厚いものである。更に、キャストフィルムの層は通常、すべて等方性である。
【0043】
また、多層キャストウェブを製作する多数の代替的な方法が用いられ得る。同様にポリマーの共押出しを利用する、そのような代替的な一方法が、米国特許第5,389,324号(ルイス(Lewis)ら)に記載されている。
【0044】
冷却後、多層ウェブは、延伸又は伸張されて、ほぼ完成した多層光学フィルムを生産することができ、その詳細は、上で引用した参照文献に見出され得る。延伸又は伸張は、2つの目的、つまり、所望の最終的な厚さに層を薄化すること、及び、層の少なくとも一部が複屈折性となるように層を配向することを達成する。配向又は伸張は、クロスウェブ方向に沿って(例えばテンターを介して)、ダウンウェブ方向に沿って(例えばレングスオリエンタ(length orienter)を介して)、又はそれらの任意の組合わせで、同時に又は逐次的に達成され得る。1つの方向に沿ってのみ伸張された場合、その伸張は、「非拘束的」(フィルムは、伸張方向に垂直な平面内方向において寸法的に弛緩する)、又は、「拘束的」(フィルムは拘束され、したがって、伸張方向に垂直な平面内方向において寸法的に弛緩しない)となり得る。両方の平面内方向に沿って伸張された場合、その伸張は、対称的、すなわち直交する平面内方向に沿って等しく、あるいは非対称的となり得るが、対称的な伸張は通常、反射偏光フィルムの製作には用いられない。別法として、フィルムはバッチプロセスで伸張されてもよい。いずれの場合も、その後の又は同時の延伸の低減(draw reduction)、応力又は歪みの均一化、加熱硬化、及び他の加工操作もまたフィルムに施され得る。
【0045】
多層光学フィルム及びフィルム体はまた、光学特性、機械特性、及び/又は化学特性を得るために選択された付加的な層及びコーティングを有することもできる。例えば、紫外光によって生じる長期間劣化からフィルムを保護するために、紫外線吸収層がフィルムの主要外表面の一方又は両方に加えられ得る。また、付加的な層及びコーティングには、耐擦傷性層、耐裂性層、及び硬化剤を挙げることができる。例えば、米国特許第6,368,699号(ギルバート(Gilbert)ら)を参照されたい。
【0046】
一部の例において、多層光学フィルムを構成する構成ポリマー材料のうちの1つ、一部、又はすべての天然の又は固有の吸収性は、吸収加熱処置に利用されてもよい。例えば、可視領域にわたって低損失である多くのポリマーは、特定の紫外線及び/又は赤外線波長にて相当に高い吸収性を有する。そのような波長の光にフィルムの一部分を暴露することを用いて、フィルムのそのような部分を選択的に加熱してもよい。
【0047】
他の例において、上述の吸収加熱を促進するために、吸収染料、顔料、又は他の薬剤が、多層光学フィルムの個々の層の一部又はすべてに添加され得る。一部の例において、そのような吸収剤はスペクトルに依存するものであり、それにより、ある波長領域では吸収するが、別の波長領域では吸収しない。例えば、開示されるフィルムの一部は、偽造防止セキュリティラベルで用いられるか、又は液晶ディスプレイ(LCD)装置若しくは他のディスプレイ装置の構成要素とされるなど、可視領域での使用を意図されてもよく、その場合、赤外線又は紫外線波長では吸収するが、可視波長では実質的に吸収しない吸収剤が使用されてもよい。更に、吸収剤は、フィルムの1つ以上の選択された層に添加されてもよい。例えば、フィルムは、保護境界層(PBL)、貼合わせ用接着剤層、1層以上のスキン層など、光学的に厚い層によって分離された2つの別個のミクロ層パケットを備えてもよく、吸収剤は、パケットのうちの1つに添加され、他のパケットには添加されなくてもよく、又は、両方のパケットに添加されるが、あるパケットには他のパケットよりも高い濃度で添加されてもよい。
【0048】
多様な吸収剤が使用され得る。可視スペクトルで機能する光学フィルムの場合、紫外線及び赤外線(近赤外線を含む)領域で吸収する染料、顔料、又は他の添加剤が使用されてもよい。一部の例において、フィルムのポリマー材料が相当に低い吸収率を有するスペクトル域で吸収する薬剤を選択することが有利となる場合もある。多層光学フィルムの選択した層にそのような吸収剤を添加することにより、有向放射線は、フィルムの厚さ全体にわたって熱を運ぶのではなく、選択した層に優先的に熱を運ぶことができる。例示的な吸収剤が、対象となる選択した層の組に埋め込まれ得るように、押出し可能に溶融されてもよい。この目的で、吸収体は、押出しに求められる加工温度及び滞留時間にて、好ましくは適度に安定している。考えられるいくつかの赤外染料には、ニッケル、パラジウム、及び、エポリン社(Epolin, Inc.)から商標名Epolight(商標)として入手可能な白金系染料のいずれかが挙げられる。他の好適な候補には、ジョージア州アトランタ(Atlanta)のカラーケムインターナショナル社(ColorChem International Corp.)から入手可能なAmaplast(商標)ブランドの染料が挙げられる。好適な吸収剤の更なる情報については、米国特許第6,207,260号(ホイートリー(Wheatley)ら)「多成分光学体(Multicomponent Optical Body)」を参照されたい。
【0049】
一部の例において、吸収剤は、非線形の吸収体であってもよく、すなわち、光エネルギー吸収係数が強度又はフルエンスに依存する成分であっても、そのような成分を含んでもよく、ここで強度は単位時間当たりの単位面積エネルギーを指し、フルエンスはエネルギー密度、つまり単位面積エネルギーを指す。非線形の光吸収体は、例えば、2光子吸収型であっても、逆飽和吸収型であってもよい。
【0050】
2光子吸収プロセスは、光子エネルギーが材料の線形励起に必要なエネルギーの半分におよそ等しくなる非線形の光吸収プロセスである。したがって、吸収材料の励起は、低エネルギー光子の2つを同時に吸収することを必要とする。有用な2光子吸収体の例には、ローダミンB(つまり、N−[9−(2−カルボキシフェニル)−6−(ジエチルアミノ)−3H−キサンテン−3−イリデン]−N−エチルエタンアミニウムクロライド及びローダミンBのヘキサフルオロアンチモン酸塩)、並びに、例えば国際公開第WO 98/21521号(マーダー(Marder)ら)及び同第WO 99/53242号(カンプトン(Cumptson)ら)に記載されている4種類の光増感剤など、大きな多光子吸収断面を呈するものが挙げられる。
【0051】
また、逆飽和吸収プロセスは、ときに励起状態吸収と呼ばれるものであり、吸収プロセスに伴う励起状態の吸収断面積が、基底状態から励起状態への励起の断面積よりもはるかに大きいことを特徴とする。全体的な光吸収は、基底状態吸収と励起状態吸収との両方を伴う。逆飽和吸収材料の例には、例えば、金属フタロシアニン、ナフタロシアニン、シアニン、フラーレン、金属ナノ粒子、金属酸化物ナノ粒子、金属クラスター化合物、ポルフィリン、インダンスロン誘導体、及びオリゴマー又はそれらの組合わせが挙げられる。金属フタロシアニンの例には、例えば、銅フタロシアニン(CuPC)、並びに金属又はIIIA族(Al、Ga、In)及びIVA族(Si、Ge、Sn、Pb)の半金属を含有するフタロシアニンが挙げられる。ナフタロシアニンの例には、例えば、ケイ素(SiNC)、スズ(SnNC)、及び鉛(PbNC)のフタロシアニン誘導体が挙げられる。シアニンの例には、例えば、1,3,3,1’,3’,3’−ヘキサメチルインドトリカルボシアニン(HITCI)が挙げられる。フラーレンの例には、C60及びC70フラーレンが挙げられる。金属ナノ粒子の例には、金、銀、アルミニウム、及び亜鉛ナノ粒子が挙げられる。金属酸化物ナノ粒子の例には、二酸化チタン、アンチモン酸化スズ、二酸化ジルコニウムナノ粒子が挙げられる。金属クラスターの例には、HFeCo(CO)12及びNEtFeCO(CO)12などの鉄トリコバルト金属クラスターが挙げられる。ポルフィリンの例には、テトラフェニルポルフィリン(H2TPP)、亜鉛テトラフェニルポルフィリン(ZnTPP)、及びコバルトテトラフェニルポルフィリン(CoTPP)が挙げられる。インダンスロン誘導体の例には、非置換のインダンスロン、酸化処理したインダンスロン、クロロインダンスロン、及びインダンスロンオリゴマーが挙げられる。
【0052】
ここで図3を参照すると、図3は、ゾーン112とゾーン116との境界にある領域118の近傍における、図1の多層光学フィルム110の一部分の概略断面図を示しており、また図3は、エンボス加工技術ではなく吸収加熱技術が使用されてゾーン116が形成されていると仮定したものである。フィルム110のこの拡大図において、狭い遷移ゾーン115が、ゾーン112を隣接するゾーン116から分離していることが分かる。そのような遷移ゾーンは、加工の詳細に応じて、存在しても存在しなくてもよく、また、この遷移ゾーンが存在しない場合、ゾーン116は、介在する目立った特徴を伴わずにゾーン112に直に隣接していてもよい。またフィルム110の構造の詳細が分かる。フィルムは、光学的に厚いスキン層310、312を両側に有しており、複数のミクロ層314と、別の複数のミクロ層316が、スキン層310と312との間に配置されている。ミクロ層314、316のすべてが、外側のスキン層によって、フィルム110の内部にある。ミクロ層314、316が、一方のスキン層310で始まり、その反対のスキン層312で終わる単一のミクロ層パケットの一部分であること、及びまた、ミクロ層314、316が、1層以上の光学的に厚い保護境界層(PBL)又は別の光学的に厚い内部層によって互いに分離された2つ以上の別個のミクロ層パケットの一部分であることが可能となるように、ミクロ層314と316との間の空間は、図面では開放されたままになっている。いずれの場合にも、ミクロ層314、316は好ましくはそれぞれ、光学的反復単位へと構成された、交互に並ぶ2つのポリマー材料を含み、ミクロ層314、316の各々は、図示のように、横切る(lateral)方式又は横断する(transverse)方式でゾーン112から隣接するゾーン116へと連続的に延びている。ミクロ層314、316は、強め合う干渉又は弱め合う干渉によってゾーン112に第1の反射特性をもたらしており、ミクロ層314、316の少なくとも一部は複屈折性である。ゾーン115、116は以前にはゾーン112と同じ特性を有していたが、ゾーン112におけるミクロ層の複屈折性を維持する一方でゾーン116におけるミクロ層314、316の一部の複屈折性を低減又は排除するのに十分な量の熱を、選択的に加えることによって加工されており、また、その熱は、処理されたゾーン116におけるミクロ層314、316の構造的完全性を維持するのに十分に低いものである。ゾーン116におけるミクロ層314、316の複屈折性が低減されたことは、ゾーン112に対する第1の反射特性とは異なる、ゾーン116に対する第2の反射特性をもたらす主な原因となっている。
【0053】
フィルム110は、図に示すように、ゾーン112における特徴的な厚さd1、d2、及びゾーン116における特徴的な厚さd1’、d2’を有する。厚さd1、d1’は、それぞれのゾーンにおいて、フィルムの表側の外表面からフィルムの裏側の外表面にかけて測定される物理的厚さである。厚さd2、d2’は、フィルムの表側表面の最も近くに配設されたミクロ層(ミクロ層パケットの一方の端部にある)から、フィルムの裏側表面の最も近くに配設されたミクロ層(同じ又は別のミクロ層パケットの端部にある)にかけて測定される物理的厚さである。したがって、ゾーン112におけるフィルム110の厚さと、ゾーン116におけるフィルムの厚さとを比較したい場合、d1とd1’とを比較するか、あるいはd2とd2’とを比較するかを、どちらの測定が便利であるかに応じて選択してもよい。ほとんどの場合、d1とd1’との比較は、d2とd2’との比較と実質的に同じ結果(比例的に)をもたらすであろう。(言うまでもなく、フィルムが外側のスキン層を備えておらず、ミクロ層パケットがフィルムの外表面の両方で終端する場合、d1とd2は同じとなる)。しかしながら、スキン層が、ある場所から別の場所へかけて著しい厚さの変化を経るが、それに対応する厚さの変化が下方のミクロ層に存在しないか、あるいはその逆の場合など、著しい食い違いが存在する場合、スキン層は通常、ミクロ層パケットと比較すると、フィルムの反射特性にわずかな影響しか与えないことを鑑みて、d2及びd2’パラメータを、種々のゾーンにおける全体的なフィルム厚さをより良好に表すものとして用いることが望ましいこともある。
【0054】
言うまでもなく、光学的に厚い層で互いに分離された2つ以上の別個のミクロ層パケットを備える多層光学フィルムの場合、所与のミクロ層パケットの厚さもまた、パケットにおける最初のミクロ層から最後のミクロ層までの、z軸に沿った距離として測定され、特徴付けられることができる。この情報は、種々のゾーン112、116におけるフィルム110の物理的特性を比較するより詳細な解析において重要となり得る。
【0055】
前述のように、図3で仮定されていることとして、ミクロ層314、316の少なくとも一部が、隣接するゾーン112における複屈折性と比べて、複屈折性の一部又はすべてを失うように、選択的に熱を加えることによって、ゾーン116が処理されており、そのため、ゾーン116は、ミクロ層からの光の強め合う干渉又は弱め合う干渉によって生じる反射特性を呈しており、この反射特性は、ゾーン112の反射特性とは異なるものである。選択的な加熱プロセスは、ゾーン116に非選択的に圧力を加えることを伴ってもよく、それにより、実質的に厚さの変化(パラメータd1/d1’を用いるかパラメータd2/d2’を用いるかにかかわらない)をフィルムに生じさせないことができる。例えば、フィルム110は、ゾーン112で又は未処理のフィルムで観測される通常の厚さの変動に満たない程度でゾーン112における平均厚さからかけ離れた、ゾーン116における平均厚さを呈し得る。したがって、フィルム110は、ゾーン112において、又は、フィルムのうちの、ゾーン112の一部分とゾーン116に熱処理する前のゾーン116とを囲む領域全体にわたって、Δdである厚さの変動(d1かd2かにかかわらない)を呈することができ、また、ゾーン116は、ゾーン112における空間平均厚さd1、d2(それぞれ)とΔd未満で異なる空間平均厚さd1’、d2’とを有することができる。パラメータΔdは、例えば、厚さd1又はd2の空間分布における1つ、2つ、又は3つの標準偏差を表すことができる。
【0056】
一部の例において、ゾーン116の熱処理により、ゾーン116におけるフィルムの厚さに特定の変化が生じ得る。これらの厚さの変化は、例えば、多層光学フィルムを構成する種々の材料が局所的に収縮及び/又は膨張する結果として生じ得るものであり、あるいは、熱に起因する他の現象の結果として生じ得るものである。しかしながら、そのような厚さの変化は、それらが生じる場合、処理されたゾーンにおける複屈折性の低減又は排除によって果たされる主たる役割と比較して、処理されたゾーン116の反射特性への影響においては、副次的な役割を果たすにすぎない。また、留意されたいこととして、多くの場合、フィルムのしわを回避するために、又は他の理由により、内部パターン形成を達成する選択的な熱処理の間、フィルムをその縁部で張力下に保持することが望ましいであろう。また、加えられる張力の大きさ及び熱処理の詳細により、処理されたゾーンにおけるいくぶんかの厚さの変化が結果として生じることもある。
【0057】
言うまでもなく、吸収加熱技術ではなくエンボス加工技術が用いられる場合、ゾーン112に対するゾーン116の著しい薄化が生じ、それに伴ってスペクトル特徴がより短い波長へとシフトすることもある。
【0058】
一部の例において、フィルムの反射特性を分析することにより、厚さの変化による影響を複屈折性の変化による影響と区別することが可能である。例えば、未処理ゾーン(例えばゾーン112)におけるミクロ層が、左バンド端(LBE)、右バンド端(RBE)、中心波長λ、及びピーク反射率Rを特徴とする反射バンドをもたらす場合、それらのミクロ層に所与の厚さの変化があると(ミクロ層の屈折率には変化がない)、Rとほぼ同じピーク反射率Rを有するが、未処理ゾーンの反射バンドの特徴と比較して波長において比例的にシフトしたLBE、RBE、及び中心波長を有する処理されたゾーンの反射バンドが生じ、このシフトが測定されることができる。他方で、複屈折性の変化によって光学的厚さに(通常は非常に小さな)変化が生じる結果として、複屈折性の変化は通常、LBE、RBEの波長、及び中心波長における非常に小さなシフトを生じるにすぎない。(光学的厚さは物理的厚さに屈折率を掛けたものに等しいことを思い出されたい。また、留意されたいこととして、反射偏光フィルムは、遮断状態の光に対して反射バンドを呈し得るだけでなく、通過状態の光に対しても比較的弱い反射バンドを有し得る。)しかしながら、複屈折性の変化は、ミクロ層スタックの設計によっては、反射バンドのピーク反射率に大きな影響を、あるいは少なくとも重要な影響を有し得る。したがって、一部の例において、複屈折性の変化は、Rとは相当に異なる、修正されたゾーンにおける反射バンドのピーク反射率Rをもたらすことがあり、ここで、言うまでもなく、RとRとは、同じ照明及び観測条件下で比較されるものである。R及びRが百分率で表現される場合、Rは少なくとも10%、又は少なくとも20%、又は少なくとも30%、Rと異なり得る。分かりやすい例として、Rは70%であってもよく、Rは60%、50%、40%、又はそれ以下であってもよい。別法として、Rは10%であってもよく、Rは20%、30%、40%、又はそれ以上であってもよい。R及びRはまた、それらの比を取ることで比較されてもよい。例えば、R/R又はその逆数は、少なくとも2であっても少なくとも3であってもよい。
【0059】
また、ピーク反射率の著しい変化は、複屈折性の変化が原因で隣接する層の間の屈折率の差が変化する結果として生じる、界面反射率(ときに光学パワーとも呼ばれる)の変化を示す限りにおいて、通常、反射バンドのバンド幅に少なくとも何らかの変化を伴うものであり、このバンド幅は、LBEとRBEとの間の分離を指す。
【0060】
議論したように、一部の例において、熱処理の間に選択的な圧力が実際にゾーン116に加えられていない場合でも、処理されたゾーン116におけるフィルム110の厚さ、すなわちd1’又はd2’は、未処理ゾーン112におけるフィルムの厚さとはいくぶんか異なっていてもよい。このため、図3は、d1’をd1とはわずかに異なるものとして、かつd2’をd2とはわずかに異なるものとして示している。また、「こぶ」又は他の検出可能なアーチファクトが選択的な熱処理の結果としてフィルムの外表面上に存在し得ることを示すために、遷移ゾーン115が全体的に示されている。しかしながら、一部の例において、この処理は結果として、隣接する処理されたゾーンと未処理ゾーンとの間に、検出可能でないアーチファクトを生じ得る。例えば、一部の例において、ゾーン間の境界全体にわたって自身の指を滑らせる観測者が、こぶ、隆起、又は他の物理的アーチファクトをゾーン間に検出できないこともある。
【0061】
一部の状況下では、処理されたゾーンと未処理ゾーンとの間の厚さの差が、フィルムの厚さを通じて非比例的となることもあり得る。例えば、一部の例において、外側のスキン層が、処理されたゾーンと未処理ゾーンとの間で、百分率変化で表される比較的小さな厚さの差を有することがあり得るが、その一方で、1つ以上の内部マイクロ層パケットが、同じゾーン間で、同様に百分率変化で表される大きな厚さの差を有することがある。
【0062】
図4は、内部パターン形成を組み込んだ別の多層光学フィルム410の一部分の概略断面図である。フィルム410は、光学的に厚い外側のスキン層412、414と、スキン層の間に挟み込まれた薄層又は層416内に存在するミクロ層のパケットとを備えている。ミクロ層のすべてがフィルム410の内部にある。(別の実施形態において、一方又は両方のスキン層が省かれてもよく、その場合、一方若しくは両方のPBL又はパケット内の最外方のミクロ層が、外側の層となってもよい。)これらのミクロ層は、フィルムの少なくともいくつかのゾーン又は領域において複屈折性であり、かつ少なくともフィルムの隣接ゾーンの間で横切る又は横断する方式で延びる、少なくともいくつかのミクロ層を含む。ミクロ層は第1の反射特性をもたらし、この第1の反射特性は、少なくともフィルムの第1の未処理ゾーン422における光の強め合う干渉又は弱め合う干渉に関連付けられるものである。第1の反射特性とは異なるが、同様に光の強め合う干渉又は弱め合う干渉に関連付けられる第2の反射特性をもたらすために、フィルム410は、隣接するゾーン420、424において、一部の例においてはこれらのゾーンに選択的に圧力を加えることなく、選択的に加熱されている。反射特性のこれらの相違は、反射光又は透過光における処理されたゾーンと未処理ゾーンとの間の色の相違として、観測者に明らかとなってよい。また、それぞれの色及びそれらの相違は通常、入射角と共に変化又はシフトする。フィルム410は、ゾーン420、422、424における、実質的に同じフィルム厚さを有してもよく、又は、フィルム厚さは、これらのゾーンの間でいくぶんか変動してもよいが、少なくとも一部の例において、これらのゾーンの間でのフィルム厚さのいかなる差も、第1の反射特性と第2の反射特性との相違の主たる原因となるものではない。ゾーン420、422、424は、薄層又は層416においてクロスハッチで示されるように、フィルムに対して内部又は内側にあるパターンを形成している。クロスハッチは、クロスハッチで示した領域にあるミクロ層の少なくとも一部が、ゾーン422又は他の未処理ゾーンにおける複屈折性と比較して、低減された複屈折性(ゼロの複屈折性を含む)を有していることを示している。
【0063】
ここで、図5A〜5Eの理想化したグラフに注目されたい。これらのグラフは、多層光学フィルムをパターン形成するプロセスを説明するのに役立つものである。これらはまた、それぞれ、未処理ゾーン及び処理されたゾーンにおける第1の反射特性と第2の反射特性との、考えられる種々の組合わせのいくつかを、そしてそれらの組合わせを達成する方法を説明するのに役立つものである。説明の目的で、光学フィルムの未処理ゾーンと処理されたゾーンとの双方の反射特性は、鏡に似た反射特性、窓に似た反射特性、及び偏光子に似た反射特性の3種類のうちのいずれかに分類され得る。鏡に似た反射特性は、垂直入射光のすべての偏光状態にわたって高い反射率(例えば、一部の例において、50%、60%、70%、80%、90%、95%、又は99%超)を呈し、窓に似た反射特性は、垂直入射光のすべての偏光状態にわたって低い反射率(例えば、一部の例において、20%、10%、5%、3%、又は1%未満)を呈し、偏光子に似た反射特性は、ある偏光状態の垂直入射光については高い反射率(例えば、一部の例において、50%、60%、70%、80%、90%、95%、又は99%超)を、異なる偏光状態の垂直入射光については低い反射率(例えば、一部の例において、30%、20%、10%、5%、3%、又は1%未満)を呈する。(それに代わって、反射偏光子に似た特性が、他の偏光状態に対するある偏光状態の反射率の差の面から表現されてもよい。)読者に留意されたいこととして、本明細書で議論する、多層光学フィルム又はスタックに関連する反射率は、別段の指示がない限り、外側の空気/ポリマーの境界面におけるフレネル反射を含まないものと見なされるべきである。
【0064】
これらの種々の特性の境界又は限界、例えば、何が「高い」反射率と見なされ、何が「低い」反射率と見なされるか、そしてそれらの区別は、最終用途及び/又はシステム要件に依存してよい。例えば、すべての偏光状態にわたって適度な反射率を呈する多層光学フィルム又はそのミクロ層パケットは、ある用途においては鏡であると見なされ、他の用途においては窓と見なされてよい。同様に、垂直入射光の種々の偏光状態にわたって適度に異なる大きさの反射率を呈する多層光学フィルム又はそのミクロ層パケットは、正確な反射率の値に応じて、かつ種々の偏光状態にわたる反射率の差に対する所与の最終用途の感度に応じて、ある用途に対しては偏光子、他の用途に対しては鏡、更に他の用途に対しては窓と見なされてよい。別段の指示がない限り、鏡、窓、及び偏光子の分類は、垂直入射光について指定されるものである。読者に理解されたいこととして、斜角特性は、一部の例においては、垂直入射における光学フィルムの特性と同じとなるか、あるいは類似してもよく、他の例においては、著しく異なってもよい。
【0065】
図5A〜5Eは、上述した一体型偏光子/偏光子多層光学フィルムを代表するものである。反射特性の他の組合わせ、例えば、一体型偏光子/鏡フィルム、一体型偏光子/窓フィルム、一体型鏡/窓フィルム、一体型鏡/鏡フィルムなどを有する多層光学フィルムについては、参照によって本願に組み込まれる以下の出願のうちの1つ以上において、より詳しく議論されている。それらの出願とは、国際出願第US2009/XXXXXX号(代理人整理番号64847WO003)「空間選択的な複屈折低減を用いた内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films Using Spatially Selective Birefringence Reduction)」、国際出願第US2009/XXXXXX号(代理人整理番号65035WO003)「並列する鏡/偏光子ゾーンを有する多層光学フィルム(Multilayer Optical Films Having Side-by-Side Mirror/Polarizer Zones)」、国際出願第US2009/XXXXXX号(代理人整理番号65848WO002)「複数の複屈折層を有する内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films With Multiple Birefringent Layers)」である。
【0066】
図5A〜5Eのグラフの各々において、相対屈折率「n」が垂直軸上にプロットされている。水平軸上に、2層の光学的反復単位を特徴付ける6つの屈折率の各々に対して、位置又はマークが与えられており、「1x」、「1y」、及び「1z」は、x軸、y軸、及びz軸に沿った第1の層の屈折率を表し、これらは、上記でn1x、n1y、及びn1zと呼ばれていたものである。同様に、「2x」、「2y」、及び「2z」は、x軸、y軸、及びz軸に沿った第2の層の屈折率を表し、これらは、上記でn2x、n2y、及びn2zと呼ばれていたものである。図における菱形の形状をなす記号(◇)は、第1の加工段階における材料の屈折率を表している。この第1の段階は、押出しされ急冷されたか、又は例えば、キャスティングホイールの上にキャストされたが、伸張も配向もまだされていないポリマー層に対応し得る。図における白い(塗りつぶされていない)円形状の記号(○)は、加工の第1の段階を終えた、第2段階における材料の屈折率を表している。第2の段階は、フィルム内のミクロ層間の境界面からの強め合う干渉又は弱め合う干渉によって光を反射する多層光学フィルムへと、伸張されたかあるいは配向されたポリマー層に対応してもよい。図における塗りつぶされた小さな円形状の記号又はドット(●)は、加工の第1の段階及び第2の段階を終えた、第3の段階における材料の屈折率を表している。第3の段階は、以下で更に議論するように、押出しされ配向された後に、選択的に熱処理されたポリマー層に対応してもよい。そのような熱処理は通常、処理されたゾーンと呼ばれる、フィルムの1つ以上の特定の部分又はゾーンに限定される。
【0067】
所与の図における様々な記号の垂直座標を比較することにより、光学フィルム、その製造の方法、並びにその処理された部分及び未処理部分の光学特性に関する多くの情報を、読者は容易に確認することができる。例えば、一方又は両方の材料層が選択的な熱処理の前又は後に複屈折性となるか又は複屈折性であったか否か、複屈折性が一軸性であるか二軸性であるか、並びに、複屈折性が大きいか小さいかについて、読者は確認することができる。読者はまた、図5A〜5Eから、3つの加工段階の各々に対して(キャスト状態、伸張状態、及び処理状態)、2つの層の間における屈折率の差、Δnx、Δny、Δnzの各々の相対的大きさを確認することもできる。
【0068】
上で議論したように、内部にパターン形成した完成した多層光学フィルムに対する先行物品が、ポリマー材料のキャストウェブであり得る。キャストウェブは、完成したフィルムと同数の層を有してもよく、それらの層は、完成したフィルムに使用されるものと同じポリマー材料から構成されてもよいが、キャストウェブは、より厚いものであり、その層は通常、すべて等方性となる。しかしながら、一部の例において、図には示さないが、キャスティングプロセスはそれ自体で、一定の水準の配向性と複屈折性を材料の1つ以上に付与することができる。図5A〜5Eにおける菱形形状の記号は、キャストウェブにおける2つのポリマー層の屈折率を表しており、それらのポリマー層は、続く伸張処置の後に、多層光学フィルムの光学的反復単位におけるミクロ層となるものである。伸張の後、層の少なくとも一部が配向され、複屈折性となり、配向された(ただし依然としてパターン形成されていない)多層光学フィルムが形成される。このことが、図5A〜5Eにおいて白丸で例示されており、それらの白丸は、菱形形状の記号で表わされるそれぞれの元の値から垂直方向に変位され得る。例えば、フィルムをy軸及びz軸に沿って寸法的に弛緩させる一方で、正方向に複屈折性を持つポリマー層をx軸に沿って好適に一軸的に伸張することによって、x軸に沿っては所与の層の屈折率を上昇させるが、y軸及びz軸に沿っては屈折率を低下させる伸張処置が得られる。図5A、5C、5D、及び5Eにおいて、伸張処置により、x軸及びy軸に沿った第1の層の屈折率は上昇しているが、z軸に沿った屈折率は低下している。正方向に複屈折性を持つポリマー層をx軸及びy軸に沿って適切に二軸的に伸張することによって、そのような屈折率のシフトを得ることができる。(これらの図において、伸張操作により、第2の材料の屈折率が、第1の材料とは異なる形でシフトしており、これを達成するための技術については以下で更に議論する。)他の例においては(図5A〜5Eには示さない)、伸張処置により、x軸に沿った所与の層の屈折率が上昇し、z軸に沿った屈折率が低下し、y軸に沿った屈折率がほぼ同じに維持される。この種の屈折率のシフトは、y軸と比較してx軸に沿ってより高度な伸張を用いて、正方向に複屈折性を持つポリマー層を非対称的にx軸及びy軸に沿って二軸的に伸張することによって得られる。別法として、そのような屈折率のシフトは、概して、フィルムをy軸において拘束する一方で、x軸に沿って一軸的に伸張すること(拘束された一軸的伸張)によって得られる。留意されたいこととして、図5A〜5Eの各々において、n1x、n1y、及びn1zに対する白丸のうちの少なくとも2つは、異なる屈折率値nを有するため、配向されているが未処理の状態(白丸)にある第1の層は複屈折性である。これらの図において、配向されているが未処理の状態にある第2の層もまた複屈折性である。
【0069】
第1の反射特性を与えるために光学的反復単位へと構成されたミクロ層を有する、少なくとも部分的に複屈折性を持つ多層光学フィルムの形成後、フィルムは、上で議論した選択的な加熱を直ちに受けることができる。加熱は、多層光学フィルムの第1のゾーンに隣接し得る第2のゾーンにおいて選択的に実施され、第1の(未処理)ゾーンにおいては複屈折性を不変のまま残す一方で、ミクロ層の少なくとも一部における複屈折性を低減又は排除するために、ミクロ層パケット内の少なくとも1つの複屈折性材料を部分的に又は全体的に、選択的に溶融し配向性を減少させるように調整される。選択的な加熱はまた、第2のゾーンにおける層の構造的完全性を維持するためにも実施される。処理された第2のゾーンにおける複屈折性材料が、全体的に、すなわち完全に配向性を除かれた場合、複屈折性のミクロ層は、光学的な薄さを維持しながらも、(例えばキャストウェブの)等方性の状態に戻る。これは、例えば図5Aで分かることであり、熱処理により、第1の層の屈折率(n1x、n1y、及びn1zに関連付けられた小さな黒丸を参照)は、キャストウェブ状態における値(屈折率n1x、n1y、n1zに対する菱形形状の記号を参照)に戻っている。菱形形状の記号は、等方性の状態にある層(例えばキャストウェブ)の屈折率を表わし、小さな黒丸は、内部にパターン形成された完成したフィルムの処理されたゾーン又は選択的に加熱されたゾーンにおけるミクロ層の屈折率を表わし、白丸は、内部にパターン形成された完成したフィルムの未処理ゾーンにおけるミクロ層の屈折率を表わすことを思い出されたい。
【0070】
処理された第2のゾーン内の複屈折性材料が、部分的にのみ、すなわち不完全に配向性を除かれた場合、複屈折性のミクロ層は、加熱前の複屈折状態には満たないが等方性ではない複屈折の状態へと弛緩する。この場合、処理された第2のゾーンにおける複屈折性材料の屈折率は、図5A〜5Eに示される菱形形状の記号と白丸との間の値を取る。そのような不完全な複屈折性の緩和のいくつかの例が、本発明の譲受人に譲渡された国際出願第US2009/XXXXXX号(代理人整理番号65848WO002)「複数の複屈折層を有する内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films With Multiple Birefringent Layers)」において、より詳細に説明されており、この国際出願は、本願と同じ日に出願され、参照によって本願に組み込まれる。
【0071】
図5A〜5Eの実施形態は、米国特許第6,179,948号(メリル(Merrill)ら)に記載されている2段階の延伸プロセスを利用したものである。このプロセスにおいて、キャストフィルムの伸張又は配向は、2段階の延伸プロセスを用いて実施され、この延伸プロセスは、ある組の層(例えば、各光学的反復単位の第1の材料層)が実質的に両方の延伸工程の間に配向され、他の組の層(例えば、各光学的反復単位の第2の材料層)が実質的に一方の延伸工程の間にのみ配向されるように、慎重に制御される。その結果、多層光学フィルムは、延伸後に実質的に二軸的に配向されたある組の材料層を有し、かつ延伸後に実質的に一軸的に配向された別の組の材料層を有するものとなる。この差別化は、2つのプロセスの延伸工程に、温度、ひずみ速度、及びひずみの程度など、1つ以上の適度に異なるプロセス条件を用いて、2種類の材料の種々の粘弾性及び結晶化特性に影響を与えることによって達成される。したがって、例えば、第1の延伸工程により、第1の材料を第1の方向に沿って実質的に配向し、第2の材料をこの方向に沿ってわずかに配向するにとどめることができる。第1の延伸工程の後、第2の延伸工程において第1の材料と第2の材料とが共に第2の方向に沿って実質的に配向されるように、1つ以上のプロセス条件が適切に変更される。この方法を通じて、第1の材料層は、本質的に二軸的に配向された特徴(例えば、屈折率がn1x≒n1y≠n1zの関係を満たすことができ、ときに一軸複屈折性材料と呼ばれる)を呈することができ、その同じ多層フィルムの第2の材料層は、本質的に一軸的に配向された特徴(例えば、屈折率がn2x≠n2y≠n2z≠n2xの関係を満たすことができ、ときに二軸複屈折性材料と呼ばれる)を呈することができる。
【0072】
この背景を鑑みて、図5Aは、第1のポリマー材料と第2のポリマー材料とが、同じか又は類似の等方的な屈折率を有するように、かつ延伸後に共に複屈折性となるように、かつ同じ極性の応力光係数を有するように(図面では、共に正として示されているが、それに代わって共に負となることもある)選択される実施形態を示している。第1の材料と第2の材料とは、異なる融解温度及び軟化温度を有し、異なる粘弾性及び/又は結晶化特性を有しており、そのため、上で議論した2段階の延伸プロセスを実現することができる。これらの材料は、多層キャストウェブを形成するのに好適な数の層で、交互に並ぶ層構成をなして共押出しされ、菱形形状の記号で示す屈折率を有する。キャストウェブは次いで、上述の2段階の延伸プロセスを用いてx軸及びy軸に沿って二軸的に伸張され、それにより、第1の材料は、x軸とy軸との双方に沿って同程度に配向され、その一方で、第2の材料は、x軸に沿ってはより小さな配向で(一部の例においては非配向となることを含む)y軸に沿って優先的に配向される。最終結果として得られる多層光学フィルムは、第1及び第2のミクロ層が共に複屈折性であるが、第1の材料層が実質的に二軸的に配向された特徴を有し、第2の材料層が、非対称の二軸的に配向された特徴、又は実質的に一軸的に配向された特徴を有するものとなる。図示のように、材料及びプロセス条件は、伸張によって、屈折率値n1x及びn1yが同程度に増加し、その一方でn1zがそれより大きく減少するように選択される。また伸張により、屈折率値n2yは、n1x及びn1yの値に等しいか又はそれに近い値にまで増加し、屈折率n2zは減少し、屈折率n2xは依然としてほぼ同じとなる(第2の材料が、x軸配向の工程の間に、わずかな程度で配向された場合、n2xは図に示すようにわずかに増加することがある)。この結果、1つの大きな平面内屈折率の不整合(Δnx)、1つのかなり小さな平面内屈折率の不整合(Δny≒0)、及び、Δnxとは反対の極性の、中間的な平面外屈折率の不整合(Δnz)を有する2つの材料層の屈折率が得られる。第2の材料がより二軸的に配向する場合、等方的な屈折率が第2の材料の屈折率よりも高い第1の材料と組合わせることにより、処理後のx方向における屈折率の整合が達成され得る。この屈折率の組が、適当な数の層を有するミクロ層パケット内で実現された場合、x方向に沿った遮断軸線とy方向に沿った通過軸線とを有する第1の反射偏光フィルムを提供することができる。フィルムによって与えられる(遮断軸線に平行に偏光された光に対する)反射は、ミクロ層の層厚さの分布によって、広帯域にも狭帯域にもなり得る。遮断状態の偏光光に対する(s偏光成分とp偏光成分との双方に対する)反射率は、Δnxに対するΔnzの極性が反対であるがために、入射角の増加と共に増加する。
【0073】
次いで、この第1の多層反射偏光子フィルムは、第1のゾーンにおいては偏光子フィルムを元のままに残しながら、上述のように第2のゾーンにおいて内部にパターン形成され得る。第2のゾーンに放射エネルギーを選択的に送達することによる選択的な加熱により、複屈折層のうちの少なくとも一部が弛緩して、複屈折性を減じることになる。この例において、第1の材料層の融解点又は軟化点を超えるが、第2の材料層の融解点又は軟化点未満である温度へと、加熱は慎重に制御される。このようにして、選択的な加熱により、第2のゾーンにある第2の複屈折層は、その複屈折性を実質的に維持する一方で、第2のゾーンにある第1の複屈折層は、元の等方性の状態へ、又は配向の低減が不完全な場合には中間的な複屈折性の状態へと弛緩することになる。第1の材料の弛緩が完全なものである場合、第2のゾーンは、ある平面内方向における屈折率の差(Δny)が比較的大きく、他の平面内方向における屈折率の差(Δnx)がゼロ又はゼロに近く、かつΔnyと比較して反対の極性又は符号の平面外屈折率の差(Δnz)が比較的大きいことを特徴とする。これらの屈折率の関係が、適当な数の層を有するミクロ層パケット内で実現された場合、第2のゾーンに第2の反射偏光子フィルムを提供することができる。留意すべきことに、この第2の偏光子は、x方向に平行な通過軸線と、y方向に平行な遮断軸線とを有し、すなわち、第1の反射偏光子に対して垂直に配向されている。遮断状態の偏光光に対してこの第2の偏光子フィルムによって与えられる反射は、直交する偏光状態に対して第1の反射偏光子が広帯域又は狭帯域となるのと同じ程度で、ミクロ層の層厚さの分布によって広帯域にも狭帯域にもなる。いずれの場合にも、遮断状態の偏光光に対する(s偏光成分とp偏光成分との双方に対する)第2の偏光子フィルムの反射率は、第2のゾーンにおけるΔnzの極性が反対であるがために、入射角の増加と共に増加する。したがって、完成したフィルムは、あるゾーン内の第1の反射偏光子フィルム、及び、第1の反射偏光子フィルムに対して垂直に配向されている、隣接するゾーン内の第2の反射偏光子フィルムを、あるゾーンから次のゾーンへと連続的に延びるミクロ層と組合わせて一体型フィルムとしている。これに関して図5Aを参照すると、選択的な熱処理プロセスにより、第1の多層反射偏光子フィルムを第2の多層反射偏光子フィルムへと(偏光子1→偏光子2)変化させることが可能である。
【0074】
図5Bにおいて、ここでも、等方的な状態においてほぼ同じ屈折率を有する第1及び第2のポリマー材料が選択される。ここでは、しかしながら、第1のポリマー材料は、図5Aに示すような正の応力光係数ではなく、負の応力光係数を有しており、第2の材料の応力光係数の大きさは、図5Aよりもいくぶんか小さなものである。ここでも、これらの材料は、多層キャストウェブを形成するのに好適な数の層で、交互に並ぶ層構成をなして共押出しされ、菱形形状の記号で示す屈折率を有する。次いで、キャストウェブは、第1の材料がx軸とy軸との双方に沿って同等に配向され、それに対して、第2の材料が、x軸に沿ってほとんど又は全く配向されず、優先的にy軸に沿って配向されるような2段階の延伸プロセスを用いて、二軸的に配向される。ここでも最終結果として得られる多層光学フィルムは、第1及び第2のミクロ層が共に複屈折性であるが、第1の材料層が実質的に二軸的に配向された特徴を有し、第2の材料層が、実質的に一軸的に配向された特徴を有するものとなる。図示のように、材料及びプロセス条件は、伸張によって、屈折率値n1x及びn1yが同程度に減少し、その一方でn1zがそれより大きな程度で増加するように選択される。また、伸張により、屈折率値n2yは増加し、屈折率n2zは減少し、屈折率n2xは依然としてほぼ同じとなる(第2の材料が、x軸配向の工程の間に、わずかな程度で配向した場合、n2xはわずかに増加し得る)。この結果、大きな平面内屈折率の不整合(Δny)、1つのかなり小さな(ただし依然として相当な)平面内屈折率の不整合(Δnx)、及び、Δnxとは反対の極性の、非常に大きな平面外屈折率の不整合(Δnz)を有する2つの材料層の屈折率が得られる。これらの屈折率の関係が、適当な数の層を有するミクロ層パケット内に実現される場合、その結果として、本明細書において部分的偏光子と呼ばれる非対称的な反射フィルムが得られる。そのようなフィルムは、ある偏光状態の垂直入射光については高度な反射性を与え、反対の偏光状態の垂直入射光については、はるかに小さな、ただし相当な程度の反射性を与える。そのような偏光フィルムは、例えば、特定の高効率低損失のディスプレイ用途において、並びに光の再利用及び空間均質化システムにおいて、並びに他の用途において、特に有用となり得る。そのようなフィルムの更なる開示内容、及びそのようなフィルムの用途については、国際出願第2008/144656号(ウェーバー(Weber)ら)「バックライト及びそのバックライトを使用するディスプレイシステム(Backlight and Display System Using Same)」を参照されたい(この国際出願において、そのようなフィルムは、非対称反射フィルム(ARF)と呼ばれている)。図5Bにおいて、この第1の反射偏光子フィルムの遮断軸線はy軸に対して平行であり、通過軸線(適度な大きさの軸上反射率を呈し得る)はx軸に対して平行である。フィルムによって与えられる反射は(遮断軸線に対して平行に偏光された光に対して、及び、より小さな程度で通過軸線に対して偏光された光に対して)、ミクロ層の層厚さの分布によって、広帯域にも狭帯域にもなり得る。遮断状態及び通過状態の偏光光に対する(s偏光成分とp偏光成分との双方に対する)反射率は、Δnx及びΔnyに対するΔnzの極性が反対であるがために、入射角の増加と共に増加する。
【0075】
次いで、この第1の多層反射偏光子フィルムは、図5Aに関連して説明した手順と類似した方式で、第2のゾーンにおいて内部にパターン形成され得る。結果として得られる第2のゾーンは、ある平面内方向における屈折率の差(Δny)が比較的大きく、他の平面内方向における屈折率の差(Δnx)がゼロ又はゼロに近く、Δnyと比較して反対の極性又は符号の平面外屈折率の差(Δnz)が比較的大きいことを特徴とする。これらの屈折率の関係が、適当な数の層を有するミクロ層パケット内で実現された場合、第2のゾーンに第2の反射偏光子フィルムを提供することができる。この第2の偏光子は、x方向に対して平行な通過軸線と、y方向に対して平行な遮断軸線を有し、すなわち、第1の反射偏光子に対して実質的に平行に配向している。遮断状態の偏光光に対してこの第2の偏光子フィルムによって与えられる反射は、直交する偏光状態に対して第1の反射偏光子が広帯域又は狭帯域となるのと同じ程度で、ミクロ層の層厚さの分布によって広帯域にも狭帯域にもなる。いずれの場合にも、遮断状態の偏光光に対する(s偏光成分とp偏光成分との双方に対する)第2の偏光子フィルムの反射率は、第2のゾーンにおけるΔnzの極性が反対であるがために、入射角の増加と共に増加する。したがって、完成したフィルムは、あるゾーン内の第1の反射偏光子フィルム、及び、隣接するゾーン内の第2の反射偏光子フィルムを、あるゾーンから次のゾーンへと連続的に延びるミクロ層とを組合わせて一体型フィルムとしており、第1の偏光フィルムと第2の偏光フィルムとは、実質的に異なる反射特性を有するものである。例えば、第1の反射偏光子フィルム(いわゆる部分偏光子)の通過状態の反射率は、第2の反射偏光子の通過状態の反射率よりも相当に大きなものとなる。これに関して図5Bを参照すると、選択的な熱処理プロセスにより、第1の多層反射偏光子フィルムを第2の多層反射偏光子フィルムへと(偏光子1→偏光子2)変化させることが可能である。
【0076】
図5Cの実施形態は、第1の材料の応力光係数の極性が負から正へ変化しており、第2の材料の応力光係数の極性が正から負へ変化していることを除いて、あらゆる点で、図5Bの実施形態と同じであってよい。ここでも、結果として生じる、伸張したフィルムの屈折率の差により、大きな平面内屈折率の不整合(Δny)、かなり小さな(ただし依然として相当な)平面内屈折率の不整合(Δnx)、及び、Δnxとは反対の極性の、非常に大きな平面外屈折率の不整合(Δnz)が生じている。したがって、ここでも、この結果として、図5Bに関連して説明したように、y軸に対して平行な遮断軸線とx軸に対して平行な通過軸線を有する、部分偏光子である第1の反射偏光子フィルムが得られる。そのようなフィルムは同様に、第1のゾーンにおける第1の反射偏光子フィルムの反射特性とは相当に異なる反射特性を有する第2の反射偏光子フィルムを、フィルムの第2のゾーンに生産するように、選択的に熱処理されるか、又は内部にパターン形成されてもよい。したがって、ここでもまた、完成したフィルムは、あるゾーン内の第1の反射偏光子フィルム、及び、隣接するゾーン内の第2の反射偏光子フィルムを、あるゾーンから次のゾーンへと連続的に延びるミクロ層と組合わせて一体型フィルムとしており、第1の偏光フィルムと第2の偏光フィルムとは、実質的に異なる反射特性を有するものである。これに関して図5Cを参照すると、選択的な熱処理プロセスにより、第1の多層反射偏光子フィルムを第2の多層反射偏光子フィルムへと(偏光子1→偏光子2)変化させることが可能である。
【0077】
第1の材料が正の応力光係数を有し、配向後に一軸的に複屈折特性を呈する限りにおいて、図5Dは、図5Cにいくつかの点で類似している。しかしながら、図5Dにおいて、選択されている第2の材料は、図5Cの第2の材料とはいくぶんか異なる特性を有するものである。具体的に言えば、選択されている第2の材料は、等方的な状態において第1の材料よりも著しく大きな屈折率を有し、かつ負の応力光係数を有するものである。第1及び第2のミクロ層が共に複屈折性であるが、第1の材料層が実質的に二軸的に配向された特徴を有し、第2の材料層が、実質的に一軸的に配向された特徴を有するように、共押出し及びキャスティングの後、ここでも、2段階の延伸技術を用いる。材料及びプロセス条件は、伸張によって、屈折率値n1x及びn1yが同程度に増加し、その一方でn1zがそれより大きく減少するように選択される。また、伸張により、屈折率値n2yは、n1x及びn1yの値に等しいか又はそれに近い値まで減少し、屈折率n2zは増加し、屈折率n2xは依然としてほぼ同じとなる。この結果、1つの大きな平面内屈折率の不整合(Δny)、1つのかなり小さな平面内屈折率の不整合(Δnx≒0)、及び、Δnyとは反対の極性の、中間的な平面外屈折率の不整合(Δnz)を有する2つの材料層の屈折率が得られる。この屈折率の組が、適当な数の層を有するミクロ層パケット内で実現された場合、y方向に沿った遮断軸線とx方向に沿った通過軸線を有する第1の反射偏光フィルムを提供することができる。フィルムによって与えられる(遮断軸線に平行に偏光された光に対する)反射は、ミクロ層の層厚さの分布によって、広帯域にも狭帯域にもなり得る。遮断状態の偏光光に対する(s偏光成分とp偏光成分との双方に対する)反射率は、Δnyに対するΔnzの極性が反対であるがために、入射角の増加と共に増加する。
【0078】
そのような第1の反射フィルムは、第1の材料の複屈折性が実質的に低減され、その一方で第2の材料の複屈折性が実質的に維持されるように、図5A〜5Cに類似した方式で、フィルムの第2のゾーンにおいて選択的に熱処理されるか、又は内部にパターン形成されてよい。第1の材料が実質的に等方的な状態に弛緩した場合、第2のゾーンは、ある平面内方向における屈折率の差(Δnx)が比較的大きく、他の平面内方向における屈折率の差(Δny≒0)がゼロ又はゼロに近く、Δnxと同じ極性又は符号の平面外屈折率の差(Δnz)が比較的大きいことを特徴とする。これらの屈折率の関係が、適当な数の層を有するミクロ層パケット内で実現された場合、第2のゾーンに第2の反射偏光子フィルムを提供することができる。特筆すべきことに、この第2の偏光子は、y方向に対して平行な通過軸線と、x方向に平行な遮断軸線を有し、すなわち、第1の反射偏光子に対して垂直に配向している。遮断状態の偏光光に対してこの第2の偏光子フィルムによって与えられる反射は、直交する偏光状態に対して第1の反射偏光子が広帯域又は狭帯域となるのと同じ程度で、ミクロ層の層厚さの分布によって広帯域にも狭帯域にもなる。いずれの場合も、Δnzが第2のゾーンにおいてΔnxと同じ極性であるがために、遮断状態の偏光光に対する第2の偏光子フィルムの反射率は、s偏光成分に対しては入射角の増加と共に増加し、p偏光成分に対しては入射角の増加と共に減少する。したがって、完成したフィルムは、あるゾーン内の第1の反射偏光子フィルム、及び、第1の反射偏光子フィルムに対して垂直に配向している、隣接するゾーン内の第2の反射偏光子フィルムを、あるゾーンから次のゾーンへと連続的に延びるミクロ層と組合わせて一体型フィルムとしている。これに関して図5Dを参照すると、選択的な熱処理プロセスにより、第1の多層反射偏光子フィルムを第2の多層反射偏光子フィルムへと(偏光子1→偏光子2)変化させることが可能である。
【0079】
図5Eの実施形態は、第2の材料の等方的で配向された屈折率が図5Aの第2の材料の対応する屈折率よりもいくぶんか低いと推定されることを除き、多くの点で図5Aに類似している。したがって、共押出し及びキャスティングの後、押出し物は、第1の材料がx軸とy軸との双方に沿って同等に配向され、それに対して、第2の材料が、x軸に沿ってほとんど又は全く配向されず、優先的にy軸に沿って配向されるように、2段階の延伸技術を用いて伸張される。ここでも最終結果として得られる多層光学フィルムは、第1及び第2のミクロ層が共に複屈折性であるが、第1の材料層が実質的に二軸的に配向された特徴を有し、第2の材料層が実質的に一軸的に配向された特徴を有するものとなる。材料及びプロセス条件は、伸張によって、屈折率値n1x及びn1yが同程度に増加し、その一方でn1zがそれより大きく減少するように選択される。また、伸張により、屈折率値n2yは、n1x及びn1yの値よりわずかに低い値まで増加し、屈折率n2zは減少し、屈折率n2xはわずかに増加する。この結果、1つの大きな平面内屈折率の不整合(Δnx)、Δnxよりも小さな別の平面内屈折率の不整合(Δny)、及びゼロ又はゼロに近い平面外屈折率の不整合(Δnz≒0)を有する2つの材料層の屈折率が得られる。この屈折率の組が、適当な数の層を有するミクロ層パケット内で実現された場合、x方向に沿った遮断軸線とy方向に沿った通過軸線を有する第1の反射偏光フィルムを提供することができる。Δnxに対するΔnyの大きさによって、遮断軸線に関連付けられる相当な大きさの反射が存在し得ることになり、すなわち、第1の反射偏光子は部分偏光子となり得る。少なくとも遮断軸線に対して平行に偏光された光に対する、フィルムによって与えられる反射は、ミクロ層の層厚さの分布によって、広帯域にも狭帯域にもなり得る。遮断状態の偏光光の反射率は、s偏光成分に対しては入射角の増加と共に増加し、p偏光成分に対しては、z方向の屈折率の整合が実質的にΔnz≒0であるがために、入射角が増加しても依然としてほぼ同じである。
【0080】
この第1の多層反射偏光子フィルムが、上述のように第2のゾーンにおいて内部にパターン形成されるとき、選択的な加熱により、第2のゾーンにある第2の複屈折層は実質的にその複屈折性を維持する一方で、第2のゾーンにある第1の複屈折層は、元の等方性の状態へ、又は配向の低減が不完全な場合には中間的な複屈折性の状態へと弛緩することになる。第1の材料の弛緩が完全なものである場合、第2のゾーンは、ある平面内方向における屈折率の差(Δny)が比較的大きく、他の平面内方向における屈折率の差(Δnx)がそれよりも小さく、かつ、Δnyと比較して反対の極性又は符号の平面外屈折率の差(Δnz)が大きいことを特徴とする。これらの屈折率の関係が、適当な数の層を有するミクロ層パケット内で実現された場合、y方向に沿った遮断軸線とx方向に沿った通過軸線を有する第2の反射偏光フィルムを提供することができる。Δnyに対するΔnxの大きさによって、遮断軸線に関連付けられる相当な大きさの反射が存在し得ることになり、すなわち、第2の反射偏光子は部分偏光子となり得る。少なくとも遮断軸線に対して平行に偏光された光に対する、フィルムによって与えられる反射は、ミクロ層の層厚さの分布によって、広帯域にも狭帯域にもなり得る。遮断状態の偏光光に対する(s偏光成分とp偏光成分との双方に対する)反射率は、Δnyに対するΔnzの極性が反対であるがために、入射角の増加と共に増加する。通過状態の偏光光の反射率は、s偏光成分に対しては入射角の増加と共に増加し、p偏光成分に対しては、ΔnzがΔnxと同じ極性を有するがために、入射角の増加と共に減少する。したがって、完成したフィルムは、あるゾーン内の第1の反射偏光子フィルム、及び、第1の反射偏光子フィルムに対して垂直に配向している、隣接するゾーン内の第2の反射偏光子フィルムを、あるゾーンから次のゾーンへと連続的に延びるミクロ層と組合わせて一体型フィルムとしている。これに関して図5Eを参照すると、選択的な熱処理プロセスにより、第1の多層反射偏光子フィルムを第2の多層反射偏光子フィルムへと(偏光子1→偏光子2)変化させることが可能である。
【0081】
上で議論したシナリオは、一体型偏光子/偏光子多層光学フィルムを生産するために使用され得る材料特性及び処理パラメータの多数の考えられる組合わせのうちの一部を含んだものに過ぎず、限定的なものと見なされるべきではない。留意されたいこととして、正方向に複屈折性であるだけでなく、負方向にも複屈折性である材料、及びその組合わせが用いられ得る。上述のシナリオ(図5A〜5Eに関連する)は、レーザー又は類似の放射線源を利用する選択的な熱処理を第2のゾーンにて用いて、第2のゾーンに力又は圧力をほとんど又は全く加えることなく(例えば、図6、図7A〜7C、及び図8A〜8Bに関連する以下の議論を参照)、したがって、フィルムの第1のゾーンと第2のゾーンとの間に厚さの差をほとんど又は全く伴うことなく達成され得るが、第2のゾーンに力又は圧力を選択的に加えることを伴い、第1のゾーンと第2のゾーンとの間の相当な厚さの差を結果として生じる他の技術が用いられ得ることもまた、読者には理解されたい。例えば、熱ジグによるエンボス加工の手法において、同じ第2のゾーンに圧力も加えられる一方で、上で議論した屈折率の関係を生じさせるように、熱が選択的にフィルムの第2のゾーンに加えられ得る。そのような手法において、ミクロ層のうちの第2のゾーンにある部分は、第1のゾーンにある部分と比べて薄化され、その結果として、上で議論した反射特性が変化することに加えて、第2のゾーンに関してはより短い波長へとスペクトルがシフトする。
【0082】
図6において、ある装置600が示されており、この装置600を使用すると、多層光学フィルムの第2のゾーンを選択的に加熱して、開示する内部にパターン形成されたフィルムを提供することができる。簡潔に言えば、少なくとも1つのミクロ層パケットを備える多層光学フィルム610が提供され、そのミクロ層パケットは、フィルム全体を通じて、又は少なくともフィルムの第1のゾーンから第2のゾーンへと延びるものである。ミクロ層はフィルムに対して内部にあり、第1の反射特性をフィルムに与えている。高放射輝度光源620は、好適な波長、強度、及びビームサイズの有向ビーム622を提供して、入射光の一部を吸収によって熱に変換することにより、フィルムの被照射部分624を選択的に加熱する。好ましくは、フィルムの吸収率は、適度に電力供給された光源で十分な加熱がもたらされるように十分大きいものであるが、過剰な量の光がフィルムの初期表面で吸収されるほど高いものではない(これによって表面の損傷が生じ得る)。これについて以下で更に議論する。一部の例において、斜めに配置された光源620a、有向ビーム622a、及び被照射部分624aによって示すように、光源を斜角θに方向付けることが望ましい場合もある。多層光学フィルム610が、垂直入射において反射バンドを有するミクロ層パケットを含み、その反射バンドが、所望の量の吸収及びそれに付随する加熱を防止する方式で、有向ビーム622を実質的に反射するものである場合、そのような斜めの照射が望ましいものとなり得る。したがって、入射角の増加と共により短い波長へと反射バンドがシフトすることを利用して、有向ビーム622aは、所望の吸収と加熱が可能となるように、(ここでシフトした)反射バンドを回避する斜角θで送出され得る。
【0083】
一部の例において、有向ビーム622又は622aは、被照射部分624又は624aが所望の形状の完成した第2のゾーンを有するような方式で付形されてもよい。他の例において、有向ビームは、所望の第2のゾーンよりも寸法が小さい形状を有してもよい。後者の状況において、ビーム操向機器を使用して、処理するゾーンの所望の形状を描くように、多層光学フィルムの表面を有向ビームで走査することができる。また、ビームスプリッター、レンズアレイ、ポッケルスセル、音響光学変調器などの装置、並びに当業者に既知の他の技術及び装置を用いて、有向ビームの空間及び時間変調を利用することもできる。
【0084】
図7A〜7Cは、パターン形成された多層フィルムの種々の第2のゾーンの概略頂面図であり、各図の上に、描写ゾーンの形成が可能なフィルムに対して有向光ビームが取り得る経路が重ねられている。図7Aにおいて、任意の形状をなすゾーン714においてフィルムを選択的に加熱して、そのゾーン714を第1のゾーン712と区別するために、光ビームが多層光学フィルム710に向けられており、制御された速度で始点716aから終点716bまで経路716に沿って走査されている。図7Bと図7Cは類似している。図7Bにおいて、矩形の形状をなすゾーン724においてフィルムを選択的に加熱して、そのゾーン724を隣接する第1のゾーン722と区別するために、光ビームが多層光学フィルム720に向けられており、制御された速度で始点726aから経路726に沿って走査されている。図7Cにおいて、矩形の形状をなすゾーン734においてフィルムを選択的に加熱して、そのゾーン734を隣接する第1のゾーン732と区別するために、光ビームが多層光学フィルム730に向けられており、制御された速度で不連続的な経路736〜742などに沿って走査されている。図7A〜7Cの各々において、加熱は、第1のゾーンにおける少なくとも一部の内部ミクロ層の複屈折性を維持する一方で、第2のゾーンにおけるそれらの層の複屈折性を低減又は排除するのに十分なものであり、第2のゾーンにおけるミクロ層の構造的完全性を維持しながらも、第2のゾーンに圧力を選択的に加えることなく達成される。
【0085】
また、有向光ビームは、一点鎖線状、点線状、又は他の破線状若しくは不連続線状の経路を形成するように変調されてもよい。この変調は完全変調であってもよく、光ビームの強度は100%又は「完全なオン」から0%又は「完全なオフ」へと変化する。別法として、変調は部分的であってもよい。更に、変調は、ビーム強度の急激な(例えば階段状の)変化を含んでもよく、及び/又は、より穏やかなビーム強度の変化を含んでもよい。
【0086】
図8A及び8Bは、最適な局所化された加熱をもたらすように多層光学フィルムの吸収をいかに調整できるか、あるいは調整すべきかという問題について扱うものである。図8A及び8Bのグラフは、同じ横目盛り上にプロットされており、横目盛りは、放射光ビームがフィルムの中を伝播するときの放射光ビームの深さ又は位置を表わしている。0%の深さはフィルムの表側表面に対応し、100%の深さはフィルムの裏側表面に対応する。図8Aは、縦軸に沿って放射ビームの相対強度I/Iをプロットしたものである。図8Bは、フィルム内の各深さにおける局所的な吸収係数を(放射ビームの選択した波長又は波長バンドにて)プロットしたものである。
【0087】
異なる3つの多層光学フィルムの実施形態に対して、各図に3つの曲線がプロットされている。第1の実施形態において、フィルムは、フィルムの厚さ全体にわたって、この有向光ビームの波長で、実質的に均一で低い吸収率を有している。この実施形態は、図8Aでは曲線810、図8Bでは曲線820としてプロットされている。第2の実施形態において、フィルムは、フィルムの厚さ全体にわたって、実質的に均一で高い吸収率を有している。この実施形態は、図8Aでは曲線812、図8Bでは曲線822としてプロットされている。第3の実施形態において、フィルムは、フィルムの厚さの領域815a及び815c全体にわたって、比較的低い吸収率を有しているが、フィルムの厚さの領域815bではそれよりも高い中間的な吸収率を有している。
【0088】
第1の実施形態は、多くの状況に対して低すぎる吸収係数を有している。有向光ビームは、曲線810の一定の傾きで示すように深さの関数として均一に吸収され、このことは場合によっては望ましいものとなり得るが、100%の深さでの曲線810の高い値が示すように、光のうちのごくわずかしか実際には吸収されず、高い割合で有向光ビームが浪費されることを意味している。それでもやはり、一部の例において、この第1の実施形態は、一部のフィルムの処理に依然として極めて有用となり得る。第2の実施形態は、多くの状況に対して高すぎる吸収係数を有している。有向光ビームの実質的にすべてが吸収され、浪費されるものはないが、高い吸収率は、フィルムの表側表面で過剰な量の光が吸収される原因となり、それによって、フィルムに表面損傷を生じることがある。吸収率が高すぎる場合、適度な量の熱が、フィルムの表側表面で又はその近くで層に損傷を与えることなく、対象となる内部層に届けられなくる。第3の実施形態は、不均一な吸収プロファイルを利用するものであり、この不均一な吸収プロファイルは、例えば、フィルムの選択された内部層の中に吸収剤を添加することによって達成され得る。吸収率の高さ(局所的な吸収係数によって制御される)は、望ましくは中間的な高さに設定され、そのため、適度な割合の有向光ビームが、フィルムの調整された吸収領域815bにて吸収されるが、吸収率は、領域815bの入射側端部にその反対側の端部と比べて過剰な量の熱が運ばれるほどには高くならない。多くの事例において、吸収領域815bにおける吸収性は依然として適度に弱く、例えば、その領域全体にわたる相対強度プロファイル814はむしろ、他の領域、例えば815a及び815cよりも険しい傾斜を有する直線に見える。後に更に説明するように、吸収性の適切さは、所望の効果を達成するように、入射する有向光ビームの出力及び持続時間に対して吸収率を釣り合わせることによって決まる。
【0089】
第3の実施形態の基本的な例において、多層フィルムは、間にミクロ層の1つ以上のパケットを有する(2つ以上のミクロ層パケットが含まれる場合、保護境界層で分離される)2層の薄いスキン層という構造を有してもよく、このフィルムは、2種類のポリマー材料A及びBのみで構成されてもよい。吸収率を適度な高さに増加させるために吸収剤がポリマー材料Aに添加されるが、ポリマーBに吸収剤は添加されない。材料A及びBが共に、ミクロ層パケットの交互層として設けられるが、スキン層及び保護境界層は、存在する場合、ポリマーBのみで構成される。そのような構造は、弱く吸収する材料Bを使用しているがために、フィルムの外表面、すなわちスキン層にて、低い吸収率を有することになり、また、光学的に厚いPBLが存在する場合はそれらのPBLにて、低い吸収率を有することになる。この構造は、より吸収性の強い材料Aを交互ミクロ層に(より吸収性の弱い材料Bの交互ミクロ層と共に)使用しているがために、ミクロ層パケットにおいて、より高い吸収率を有することになる。そのような配列は、外表面層にではなく、フィルムの内部層に、特に内部ミクロ層パケットに熱を優先的に運ぶために用いられ得る。留意されたいこととして、適切に設計されたフィードブロックを用いると、多層光学フィルムは、異なる3種類以上のポリマー材料(A、B、C、...)を含むことができ、多種多様な吸収プロファイルをもたらして、フィルムの選択された内部層、パケット、又は領域に熱を運ぶようにするために、それらの材料のうちの1つ、一部、又はすべてに吸収剤が添加されてよい。他の例において、PBLに、あるいは存在する場合にはスキン層に、吸収剤を含めると有用となる場合もある。いずれの場合にも、使用量又は濃度は、ミクロ層と比べて、同じであっても異なってもよく、ミクロ層よりも高くても低くてもよい。
【0090】
多層光学フィルムに使用される様々な天然材料(native materials)の固有の吸収特性を用いて、上記の実施形態と類似した吸収プロファイルを得ることができる。したがって、多層フィルム構造は、フィルムの様々な層又はパケットの間で種々の吸収特性を有する種々の材料を含んでもよく、それらの様々な層又はパケットは、フィルム形成(例えば共押出しによる)の間に同時に形成されたものであってもよく、あるいは、後に例えば貼合わせによって組合わされた別々の先行フィルムとして形成されたものであってもよい。
【0091】
上記の開示内容は、とりわけ、初期の製造の後に、非接触の放射式の手段によって改質され得る「書き込み可能な」多層光学フィルムについて記載したものと見なされてよい。多層光学フィルム(MOF)は、少なくとも2種類の材料の交互層と、可視スペクトルバンドなど、スペクトルのうちの選択された部分を、選択された第1の入射角で反射するように調整された、そのような層の少なくとも1つの光学パケットとを備えることができ、更に所望により、選択された光学パケットの層の一方又は双方に分散された、本明細書の議論において第3の材料と呼ばれ得る吸収剤を含み、この吸収剤は、選択された第2の入射角で主としてMOF反射バンドによって反射されることもなく、MOFの他の材料によって大いに吸収されることもない電磁放射線を優先的に吸収する。また、本発明者らは、指定されたスペクトルバンドの有向放射エネルギー処理を用いて、吸収材料を含有する光学パケット内の少なくとも1つの複屈折性材料を、これらの層の複屈折性を低減又は排除するために、部分的に又は全体的に、選択的に融解し配向を低減するプロセスを開示する。この処理は、フィルム平面全体にわたる選択された空間的位置に適用される。また、処理後に空間的に調整された光学的変動を有する、完成した光学フィルム自体が開示される。この開示されるフィルムは、最初に均一にキャストされ延伸された光学体が所与の用途の個別の要件に適合するように空間的に調整される業務プロセスにおいて使用され得る。
【0092】
特に興味深い一態様は、選択された内部光学層の複屈折性を選択的に除去すると共に、後にパルス赤外線レーザー源又は他の好適な高放射輝度の光源で処理することで、他の内部又は表面層を比較的変化のないままに残すことによって、近赤外線吸収染料又は他の吸収剤を含有する多層光学フィルムの空間的なパターン形成を制御することである。
【0093】
本願において開示されるフィルム(選択的な熱処理前及び選択的な熱処理後のいずれも)は、その内部ミクロ層の少なくとも一部の複屈折性が、フィルムの1つ以上のゾーンにおいて低減されて、最初の又は第1の反射特性とは異なる第2の反射特性をもたらし得るものであり、STOF(空間的に調整された光学フィルム(Spatially Tailored Optical Film))と呼ばれることもある。
【0094】
これらのフィルム、方法、及び業務プロセスは、配向の程度を空間的に制御することが望まれる任意の用途において、概して有用となり得る。対象となる分野には、例えば、ディスプレイ、装飾、及びセキュリティの用途を挙げることができる。一部の用途は、複数の分野にまたがることもある。例えば、一部の物品が、本明細書において開示される内部にパターン形成されたフィルムを、例えばしるしの形態をなす通常のパターン形成を含むフィルム、基材、又は他の層と共に取り入れてもよい。結果として得られる物品は、セキュリティの用途において有用となり得るが、その変形形態はまた、装飾的とも見なされ得る。そのような物品を選択的に熱処理することにより、内部にパターン形成されたフィルムの意匠に応じて他のフィルムの通常のパターン形成の部分を選択的に隠蔽する(反射率を増加させることにより)か、又は暴露する(反射率を減少させることによる)ゾーンが、内部にパターン形成されたフィルム内に生じ得る。また、開示する内部パターン形成フィルムのカラーシフト特性は、例えば米国特許第6,045,894号(ジョンザ(Jonza)ら)「無色乃至有色セキュリティフィルム(Clear to Colored Security Film)」、及び米国特許第6,531,230号(ウェーバー(Weber)ら)「カラーシフトフィルム(Color Shifting Film)」において開示されているように、カラー又はモノクロの背景のしるしと共に利用されてもよい。
【0095】
更に、セキュリティ用途に関して言えば、開示するフィルムは、IDカード、運転免許証、パスポート、アクセスコントロールパス、金融取引カード(クレジット、デビット、プリペイド、その他)、商標保護又は識別ラベルなどを含めて、多様なセキュリティ構造体において使用され得る。このフィルムは、内部層又は外部層としてセキュリティ構造体の他の層又は部分に貼り合わせられるか、あるいは他の方法で接着されてよい。フィルムがパッチとして含められる場合、フィルムは、カード、ページ又はラベルの主要表面の一部分のみを被覆し得る。一部の例において、セキュリティ構造体の底基板又は唯一の要素としてフィルムを使用することも可能となり得る。フィルムは、ホログラム、印刷画像(凹版、オフセット、バーコードなど)、逆反射機構、紫外線又は赤外線活性化画像などの多数の機構のうちの1つとしてセキュリティ構造体内に含められてよい。一部の例において、開示されるフィルムは、これらの他のセキュリティ機構と共に層状化されてもよい。このフィルムは、セキュリティ構造体に個人化機構、例えば、サイン、画像、個人のコード化番号などを与えるために使用されてもよい。この個人化機構は、製造者タグ、ロット確認タグ、改ざん防止コーディングの場合など、個人の文書ホルダー又は特定の製品構成要素(product entity)に関連したものであってもよい。個人化機構は、ライン及びドットパターンを含む多様な走査パターンで作られ得る。パターンは、書き込み可能なパケットのうちでも、フィルム構造に応じて、同じであっても異なっていてもよい。
【0096】
フィルムは、顕在的な(例えば、通常の観測者に明確に視認可能である)セキュリティ機構と潜在的なセキュリティ機構の両方を、セキュリティ構造体に設けることができる。例えば、書き込み可能な(カラー)反射偏光子層により、偏光解析装置で観測可能な潜在的な機構、例えば、解析装置の偏光状態に応じて色を変化させるか又は消滅する機構を設けることができる。赤外線で検出可能な、例えば機械で読み取り可能な個人化コード機構を作るために、赤外線反射パケットにパターン形成することができる。
【0097】
これに関連して、開示される一体型偏光子/偏光子多層光学フィルムのいずれかがまた、これらのセキュリティ用途のいずれかにおいて使用されてよい。
【0098】
多層光学フィルムは、放射性(radiatively)吸収材料を含み得る光学干渉層の少なくとも1つの選択されたパケットによって形成される少なくとも1つの直線偏光の状態に対する、少なくとも1つの選択された反射バンドを有してもよい。パターン形成の方法により、材料層の選択された組の間で複屈折性を除去又は低減し、したがって、選択されたスペクトルバンド全体にわたって光学スタックの干渉特性を変更することが可能となる。このようにして、フィルムは、所望の用途、例えばピクセル化ディスプレイ(pixilated display)に合わせて空間的に調整され得る。したがって、光学フィルムは、空間的に変化するカラーフィルタとなるように作製されることができ、あるいは、透過性、反射性ミラー及び/若しくは反射偏光子の間で、又は、カラーフィルタリングとこれらの反射性状態との組合わせ、若しくはこれらの状態の強さ若しくは質の組合わせで(例えば、強いミラーから弱いミラー、又は偏光子若しくは部分偏光子からミラー)変化するように作製されることができる。1つの有用な用途は、液晶ディスプレイ(LCD)装置において使用されるカラーフィルタであり得る。別の用途は、波長選択性の透過又は反射以外の目的又はそれらに加えた目的で、開示される材料及び技術を用いて、フィルムの内部又は内側及び類似の光学体に構造体を生成すること又は「書き込む」こととなり得る。本明細書で説明する光学特性及び材料の空間的調整は、例えば、光導体をフィルムに通し、断続的に表面に引き出して、光導波構造をフィルム内部に実現するために用いられ得る。異方性であり選択的に吸収する材料と、レーザー書き込みプロセスとの組合わせにより、より長いレーザーパルス幅の利用、開口数の低減、及び書き込み速度の潜在的向上という加工上の利点が加わった高機能な光学構造を生産することができる。
【0099】
特に有用な類の構造が、2組以上の光学的機能層を備える高分子光学体であり、各組は同じ機能を有するが(例えば、反射となるか透過となるかについての光学的変換)、各特定の組はスペクトルバンドの特定の部分に対して作用させるために含められる。少なくとも1組が放射吸収体を含み、他の少なくとも1組が放射吸収体を含まなくてもよい。一部の例において、複数の組が放射吸収体を含んでもよい。例えば、多層光学フィルムが2つ以上の光学干渉パケットを備えてもよい。これらのパケット(光学的機能層の組)は、交互に並ぶ材料の多数の層を備えてもよい。ある光学パケットは放射吸収体を含有してもよく、別の光学パケットは含有しなくてもよい。
【0100】
多様な光学吸収体が使用され得る。可視スペクトルで作用する光学フィルムには、紫外線及び赤外線吸収染料、顔料、又は他の添加剤が有用となり得る。この構造のポリマーによってはあまり吸収されないスペクトル範囲を吸収に関して選択することが望ましい場合もある。このようにして、有向放射線は、光学体の厚さ全体にわたって、選択された対象の領域に集中され得る。吸収体は望ましくは、選択された対象の層の組に埋め込まれ得るように、溶融押出し可能である。この目的で、吸収体は、押出しに求められる加工温度及び滞留時間にて適度に安定しているべきである。
【0101】
開示されるフィルム及び光学体は、対象となる選択された用途に合わせて光学体によって通常、変換されるスペクトルバンドの外側にある、選択されたスペクトル範囲において、放射線で処理されることができる。放射による処理は、選択されたスペクトルバンドの十分な強度の光の焦点を、フィルムの選択された位置に合わせる任意の多様な手段によって達成され得る。放射による処理に特に好適な手段がパルスレーザーである。これは、増幅パルスレーザーであってもよい。一部の状況下では、レーザーは同調可能であってもよい。例えば、可視バンドにおいて操作的に反射性である光学フィルムが、その光学フィルムにおいてポリマーが特に吸収性でない場合、赤外線付近、又は紫外線付近の吸収体を有してもよい。多層光学フィルムの場合、処理のための吸収バンドの選択は、フィルムの光学バンドに関して選ばれてもよい。好ましくは、フィルムは、有向放射エネルギーを、この有向放射エネルギーに合わせて選ばれた入射角では反射するべきではないが、反射が十分に低い場合、処理が依然として可能となり得る。レーザーから得られる放射エネルギーは、しばしば、相当に偏光されている。突き当たるビームを、外表面でブルースター角と一致する角度に向けて、エネルギー損失を最小にすることが有用となり得る。MOF反射バンドもまた、入射角の増大と共に、より短い波長へとシフトするため、垂直入射角でのバンド配置だけで予想されるよりも短い吸収波長が使用され得る。
【0102】
例えば、屈折率1.75(632nmの波長で)、約60度の対応するブルースター角、及び約800nmの垂直入射の険しい右側バンド端の二軸配向スキン層を有するMOFミラーフィルムは、ブルースター角にて約700nm超の有向光ビームを受容することができ、この波長が垂直入射で反射されるにもかかわらず、この波長を用いて加工することを可能にする。右側のバンド端は、1つには、対象のすべての角度での反射を確実にするように選ばれる。880nmで、反射バンドは依然として、斜入射での約700nmまで対応する。このバンド位置において、バンドは、この場合のブルースター角に近い750nmまで対応する。何らかのヘッドルームが、バンド端と有向放射の波長との間に望まれることがある。潜在的な層のいずれかを通じてビームを方向付けることが望まれる場合、これにより、光学バンドを超える有向エネルギーに、この場合は約750nm〜800nm(真空)の実際的な下限が設けられる。別法として、フィルムの介在する波長バンドが、対象の特定のエネルギーをブロックしないように、選択により、フィルムの好ましい側を通じて放射エネルギーを方向付けてもよい。例えば、垂直入射で緑色反射パケットを通過する必要がない限り、又は、バンドシフトによりそのパケットで反射されなくなるように十分に斜角でビームが通過できる場合、532nmの緑色レーザーを用いて青色パケットを加工してもよい。
【0103】
近紫外線放射がパターン形成に用いられる場合(ここでも材料の吸収特性に依存する)、より長い波長の反射バンドを伴うパケットのバンドシフトにより、ビームが遮られることがある。次いで、垂直入射した有向放射線は、フィルムの固定された左側バンド端に対して最大の波長を有することができ、他方で、斜角での加工がバンドシフトによって妨げられることがある。また、左側バンド端のシフトは、ビームの真空波長よりも大きな、バンドシフトする反射バンドを有する構造で用いられる他の可視又は赤外線ビームにも当てはまる。
【0104】
吸収放射エネルギーをフィルムの厚さで、そして結果として生じる熱パルスを厚さで管理することは、本開示の一態様である。制御された融解は、フィルム厚さの選択部分に広がる選択層において、材料の複屈折性の低減又は排除を結果としてもたらすが、この融解は、一様な効果を確保するために、有向放射線の吸収が適度に低い水準であることを必要とする。選択された層内の材料は、過剰なイオン化又は熱分解のいずれかを結果として生じる時間パルス又は熱的な観点のいずれからも過熱するべきではない。例えば、純粋に熱容量で決定される状況を考える場合、25℃から所望の300℃にされる材料は、275℃上昇する。選択された層が有向放射線の10%を吸収する場合、有向放射線の線源に最も近い表側部分は、裏側部分が所望の300℃にまで加熱されるためには約330℃にまで加熱される必要がある。フィルムのうちの最も熱い部分と、悪影響となる温度又はイオン化する条件との間に十分なヘッドルームが維持されるべきである。厚さによる温度制御は、ある材料からのみ選択的に複屈折性を除去して、例えば過熱を防止するために重要となり得る。一部の例において、予熱が望ましい場合もある。加工の効率は、レーザーエネルギーの観点から、レーザー露光の前又はその間にフィルムを予熱することによって向上され得る。フィルムの予熱温度は、室温を超えるべきであるが、光学パケットに使用されるポリマーの融解温度未満であるべきである。通常、フィルムがその厚さ全体にわたって予熱される場合、同じ程度の熱的なヘッドルームに対して、より大量の有向放射線が吸収され得る。例えば、200℃である選択されたフィルム領域の裏側部分が、100℃差の300℃まで加熱される場合、表側部分は、ビームの入射エネルギーの約10%が吸収されたとき、310℃まで過熱されるに過ぎない。この場合、選択された領域は、最大で有向放射線の約23%を吸収することができ、表側部分には130℃の温度上昇、裏側部分にはここでも所望の300℃に達する100℃の上昇を伴って、ここでも結果として、最大で約330℃まで加熱される。選択された領域を越える著しい融解を結果として生じる、冷却の間の熱パルスの流出(wash-out)を防止するために、予熱の量を制御することが必要となる場合もある。一般に、予熱が高くなるにつれて、フィルム厚さの残部は、より融解に近づく。選択されていないこれらの部分は、熱パルスが広がると、溶解しやすくなることがある。有向放射線によって誘導される最大温度、様々な層厚さを有するフィルム構造の側面、フィルムを通じた予熱の勾配、及び有向放射線の経路が、すべて、フィルム及び加工を最適化するために共に考慮されることが必要となり得る。実際には、融解範囲へと材料の温度を上昇させるためだけでなく、実際に融解を生じさせるためにも、十分なエネルギーが吸収されることが好ましいため、熱の管理は、より一層、複雑となる。有向放射線のエネルギーパルスの管理は、他のミクロ層パケット内の複屈折層を融解させることなく、あるミクロ層パケット内の複屈折層を融解させるようにするなど、望ましくない融解を回避して、融解が実際に生じることができ、かつ温度波が厚さ方向、つまりz軸に沿って適度に封じ込められることを確実にするために、時間因子を含むべきである。特に、パルスの順序及び持続期は、慎重に制御されることが必要となり得る。
【0105】
レーザー源の出力、走査速度、及びビーム形状(レーザー源が選択的な加熱に使用される場合)と、染料の添加量(又は、実際に吸収剤が使用される場合は別の吸収剤の添加量)とが相まって、断熱的な条件下でフィルムの加工領域にエネルギーが効果的に伝達される。熱的条件は一般には、実際に断熱的ではないが、フィルム構造の仕様、背景温度、並びに、関連する材料の様々な熱容量、融解熱、及び融解点の知識を用いて、断熱的条件を仮定した転化に必要なエネルギーを求めることによって、おおよそのレーザー加工条件が推定され得る。染料の溶解限度及び溶解機構を含めて、赤外線吸収体又は他の吸収剤の分散は、重要な検討事項となり得る。溶解しない染料及び顔料の場合、粒子寸法及び形状の分布が重要となり得る。例えば、過度に大きな吸収粒子は、それらの周りのフィルム母材に対して過熱し、劣化、しわ、膨れ、層剥離、又は他の損傷などのフィルムの欠陥の原因となり得る。また、表面の粉塵及び埋め込まれた粉塵、並びに類似の粒子状物質もまた、不規則的な欠陥又は予期しない欠陥の原因となり得るので、フィルムの清浄度も重要となり得る。他の検討事項には、ビームの形状及びレーザー源の周波数(パルス線源が使用される場合)、走査パターン、フィルムの装着(例えば、接着剤又は他の手段などでの貼合わせによってカード又は他の基材の上に)、並びに、例えばフィルム内の様々な熱伝導率及びフィルムからの熱伝達係数によって制御される熱伝達が挙げられる。
【0106】
また、吸収される放射エネルギーをフィルム平面全体にわたって管理することも、所望の空間機構を確保するために重要となり得る。また、ビームのサイズ及び焦点も、重要なプロセス管理となり得る。一部の例においては、ビームの焦点が最も小さい寸法に合わせられる場所にフィルムを置くことが望ましいこともあるが、他の例においては、フィルムは、ビームの焦点が所望量だけ外れる場所に故意に置かれることもある。フィルムを走査する方式、及び、ある領域の加工中にいかに迅速に有向光ビームの経路がそれ自体に重なり合うか又はそれ自体に向かう(turn on itself)かにより、表面の粗さ、滑らかさ、曇り度、しわ、及び他の現象が変化し得る。上記のフィルムの予熱についての議論に関して言えば、ビームは、フィルムのうちの現在、照射されている部分が、フィルムのうちの最近に照射された部分に近接するような方式で制御されてよく、そのため、レーザー自体で与えられた熱は、フィルムのうちの現在、照射されている部分を予熱すると見なされ得る。これは、例えば、ビームが第1の経路に沿って走査され、その直後に(フィルムのうちの第1の経路に沿っておりかつ第1の経路に近接する部分が、依然として高温にあるうちに)第2の経路に沿って走査され、その第2の経路は、第1の経路に隣接するか、又は第1の経路にいくぶんか重なるものである場合に生じ得る。
【0107】
有向放射線の持続時間など、時間に関連する要素もまた重要となり得る。本発明者らは、比較的短いパルス式の動作が多くの場合に有利であることを見出した。例えば、一部の典型的な例において、本発明者らは、レーザー露光の持続時間で決まる加熱時間が好ましくは10ナノ秒間〜10ミリ秒間の範囲内であることを見出した。上限の露光持続時間は、所与の用途で許容され得る厚さを通じた、フィルムの他の部分への熱拡散の量の関数である。持続時間が短くなるにつれて、対象となる所望のフィルム領域へのエネルギーの送達がより小規模となり、例えば、所望のパケット内に大部分が封じ込められる瞬間的な熱パルスを確立することが可能となり得る。熱拡散の詳細は、材料、特定の材料配向状態における異方性の熱伝導率、密度、熱容量、対象となる領域の厚さ、ビームの持続時間などの関数となる。例示的な実施形態において、光学パケットによって吸収されるエネルギーは、その光学パケット内の光学的反復単位を融解するのに十分な強度及び持続時間のものであるが、フィルムの構成成分を蒸発させる、著しく化学的に改質する、又は融除するには不十分な強度及び持続時間のものである。
【0108】
レーザー露光によって第2のゾーンにおけるパケットの複屈折性を改良するために、高強度(高出力/単位面積)と高エネルギー密度との双方が望ましいが必須ではない。これらの特性は、処理に必要な時間を減じることによって、パケット内の材料が有向放射線を吸収することで発生する相当な量の熱が、パケット内に留まるようにすることを確実にするのに役立つ。熱拡散は、パケット内におけるエネルギーの集中を減じ、それゆえに加工の効率を低下させることもある。この点に関して、多くの場合、少量の熱のみが、第1の(未処理)ゾーンの中へと横方向に、又は(処理された)第2のゾーン内でフィルムの他の層へと、パケットの外側に散逸することが望ましい。第2のゾーンにおいてフィルムの厚さの一部分のみを加熱することが望まれる場合、第2のゾーン内の吸収パケットの外側に散逸する熱が増加するにつれて、加工の効率が低下する。
【0109】
冷却の方式もまた、慎重に検討されることが必要となり得る。一部の状況では急激な冷却が有用となり得る。フィルムの片側又は両側からの冷却が望ましいものとなり得る。
【0110】
有向放射線の吸収が適度に低水準であることもまた、最終用途に重要となり得る。環境暴露によってフィルムが不適切に過熱されないことが望ましい。特に、近赤外線吸収は、結果として、直射日光に暴露されたときのフィルムの加熱を生じることがある。好ましくは、予想される光流によってフィルム温度が不適切に上昇することがない。例えば、通常の使用においてシステムの温度がフィルムのガラス遷移温度未満に維持されることが望ましい場合もある。エネルギー吸収の量は、必要な温度差を所与の予熱の高さで達成するために、パルスから捕捉されなければならないエネルギーの量にいくぶんか関連している。
【0111】
システム内の所望の吸収はこのようにして最適化され、色、灰色度、又は環境放射吸収など、最終用途での懸念を最小化すると共に、所望の処理の均一性及び程度が達成するように、光流のレベル、熱拡散(流出)、予熱、及び冷却の釣り合いが取られる。
【0112】
エネルギー吸収用の緩衝層又は領域をフィルムの機能層又は領域の間に組み込むことが有用となり得る。これらの緩衝領域は、高温化し、更には部分的に又は全体的に融解すると同時に、フィルムの別の機能領域が熱拡散(流出)によって高温化するのを防止することができる。一例において、この緩衝領域は、光学層内で使用されている材料と類似した材料又は異なる材料のパケット間の層(例えばPBL)であってもよい。別の例において、より融解温度の低い材料が、より融解温度の高い材料の機能層間の「熱の減速バンプ」として使用され得る。多層光学フィルムにおいて、簡単な一例は、例えば90%/10%のナフタレン/テレフタレートカルボキシレート(carboxalate)のサブユニットを含み得るいわゆる低融点PEN(LmPEN)など、低融点の配向coPENの保護境界層(PBL)によって分離された光学パケットを備えるPEN:PMMA又はPEN:等方性coPENのミラー構造である。
【0113】
ポリマーフィルム内の材料層の融解点及び/又は軟化点(例えばガラス転移温度)は、示差走査熱量計(DSC)技術を用いて測定及び分析され得る。そのような技術において、フィルムサンプルはまず、例えば試験前に200ミリトール(26.7Pa)未満の減圧下で約48時間にわたって60℃で適切に乾燥され得る。次いで、約5mgのサンプルが秤量され、気密封止されたアルミニウム製のTzero社製パンに密閉され得る。次いで、加熱・冷却・加熱の温度傾斜が、適切な温度範囲、例えば30℃〜290℃にわたって実施され得る。20℃/分の一定の加熱速度又は他の適切な加熱速度が、この温度傾斜に用いられ得る。走査の後、第1の加熱温度追跡結果が、軟化の段階的変化及び融解のピークに関して解析され得る。この解析により、融解温度と、その融解温度に関連付けられる特徴的な帯域幅との双方を明らかにすることができ、その帯域幅は半値幅(PWHH)と呼ばれる。PWHHが有限値であることは、材料が単一の厳密な温度で融解するのではなく、温度の有限範囲にわたって融解し得るという事実を反映するものである。PWHHは、種々の材料が互いに近接した(ピーク)融解温度を有する物品に対して、重要となり得る。多層光学フィルムにおける使用に好適な3種類の例示的な材料、すなわち、ポリエチレンナフタレート(PEN)と、ナフタレートを基剤とするPENのコポリマーであり、米国特許出願公開第2009/0273836号(ユスト(Yust)ら)の実施例7に記載するいわゆるPEN−CHDM10(本明細書において「PEN−Gb」と呼ぶ)と、20%のジメチル2,6−ナフタレンジカルボキシレート(NDC)を4,4’ビフェニルジカルボン酸ジメチルエステルで置換した、PENを基剤とするポリマー(本明細書において「PENBB20」と呼ぶ)と、について、DSC技術を用いて融解温度とPWHHを測定した。これらの材料のサンプルを測定すると、PEN、PEN−Gb、及びPENBB20のサンプルに対して、それぞれ261℃、248℃、及び239℃の融解点を示した。サンプルのPWHHもまた測定した。PENのサンプルのPWHHは7℃であったが、ポリマーの加工条件によって、このPWHHは5℃〜10℃の範囲に及び得る。PEN−GbのサンプルのPWHHは6℃であったが、加工条件によって、このPWHHは5℃〜15℃の範囲に及び得る。PENBB20のサンプルのPWHHは10.4℃であったが、加工条件によって、このPWHHは5℃〜15℃の範囲に及び得る。一般に、ポリマーフィルムのPWHHは、融解点未満の適切な温度で適切な時間にわたってフィルムを加熱硬化させることによって減少し得る。
【0114】
一般に、有向放射線の任意の特定の波長バンドに対し、厚さ方向に沿ったフィルムの残部の吸収能は、これらの非選択部分の望ましくない過熱及び望ましくない変質を防止するために、この放射線に対するフィルムの選択部分と比べて十分に低くなるように調整され得る。フィルムの押出しプロセスは、フィルムの選択部分の活発に吸収する材料がフィルムのその部分から別の機能的部分へと移動することが、相当な程度で生じないように計画され得る。ここでも、例えば化学親和力がないことによってそのような移動を阻止する緩衝層が使用され得る。また、層の接触などの滞留時間を含めた加工方法も用いられ得る。
【0115】
有向放射線による処理は、フィルムの製造の直後又はその間にも達成され得るが、それとは別に、ロールの形態で、圧延後に、あるいは、ガラス板などの別の基材又はプラスチック若しくは紙のカードストックへの装着後にも依然として達成され得る。その正確さは、プロセス変動に対して釣り合うものであるべきである。例えば、ウェブフラッターが、ロールプロセスで十分に操作されるべきである。有向放射線による処理は、フィルムがおそらくはニップの間で張力下にある間にローラーを越えて移動するときに達成され得る。ローラーを絶えず清潔にするために、またそれ以外にも掻き傷などの表面の欠陥を防止するために、保護フィルムがフィルムとローラーとの間に配置され得る。別の例において、フィルムは、圧延後に固定基板に装着されるか、又は、半回分方式で仮の支持体の上に装着若しくは固定され得る。例えば、フィルムロールの各部分は、絶えず保護フィルムに接触し、板の上でスライドすることができる。フィルムロールの輸送を停止することができ、板の上の指定部分に所望によりわずかに張力をかけることができ、次いで、有向放射線による処理を、板で支持された指定部分の上に施すことができる。次いで、完成したロール部分は、ロールの連続部分が処理され得る連続的な輸送によって板の処理ゾーンから移動されることができ、ロール全体が処理されるまで、このように続く。
【0116】
また、本明細書で説明する内部パターン形成の方法は、既知の技術、例えば、融蝕、表面非晶質化技術、集束法、エンボス加工、熱成形などと組合わされてもよい。
【0117】
様々な溶融押出し可能な吸収添加剤が、様々な供給源から入手可能である。その添加剤は、有機物、無機物、又は混成物であってよい。それらは、染料、顔料、ナノ粒子などであってよい。考えられるいくつかの赤外染料に、エポリン社(Epolin, Inc.)から商標名Epolight(商標)として入手可能な、ニッケル、パラジウム、及び白金を用いた染料のいずれかが挙げられる。他の好適な候補には、ジョージア州アトランタ(Atlanta)のカラーケムインターナショナル社(ColorChem International Corp.)から入手可能なAmaplast(商標)ブランドの染料が挙げられる。線形吸収添加剤と非線形吸収添加剤のいずれもが検討されてよい。
【0118】
いくつかの要因を組合わせることにより、染料を本発明の用途に特に好適なものにすることができる。押出しプロセス全体にわたる熱安定性が特に望ましい。一般に、押出しプロセスは望ましくは、溶融するためにも、かつ適切に管理可能な圧力降下で溶融流の輸送を可能にするためにも、十分に高温である。例えば、ポリエステルを基剤とする系は、最大で約280℃に至る非常に高い安定性を必要とすることがある。これらの要件は、coPENなどの様々なポリマーのコポリマーを、例えば約250℃での加工で使用することにより、緩和され得る。ポリプロピレン及びポリスチレンなどのオレフィン系は、通常、要求が厳しくない。染料の移動傾向、所望の材料層内に均一に分散される能力、様々な材料への染料の化学親和力などにより、考えられる吸収材料の候補の選択が狭められ得るのと同様に、特定の多層光学フィルム構造における樹脂の選択により、考えられる吸収材料の候補の選択が狭められることがある。
【0119】
一体型多層偏光子/偏光子フィルムの実施例を製作するための指針として読者が用い得るいくつかの仮説例について、これから説明することにする。
【0120】
仮説例
「キャストウェブ」という用語は、キャストされ成形された多層体であって、初期のキャスティングプロセスを終えているが、続く延伸及び配向の前のものを指す。多層ポリマーウェブ又はキャストウェブは、PET又はPEN、並びにテレフタレート及びナフタレートを基剤とするコポリマーを使用して構成され得る。特に有用なコポリマーが、PENBB20と呼ばれるものである。PENBB20は、20モル%のカルボキシレートサブユニット置換で作られる。具体的には、NDC(ジメチル2,6−ナフタレンジカルボキシル酸、例えばイリノイ州ネーパービル(Naperville)のBPアムコ社(BP Amco)から入手可能)の20%が4,4’ビフェニルジカルボン酸ジメチルエステルで置換されるが、他の置換レベルが用いられてもよい。また、PETBB20などのPETBBが使用され得る。
【0121】
多層ポリマーウェブは、米国特許第6,830,713号(へブリンク(Hebrink)ら)に概して記載されているように、共押出しプロセスを用いて形成され得る。様々なポリマーが、例えば85℃で60時間にわたって概ね乾燥され、次いで、一軸スクリュー又は二軸スクリュー構成のいずれかの別々の押出し機の中に供給される。光学層を形成する第1及び第2のポリマーは、それぞれ、最終的な押出し機ゾーンの温度を有する各ポリマー用の押出し機で共押出しされ、フィルム厚さ全体にわたって層厚さの勾配を与える勾配供給板を使用して、151個の交互層供給ブロックを有する溶融トレインの中に供給される。これらの層は、完成した多層フィルムのいわゆる光学スタック又はミクロ層パケットを形成する。層の流れの質を改善するために、2枚の厚い、いわゆる保護境界層(PBL)が、光学スタックの最外層に隣接し、供給ブロック壁における最大の剪断速度から光学スタックを保護する。PBLはまた、押出し機のうちの1つから供給される。これらの例において、PBLを供給する材料は材料1、他の材料は材料2と呼ばれ、押出し機についても同様に呼ばれる。各PBLは、光学スタックの厚さの約4%であってよい。ダイ設定値温度でダイ内に広がる前に、ダイ内で流動する間の層の安定性を高めるために、材料3と共に押出し機3から供給される付加的なスキン層が、共押出しする多層の流れに上部及び下部で合流される。説明したこれらの例において、材料3は材料1又は2と同じであってもよい。(実施例に関連して用いられる「材料1」、「材料2」、及び「材料3」という用語は、本明細書の他の箇所で、例えば図5A〜5Eに関連して用いられる「第1の材料」及び「第2の材料」という用語と関連させて、いかなる事前に定められた形でも解釈されるべきではない。例えば、本実施例の「材料1」は、図5A〜5Eの「第1の材料」に対応し得るものであり、あるいは、本実施例の「材料2」は、この「第1の材料」に対応し得るものである。)多層構造は、ダイからキャストされ、急冷され、キャスティングホイールに静電気的に留められて、キャスト多層光学ウェブのロールを形成することができる。キャストウェブは使い捨てコアの上に巻かれることができ、その使い捨てコアは、幅寸法の中央部分にわたる所望の近似的厚さ(又はキャリパー)で少なくとも10cmの幅を有するものである。
【0122】
樹脂の劣化が最小となるように、必要に応じて更なる減圧を実施して、あるいは実施せずに、染料とポリマー樹脂とを規定の重量比で二軸スクリュー押出し機の中に供給することによって、多層の共押出しに先立ってマスターバッチが作製され得る。次いで、その押出し物が、供給用のペレットへと細断される。ニュージャージー州ニューアーク(Newark)のエポリン社(Epolin, Inc.)から入手可能なEpolite(商標)4121などの白金系染料が有用な染料となり得る。この染料のピーク吸収波長は約800nmである。Epolite(商標)4121染料を配合したマスターバッチの場合、公称の最終ゾーン押出し温度は、240℃〜260℃となり得る。典型的なマスターバッチの公称染料濃度は、ポリマー中の染料1.0重量%である。
【0123】
次いで、多層キャストウェブは、複屈折ミクロ層を備えた多層光学フィルムを形成するように延伸又は伸張され得る。KARO IV(ブリュクナー社(Bruekner)から入手可能)などの実験用伸張機が本実施例に使用され得る。キャストウェブは、全体的に予熱され(ある予熱時間及び温度で)、次いで、グリッパの一定の引き離し速度で伸張されることができ、その引き離し速度は、平面内の2つの直交方向(「x」及び「y」方向と呼ばれる)における初期の歪み速度(%の歪み速度で与えられる)と公称の延伸率との比(初期のグリッパ分離度と最終的なグリッパ分離度との比)とに対応するものである。続いて、フィルムは、規定の持続時間(加熱硬化時間)にわたって高温(加熱硬化温度)で延伸された後に加熱硬化され得る。次いで、その結果として得られる多層光学フィルムは、放射エネルギー加工の前及び/又は後に、様々な物理的及び光学的技術を用いて分析され得る。スキン層の外表面における屈折率は、メトリコン社(Metricon)(ニュージャージー州ピスカタウェイ(Piscataway))から入手可能なプリズム結合器を使用して632.8nmで測定され得る。キャストウェブ及び多層光学フィルムの透過バンド特性(放射エネルギー加工の前及び/又は後)は、Perkin−Elmer Lambda 950分光光度計又は他の好適な機器で測定され得る。反射光、透過光、又はそれら両方において、カラー特性が視覚的に観測され得る。
【0124】
偏光子/偏光子フィルム1(仮説)
図5Eの記載内容に類似した候補となる構造は、PENBBコポリマーから構成された第1の組の層と、PET又はPETBBから構成された第2の組の層とを備える多層フィルムであり得る。この例において、PENBB及びPETBBは、カルボキシレートサブユニット置換を備えるコポリエステルである。例えば、NDC(ジメチル2,6−ナフタレンジカルボキシレート)の20%が4,4’ビフェニルジカルボン酸ジメチルエステルで置換されて、PENBB20が作製される。PETホモポリマーの融解点がより高くなることを前提として、PETは、適切なレーザー処理の後も複屈折性を実質的に維持することができる。複屈折性がより高いPETBBコポリマーと対にする場合、PENBBの融解点はPETBBよりも低いことが必要となり、したがって、PENBBの構成成分は、融解点の差が所望の程度となるように調整されなければならない。例えば、PETBBは、PENBBよりもはるかに低いBB含量を有することがある。PENBBはまた、融解点を更に低下させるために、低水準のグリコールサブユニット置換(例えばcoPENBB)を有することができる。図5Eにおいて、PENBBは材料1の役割を果たすことになり、PET(又はPETBB)は材料2の役割を果たすことになる。
【0125】
フィルムの加工及び構造の観点から、PBL中にPETを、かつ外側のスキン中にPENBBを有することが有用となり得る。別法として、第3の材料がスキン中に使用され得る。PENBBと赤外染料、例えばEpolite(商標)4121又はAmaplast(商標)IR 1050のマスターバッチが、PENBBのミクロ層材料流の中に供給され得る。この構造は、等方性の屈折率が整合しない例を示すものである。
【0126】
次いで、このキャストウェブは、実質的に図5Eに関連して上述したように加工され得る。用いられる二段階延伸プロセスに関して言えば、米国特許第6,179,948号(メリル(Merrill)ら)の実施例1〜3に記載の条件が特に有益である。その結果、(均一な)第1の反射偏光フィルムが得られる。次いで、そのようなフィルムは、図5Eに関連して説明したパターン形成フィルムと類似した、本明細書で偏光子/偏光子フィルム1と呼ばれるパターン形成多層光学フィルムを製作するために、上述の技術に類似した技術を用いてフィルムの1つ以上の第2のゾーンにおいて選択的に加熱され得る。
【0127】
この実施例の変形形態において、50/50 coPEN(例えば、米国特許第6,449,093号(へブリンク(Hebrink)ら)「複屈折ポリマーで作製された光学体(Optical Bodies Made with a Birefringent Polymer)」に記載されているもの)など、複屈折性の低い材料がPENBBと置き換えられ得る。このようにして、より密接な屈折率の整合が達成され、したがって、図5Aにより近いものとなり得る。
【0128】
本願の教示内容は、参照によって本願に組み込まれる、本発明の譲受人に譲渡された次の出願のうちのいずれか又はすべての教示内容と共に用いられ得るものであり、それらの出願とは、2008年12月22日出願の米国特許仮出願第61/139,736号「空間選択的な複屈折低減を用いた内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films Using Spatially Selective Birefringence Reduction)」、2009年3月6日出願の米国特許仮出願第61/157,996号「並列するミラー/偏光子ゾーンを有する多層光学フィルム(Multilayer Optical Films Having Side-by-Side Mirror/Polarizer Zones)」、及び2009年3月6日出願の米国特許仮出願第61/158,006号「二層内部パターン形成に好適な多層光学フィルム(Multilayer Optical Films Suitable for Bi-Level Internal Patterning)」である。
【0129】
本願の教示内容は、本願と同じ日に出願された、本発明の譲受人に譲渡された次の出願の教示内容と共に用いられ得るものであり、それらの出願とは、国際特許出願第US2009/XXXXXX号(代理人整理番号64847WO003)「空間選択的な複屈折低減を用いた内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films Using Spatially Selective Birefringence Reduction)」、国際特許出願第US2009/XXXXXX号(代理人整理番号65037WO003)「並列するミラー/偏光子ゾーンを有する多層光学フィルム(Multilayer Optical Films Having Side-by-Side Mirror/Polarizer Zones)」、国際特許出願第US2009/XXXXXX号(代理人整理番号65038WO003)「二層内部パターン形成に好適な多層光学フィルム(Multilayer Optical Films Suitable for Bi-Level Internal Patterning)」、及び国際特許出願第US2009/XXXXXX号(代理人整理番号65848WO002)「複数の複屈折層を有する内部パターン形成多層光学フィルム(Internally Patterned Multilayer Optical Films With Multiple Birefringent Layers)」である。
【0130】
別段の指示がない限り、本明細書及び特許請求の範囲において用いられる、数量、特性の測定値などを表すすべての数値は、「約」という語で修飾されるものとして理解されるべきである。したがって、そうでない旨が明記されない限り、明細書及び特許請求の範囲に記載された数値パラメータは、本願の教示を利用する当業者が得ようと求める所望の特性に応じて変化し得る概算値である。均等論を「特許請求の範囲」に適用することを制限しようとする試みとしてではなく、各数値パラメータは少なくとも、記録された有効数字の桁数を考慮して、通常の丸め法を適用することによって解釈されるべきである。本発明の広範な範疇を示す数値的範囲及びパラメータは概算値であるにも関わらず、いかなる数値も本明細書で説明する具体的な例に記載されている限り、それらの数値は可能な限り合理的に正確に記されている。しかしながら、いかなる数値も、試験又は測定の限界に伴う誤差を含み得る。
【0131】
本発明の様々な修正形態及び変更形態が、当業者には、本発明の範囲及び趣旨から逸脱することなく明らかとなろう。また、本発明は、本明細書に記載した例示的な実施形態に限定されないことが理解されるべきである。すべての米国特許、公開及び非公開の特許出願、並びに本明細書で参照される他の特許及び非特許文献は、それらが前述の開示内容と矛盾しない限り、参照によって本願に組み込まれる。

【特許請求の範囲】
【請求項1】
多層光学フィルムであって、
強め合う干渉又は弱め合う干渉によって光を選択的に反射するように構成され、前記フィルムの第1のゾーンから第2のゾーンへと延びる複数の内部層を備え、
前記第1のゾーンにおいて、前記複数の層は第1の反射偏光子を設け、前記第2のゾーンにおいて、前記複数の層は、実質的に異なる第2の反射偏光子を設け、
前記複数の層の少なくとも一部は、前記第1のゾーンの複屈折性と比べて低減された、第2のゾーンの複屈折性を有する、フィルム。
【請求項2】
前記複数の層は、第1の材料から構成された第1の組の層と、異なる第2の材料から構成された第2の組の層とを備え、前記第1の組の層と前記第2の組の層は共に、前記第1のゾーンにおいて複屈折性である、請求項1に記載のフィルム。
【請求項3】
前記第1の組の層と前記第2の組の層の一方は、前記第2のゾーンにおいて実質的に等方性である、請求項2に記載のフィルム。
【請求項4】
前記第1及び第2の反射偏光子はそれぞれ、第1及び第2の通過軸線と、第1及び第2の遮断軸線とを有し、前記第1の通過軸線は、前記第2の通過軸線に実質的に直交する、請求項1に記載のフィルム。
【請求項5】
前記第1及び第2の反射偏光子はそれぞれ、第1及び第2の通過軸線と、第1及び第2の遮断軸線とを有し、前記第1の反射偏光子は、垂直入射において第1の通過軸線の反射率を有し、前記第2の反射偏光子は、垂直入射において第2の通過軸線の反射率を有し、前記第1の通過軸線の反射率と前記第2の通過軸線の反射率とは、少なくとも5%異なる、請求項1に記載のフィルム。
【請求項6】
前記フィルムは、前記第1のゾーンにおける第1の厚さと、前記第2のゾーンにおける第2の厚さとを有し、前記第1の反射偏光子と前記第2の反射偏光子との間における反射特性の相違は、実質的に、前記第1の厚さと前記第2の厚さとのいかなる差にも起因しない、請求項1に記載のフィルム。
【請求項7】
前記フィルムは、前記第1のゾーンと前記第2のゾーンにおいて実質的に同じであるフィルム厚さを有する、請求項1に記載のフィルム。
【請求項8】
前記フィルムは、前記第1のゾーンと前記第2のゾーンにおいて実質的に異なるフィルム厚さを有する、請求項1に記載のフィルム。
【請求項9】
前記第1の反射偏光子は、垂直入射において第1の反射バンドを有し、前記第2の反射偏光子は、垂直入射において第2の反射バンドを有し、前記フィルムは、前記第1及び第2の反射バンドの外側の波長の光を選択的に吸収する吸収剤を備える、請求項1に記載のフィルム。
【請求項10】
共に同じ複数の層で形成された、実質的に直交して配向された反射偏光子の組合わせを備える、光学フィルム。
【請求項11】
反射偏光子の前記組合わせは、前記光学フィルムの1つ以上の第1のゾーン内に形成された第1の反射偏光子と、前記光学フィルムの1つ以上の第2のゾーン内に形成された第2の反射偏光子とを含み、前記複数の層は、前記1つ以上の第1のゾーンから前記1つ以上の第2のゾーンへ延びる、請求項10に記載のフィルム。
【請求項12】
前記複数の層は、前記1つ以上の第1のゾーンにおいて複屈折性であり、前記1つ以上の第2のゾーンにおいて複屈折性が低いか、又は等方性である第1の組の層を含む、請求項11に記載のフィルム。
【請求項13】
前記直角に配向された反射偏光子はそれぞれ、垂直入射における第1及び第2の反射バンドを有し、前記フィルムは、前記第1及び第2の反射バンドの外側の波長の光を選択的に吸収する吸収剤を備える、請求項10に記載のフィルム。
【請求項14】
第1の反射偏光子フィルムの第1及び第2のゾーンにおける第1の反射特性を特徴とする前記フィルムを用意する工程と、
前記第2のゾーンにおいて前記フィルムを選択的に加熱して、前記フィルムの一部分を、前記第1の反射特性とは実質的に異なる第2の反射特性を特徴とする第2の反射偏光子に転換する工程と、を含む方法。
【請求項15】
前記選択的な加熱は、前記第1の反射偏光子に関連付けられる第1の通過軸線の反射率が、前記第2の反射偏光子に関連付けられる第2の通過軸線の反射率とは実質的に異なるように実施され、前記第1の通過軸線の反射率と前記第2の通過軸線の反射率とは、少なくとも5%異なる、請求項14に記載の方法。
【請求項16】
前記選択的な加熱は、前記第1の反射偏光子の通過軸線が前記第2の反射偏光子の通過軸線に実質的に直交するように実施される、請求項14に記載の方法。
【請求項17】
前記第2のゾーンは、複数の第2のゾーンのうちの1つであり、前記選択的な加熱は、前記複数の第2のゾーン内で実施されるが、前記第1のゾーン内では実施されない、請求項14に記載の方法。
【請求項18】
前記選択的な加熱は、放射エネルギーを前記フィルムの前記第2のゾーンに向けることを含む、請求項14に記載の方法。
【請求項19】
前記放射エネルギーは、レーザーからの紫外光、可視光、又は赤外光を含む、請求項18に記載の方法。
【請求項20】
第1の反射偏光子フィルムの第1及び第2のゾーンにおける第1の通過軸線を特徴とする前記フィルムを用意する工程と、
前記第2のゾーンにおいて前記フィルムを選択的に加熱して、前記フィルムの一部分を、前記第1の通過軸線に実質的に直交する第2の通過軸線を特徴とする第2の反射偏光子に転換する工程と、を含む方法。
【請求項21】
強め合う干渉又は弱め合う干渉によって光を選択的に反射して第1の反射特性をもたらすように構成された複数の内部層を備える多層光学フィルムであって、
前記複数の内部層は、第1の材料から構成された第1の組の層と、前記第1の材料とは異なる第2の材料から構成された第2の組の層とを備え、前記第1及び第2の組の層は共に複屈折性であり、
前記フィルムは、好適な光ビームで前記フィルムが照射されたことに応答して、前記複数の内部層の構造的完全性を維持すると同時に、前記内部層の少なくとも一部の複屈折性を変化させるべく十分に前記内部層を加熱するように調整された吸収特性を有し、複屈折性のそのような変化は、前記第1の反射特性を、異なる第2の反射特性に変化させるのに十分なものであり、
前記第1の反射特性は実質的に、第1の偏光子特性であり、前記第2の反射特性は、前記第1の偏光子特性とは実質的に異なる第2の偏光子特性である、フィルム。
【請求項22】
前記第2の偏光子特性は、前記第1の偏光子特性の通過軸線に対して実質的に直角に配向した通過軸線を有する、請求項21に記載のフィルム。
【請求項23】
前記第1の材料は、第1のポリマーと吸収剤とを含む、請求項21に記載のフィルム。
【請求項24】
前記吸収剤は、700nm超の波長の光を優先的に吸収する、請求項23に記載のフィルム。
【請求項25】
前記第1及び第2の偏光子特性はそれぞれ、垂直入射光について前記第1及び第2の偏光子特性と関連付けられた第1及び第2の反射バンドを有し、前記吸収特性は吸収材に関連付けられ、前記吸収剤は、前記第1及び第2の反射バンド以外の波長の光を優先的に吸収する、請求項21に記載のフィルム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図5E】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8A】
image rotate

【図8B】
image rotate


【公表番号】特表2012−513611(P2012−513611A)
【公表日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2011−542572(P2011−542572)
【出願日】平成21年12月22日(2009.12.22)
【国際出願番号】PCT/US2009/069192
【国際公開番号】WO2010/075383
【国際公開日】平成22年7月1日(2010.7.1)
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】