説明

二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール

【課題】二酸化炭素分離特性に優れ、かつ、耐久性に優れた二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュールを提供する。
【解決手段】耐熱性且つ疎水性の多孔膜と、その表面に形成され、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選択された二酸化炭素キャリアと水分を含み、(A)群:−OH、−NH、−Cl、−CN、―COOH、及びエポキシ基より選ばれた単一の架橋可能基により形成された、(B)群:エーテル結合、アセタール結合、−NH−CH−C(OH)−、−O−M−O−、−NH−M−O−、ウレタン結合、−CH−CH(OH)−、及びアミド結合(MはTi又はZr)より選ばれた耐加水分解性結合を含む架橋構造を有する高分子化合物層と、を備え、100℃〜250℃の温度条件下で使用される二酸化炭素分離部材。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、二酸化炭素分離部材、その製造方法及び該二酸化炭素分離部材を備える二酸化炭素分離モジュールに関する。
【背景技術】
【0002】
近年、混合ガス中の二酸化炭素を選択的に分離する技術の開発が進んでいる。例えば、地球温暖化対策として排ガス中の二酸化炭素を回収して濃縮する技術や、水蒸気改質により炭化水素を水素と一酸化炭素(CO)に改質し、さらに一酸化炭素と水蒸気を反応させて二酸化炭素と水素を生成させ、二酸化炭素を選択的に透過する膜によって二酸化炭素を排除することで水素を主成分とする燃料電池用等のガスを得る技術が開発されている。
一方、二酸化炭素の分離はアミン類による吸着、放散を繰り返すアミン吸収法が一般的で広く用いられてきている。しかしながらこの方法は広大な設備設置面積を必要とする上に吸着/放散時に昇圧/降圧、及び、降温/昇温を繰り返す必要があり、多大なエネルギーを必要とする欠点を有している。また、システムの能力は設計時に決定してしまい、一旦作られたシステムの能力の拡縮は容易でない。
これに対して、膜分離法は分離膜で区画された2つの領域の二酸化炭素分圧により自然に分離を行うものでエネルギー消費が少なく、かつ設置面積がコンパクトな利点を有する。またシステムの能力の拡縮もフィルターユニットの増減で対応出来るためにスケーラビリティーに優れたシステムが可能であり、近年注目を浴びている。
【0003】
二酸化炭素分離膜は大別すると、膜中に二酸化炭素キャリアを含有し、このキャリアによって二酸化炭素が膜の反対側に輸送される、いわゆる促進輸送膜と、膜に対する二酸化炭素と分離対象物質の溶解性、および膜中の拡散性の差を利用して分離を行ういわゆる溶解拡散膜に大別される。溶解拡散膜は膜への二酸化炭素および分離対象物質の溶解度と拡散速度により分離を行う為、膜の材質、物性が決まればその分離度合いは一義的に決定され、また膜厚が薄いほど透過速度が大きくなるため、一般的に層分離法、界面重合法などを用いて1μm以下の薄膜として製造される。
これに対して促進輸送膜は二酸化炭素キャリアを膜中に添加することで二酸化炭素の溶解度を飛躍的に増大し高濃度環境で輸送を行うため、一般的に溶解拡散膜に比べ分離対象物質との分離度が高く、また二酸化炭素の透過速度が速い特徴を有する。また膜中の二酸化炭素濃度が高濃度であることから、膜中の二酸化炭素の拡散が律速になることは希であり、むしろ分離対象物質との分離度合いを上げる意味からは1μm以上の厚膜とする方が好ましい。
【0004】
例えば、特許文献1では、未架橋のビニルアルコール−アクリル酸塩共重合体水溶液を、二酸化炭素透過性支持体上へ膜状に塗布した後、加熱し、架橋させて水不溶化し、この水不溶化物に、二酸化炭素キャリア(二酸化炭素と親和性を有する物質)を含む水溶液を吸収させてゲル化することにより二酸化炭素分離ゲル膜を製造することが提案されている。
【0005】
また、特許文献2では、ポリビニルアルコール−ポリアクリル酸共重合体ゲル膜に炭酸セシウム若しくは重炭酸セシウム若しくは水酸化セシウムからなる添加剤を添加したゲル層を親水性の多孔膜に担持させてCO促進輸送膜を形成し、所定の主成分ガスに少なくとも二酸化炭素と水蒸気が含まれる原料ガスをCO促進輸送膜の原料側面に100℃以上の供給温度で供給して、CO促進輸送膜を透過した二酸化炭素を透過側面から取り出す二酸化炭素分離装置が提案されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特公平7−102310号公報
【特許文献2】特開2009−195900号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
先述の特許文献1、2に示されるような二酸化炭素分離膜は、複数種の架橋可能基を側鎖を持つ高分子化合物の利用を前提としており、このため、ゲル膜作製時の架橋構造の形成に際して、互いに異なる架橋可能基の架橋反応性が異なるために、架橋制御が困難であり、さらに、層分離制御が非常に困難であり、実用性上問題のあるレベルであった。また、当該特許文献に記載されるポリビニルアルコール−ポリアクリル酸共重合体では、ヒドロキシル基とカルボニル基が縮合反応によりエステル結合を形成し、湿熱経時試験により加水分解が進行し、膜が脆性破壊といった懸念があることが分かった。
例えば、焼却炉などから放出される排気ガスより二酸化炭素を分離する場合、排気ガスの温度は100℃を超えることがしばしばあり、従来の湿熱経時により加水分解するような二酸化炭素分離膜は使用し得ず、例えば、一旦排気ガスの温度を常温近くまで降温する必要があり、実用上、高温の排気ガスを直接処理しうる湿熱耐久性に優れた二酸化炭素分離部材が切望されている。
【0008】
このため、架橋構造形成の制御の容易性、及び、形成された架橋構造の物性制御の観点から、なかでも、特に水分を含んで構成されるゲル膜の均一性及び耐久性を向上させる目的で、高分子化合物層内における架橋構造が単一の架橋可能基より形成され、ゲル膜の物性が高品質に維持される高分子化合物層が望まれている。
上記問題点を考慮してなされた本発明の目的は、二酸化炭素ガス分離特性、及び、二酸化炭素分離膜内の均一性に優れ、かつ、寿命の長い二酸化炭素分離膜を有する二酸化炭素分離部材及び該二酸化炭素分離部材を備える、二酸化炭素ガス分離特性及び耐久性に優れる二酸化炭素分離モジュールを提供することにある。また、本発明のさらなる目的は、二酸化炭素分離特性、層内の均一性及び耐久性に優れた二酸化炭素分離部材の製造方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明者はこの問題の解決に鋭意努力した結果、単一の架橋可能基を有する高分子化合物の分子量と耐水素ガス分離性能に相関がある事を見出し、単一の架橋可能基を有する高分子化合物により形成された、耐加水分解性に優れた架橋構造のみを有する高分子化合物層(ゲル膜)が、対水素ガス分離性能と耐久性を両立する事が可能である事を見出し、本発明を完成した。
前記目的を達成するため、本発明の構成は以下に示すとおりである。
<1> 100℃以上の耐熱性を有した疎水性の多孔膜と、該多孔膜の表面に形成され、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選択された少なくとも1種の二酸化炭素キャリアと水分を含み、且つ、下記(A)群より選ばれた単一の架橋可能基により形成された、下記(B)群より選ばれた耐加水分解性結合を含む架橋構造を有する高分子化合物層と、を有し、100℃〜250℃の温度条件下で二酸化炭素ガスと水素ガスとの混合物より二酸化炭素ガスを選択的に透過させる二酸化炭素分離部材。
(A)群:−OH、−NH、−Cl、−CN、―COOH、エポキシ基
(B)群:エーテル結合、アセタール結合、−NH−CH−C(OH)−、−O−M−O−(Mは、Ti又はZrを表す)、−NH−M−O−(Mは、Ti又はZrを表す)、ウレタン結合、−CH−CH(OH)−、アミド結合
【0010】
<2> 前記高分子化合物層を構成する高分子化合物が、単一の架橋可能基である−OHを有する重量平均分子量が130000以上600000以下の高分子化合物である<1>に記載の二酸化炭素分離部材。
<3> 前記高分子化合物が、重量平均分子量が130000以上600000以下のポリビニルアルコールである<2>に記載の二酸化炭素分離部材。
<4> 前記高分子化合物層を構成する高分子化合物が、単一の架橋可能基である−NHを有する重量平均分子量が10000以上600000以下の高分子化合物である<1>に記載の二酸化炭素分離部材。
【0011】
<5> 前記架橋構造が、前記高分子化合物が有する単一の架橋可能基に対し、2官能以上のエポキシ化合物から選ばれた架橋剤を反応させて形成されたエーテル結合を含む架橋構造である<1>〜<4>のいずれか1つに記載の二酸化炭素分離部材。
<6> 前記架橋構造が、前記高分子化合物が有する架橋可能基100molに対し、架橋剤0.01mol〜80molを反応させて形成された架橋構造である<1>〜<5>のいずれか1つに記載二酸化炭素分離部材。
<7> 前記アルカリ金属炭酸塩、アルカリ金属重炭酸塩、アルカリ金属水和物が、セシウム、ルビジウム、カリウム、及びナトリウムから選ばれたアルカリ金属元素を有する<1>〜<6>のいずれか1つに記載二酸化炭素分離部材。
<8> 前記高分子化合物層が、さらに、界面活性剤を含有する<1>〜<7>のいずれか1つに記載二酸化炭素分離部材。
<9> 前記高分子化合物層が、さらに、フィラーを含有する<1>〜<8>のいずれか1つに記載二酸化炭素分離部材。
<10> 前記高分子化合物層が、さらに製膜適性付与剤を含有する<1>〜<9>のいずれか1つに記載の二酸化炭素分離部材の製造方法。
<11> 前記高分子化合物層と前記疎水性の多孔膜との間に、前記二酸化炭素キャリアの拡散を抑制するキャリア拡散抑制層を有する<1>〜<10>のいずれか1つに記載二酸化炭素分離部材。
<12> 前記疎水性の多孔膜が、セラミックス、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルフォン(PSF)、ポリイミド(PI)、ポリプロピレン(PP)、ポリエーテルイミド、及び、ポリエーテルエーテルケトンからなる群より選ばれた少なくとも1種を含んで構成された多孔膜である<1>〜<11>のいずれか1つに記載の二酸化炭素分離部材。
【0012】
<13> <1>〜<12>のいずれか1つに記載の二酸化炭素分離部材の製造方法であって、100℃以上の耐熱性を有した疎水性の多孔膜上に、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選択される少なくとも1種の二酸化炭素キャリアと水分を含み、下記(A)群より選ばれた単一の架橋可能基を有する高分子化合物の水溶液と架橋剤とを含有するキャスト溶液を塗布し、キャスト液中で前記高分子化合物が有する単一の架橋可能基と架橋剤とを反応させて、下記(B)群より選らばれた耐加水分解性結合を含む架橋構造を有する高分子化合物層を形成する二酸化炭素分離部材の製造方法。
(A)群:−OH、−NH、−Cl、−CN、―COOH、エポキシ基
(B)群:エーテル結合、アセタール結合、−NH−CH−C(OH)−、−O−M−O−(Mは、Ti又はZrを表す)、−NH−M−O−(Mは、Ti又はZrを表す)、ウレタン結合、−CH−CH(OH)−、アミド結合
<14> 前記高分子化合物層が、架橋構造を有するポリビニルアルコールゲルを含んで構成される層である<13>に記載の二酸化炭素分離部材の製造方法。
<15> <1>〜<12>のいずれか1つに記載の二酸化炭素分離部材を備えてなる二酸化炭素分離モジュール。
【0013】
なお、本発明における「架橋可能基」とは、架橋可能基が直接、或いは、適切な架橋剤を介して結合して架橋構造を形成しうる官能基を指す。本発明において高分子化合物層(ゲル膜)の形成に用いられる水溶性高分子化合物は、「単一の架橋可能基」即ち、分子内に存在する架橋可能基が1種のみであることで、以下に詳述するように、形成される架橋構造が均一となり、さらに、架橋構造形成性の制御が容易に行えるという利点をも有するものである。
【0014】
本発明の作用は明確ではないが、本発明の二酸化炭素分離部材においては、二酸化炭素分離膜である、水分を含んだゲルの態様をとる高分子化合物層が、単一の架橋可能基により形成された耐加水分解性の架橋構造のみを有するために、ゲル膜の湿熱耐久性に優れるとともに、高分子化合物層内の層分離や架橋制御の懸念が解消され、高分子化合物層の不均一により生じる二酸化炭素分離特性の局所的な低下や二酸化炭素キャリアの多孔質膜への溶出が抑制され、二酸化炭素分離特性にばらつきがなく、且つ、耐久性に優れた二酸化炭素分離部材が提供されたものと考えている。
【発明の効果】
【0015】
本発明によれば、二酸化炭素ガス分離特性、及び、二酸化炭素分離膜内の均一性に優れ、かつ、寿命の長い二酸化炭素分離膜を有する二酸化炭素分離部材、二酸化炭素分離モジュール及び二酸化炭素分離部材の製造方法が提供される。
【図面の簡単な説明】
【0016】
【図1】本発明の二酸化炭素分離モジュールの一実施形態を示す、一部切り欠きを設けてなる概略構成図である。
【図2】図1に示す二酸化炭素分離モジュールの断面を表す斜視図である。
【発明を実施するための形態】
【0017】
以下、本発明を詳細に説明する。
本発明の二酸化炭素分離部材は、以下に詳述する100℃以上の耐熱性を有した疎水性の多孔膜(以下、疎水性支持体と称することがある)と、二酸化炭素分離特性を有する高分子化合物層(以下、二酸化炭素分離膜と称することがある)とを備える。
(二酸化炭素分離膜)
本発明における二酸化炭素分離膜は、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選択された少なくとも1種の二酸化炭素キャリアと水分を含み、且つ、下記(A)群より選ばれた単一の架橋可能基により形成された、下記(B)群より選ばれた耐加水分解性結合を含む架橋構造を有する高分子化合物層であり、100℃〜250℃の温度条件下で二酸化炭素ガスと水素ガスとの混合物より二酸化炭素ガスを選択的に透過させる機能を有する。
(A)群:−OH、−NH、−Cl、−CN、―COOH、エポキシ基
【0018】
(B)群:エーテル結合、アセタール結合、−NH−CH−C(OH)−、−O−M−O−(Mは、Ti又はZrを表す)、−NH−M−O−(Mは、Ti又はZrを表す)、ウレタン結合、−CH−CH(OH)−、アミド結合
【0019】
以下、本発明の二酸化炭素分離膜について詳細に説明する。
本発明に係る高分子化合物層(二酸化炭素分離膜)は、水溶性の高分子化合物を原料とし、該高分子化合物が有する架橋可能基に由来する架橋構造を形成することで得られたゲル膜であり、二酸化炭素キャリアと水とを含有する。本発明においては、高分子化合物層は、単一の架橋可能基のみを有する高分子化合物により形成された上記(B)群に示される結合を有する耐加水分解性の架橋構造を有する。
【0020】
−水溶性高分子化合物−
前記高分子化合物層に含まれる水溶性高分子化合物は、水との親和性を有し、且つ、分子内に有する架橋可能基が1種のみである高分子化合物である。
水溶性高分子化合物の重量平均分子量は、安定なゲル膜を形成しうる範囲で適宜選択されるが、例えば、架橋可能基として−OHを有する場合には、重量平均分子量が13万以上であるものが好ましい。重量平均分子量は更に好ましくは分子量16.6万以上であり、より好ましくは、18万以上である。重量平均分子量の上限値には特に制限はないが、製造適性の観点からは、600万以下であることが好ましい。
また、架橋可能基として−NHを有する場合には、重量平均分子量が1万以上であるものが好ましい。重量平均分子量は更に好ましくは1.5万以上であり、より好ましくは、重量平均分子量2万以上である。重量平均分子量の上限値には特に制限はないが、製造適性の観点からは、600万であることが好ましい。
なお、水溶性高分子化合物の重量平均分子量は、例えば、水溶性高分子化合物としてPVAを用いる場合には、JIS K 6726に準じて測定した値を用いている。また、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いている。
【0021】
架橋可能基としては、耐加水分解性の架橋構造を形成しうるものが選択され、ヒドロキシ基(−OH)、アミノ基(−NH)、カルボキシ基(−COOH)、エポキシ基、塩素原子(−Cl)、シアノ基(−CN)等が挙げられる。これらの中でも、アミノ基、及びヒドロキシ基が好ましく、最も好ましくは二酸化炭素キャリアとの親和性及びキャリア担持効果の観点からヒドロキシ基である。エポキシ基としては、例えば、以下に示される構造が挙げられ、さらに置換基を有するものであってもよい。
【0022】
【化1】

【0023】
このような単一の架橋可能基を有する水溶性高分子化合物として、好ましくはポリアリルアミン、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジンなどが挙げられ、最も好ましくはポリビニルアルコールである。
【0024】
前記ポリビニルアルコールは、分子内に架橋可能基であるヒドロキシル基と架橋不可能基であるアセチル基とを有するが、ヒドロキシル基/アセチル基の比率はモル比で95/5以上である事が好ましく、98/2以上であることがより好ましく、99/1以上であるものが最も好ましい。
【0025】
ポリビニルアルコールは市販品としても入手可能であり、例えば、ポバール(クラレ製)、ポリビニルアルコール(アルドリッチ社製)、J−ポバール(日本酢ビ・ポバール社製)が挙げられる。分子量のグレードは種々存在するが、既述のように重量平均分子量が13万から30万のものを選択することが好ましい。
ポリビニルアルコールのけん化率としては、98%以上の完全けん化型、85%以上の部分けん化型、85%以下の低けん化型があるが、形成されるゲル膜の物性を考慮すれば、好ましくは部分けん化型又は完全けん化型であり、更に好ましくは完全けん化型である。
【0026】
ポリアリルアミン及びポリエチレンイミンとしては、分子内に架橋可能基としてアミノ基のみを有するものであれば特に制限なく使用される。既述のように、効果の観点からは、分子量が1万以上600万以下のものであることが好ましい。
ポリアリルアミンは市販品としても入手可能であり、例えば、日東紡製ポリアリルアミンが挙げられ、このような市販品も本発明に好ましく使用しうる。
ポリエチレンイミンも市販品としても入手可能であり、例えば、エポミン(日本触媒株式会社)が挙げられる。
【0027】
−架橋剤−
前記単一の架橋可能基を有する水溶性ポリマーが有する架橋構造は熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等、従来公知の手法により形成することができる。好ましくは光架橋又は熱架橋であり、最も好ましくは熱架橋である。
本発明における高分子化合物層の形成には、水溶性高分子化合物とともに架橋剤を含む組成物を用いることが好ましい。高分子化合物層の形成に用いられる高分子化合物層形成用塗布液組成物を以下、単に「塗布液組成物」又は「組成物」と称することがある。
既述の先行技術に記載のゲル膜は、ポリビニルアルコール−ポリアクリル酸塩共重合体を用いてなり、分子内に2種以上の架橋可能基を有するが、この共重合体に架橋構造を形成する場合、ヒドロキシル基とカルボキシル基との競争反応となってしまうため、架橋が狙い通り進行しないなどの課題があったが、本発明においては、架橋可能基を1種のみ有する水溶性高分子化合物を用いているため、架橋剤の選定に関しても、(A)群から選ばれる架橋可能基、例えば、−OH(ヒドロキシ基)と反応性が高い架橋剤を選択すればよく、狙い通りの分子設計が可能となり有利である。
架橋剤としては、前記単一の架橋可能基を有する水溶性高分子と反応し、熱架橋又は光架橋し得る官能基を2以上有する架橋剤を含むものが選択され、形成された架橋構造は、前記(B)群より選択される耐加水分解性の架橋構造となることを要する。このような観点から、本発明に使用しうる架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが挙げられる。好ましくは多価アルデヒド、有機金属系架橋剤、及びエポキシ架橋剤であり、有機金属系架橋剤、及びエポキシ架橋剤がより好ましく、最も好ましくは、エポキシ架橋剤である。
【0028】
本発明に工程に使用されるエポキシ架橋剤としては、エポキシ基を2以上有する化合物であり、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、共栄社化学株式会社製、エポライト100MF(トリメチロールプロパントリグリシジルエーテル)、ナガセケムテックス社製EX−411、EX−313、EX−614B、EX−810、EX−811、EX−821、EX−830、日油株式会社製エピオールE400などが挙げられる。
また、エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物もまた好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス社製EX−411、EX−313、EX−614B、EX−810、EX−811、EX−821、EX−830、などが挙げられる。
【0029】
以下、本発明において架橋構造の形成に用いられる他の架橋剤について説明する。
前記多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。
【0030】
多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチエンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソビトール等が挙げられる。
【0031】
多価イソシアネートとしては、例えば、2,4−トルイレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。また、上記多価アジリジンとしては、例えば、2,2−ビスヒドロキシメチルブタノール−トリス〔3−(1−アシリジニル)プロピオネート〕、1,6−ヘキサメチレンジエチレンウレア、ジフェニルメタン−ビス−4,4’−N,N’−ジエチレンウレア等が挙げられる。
【0032】
ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α−メチルクロルヒドリン等が挙げられる。
多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が挙げられる。
多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が挙げられる。
有機金属系架橋剤とは有機チタン架橋剤、有機ジルコニア架橋剤等が挙げられる。
【0033】
上記架橋剤のうち、高分子化合物として、例えば、重量平均分子量が13万以上の高分子量体ポリビニルアルコールを用いる場合には、この高分子化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点からエポキシ化合物やグルタルアルデヒドが特に好ましい。
また、例えば、重量平均分子量が1万以上のポリアリルアミンを用いる場合には、この高分子化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、エポキシ化合物、グルタルアルデヒド、及び有機金属架橋剤が特に好ましい。
高分子化合物として、ポリエチレンイミン又はポリアリルアミンを用いる場合、架橋剤としてはエポキシ化合物が特に好ましい。
【0034】
高分子化合物層形成用塗布液組成物が架橋剤を含有する場合の含有量は、前記高分子化合物が有する架橋可能基量100質量部に対して0.001質量部から80質量部が好ましく、更に好ましくは0.01質量部から60質量部が好ましく、もっとも好ましくは0.1質量部〜50質量部である。含有量が上記範囲であることで、架橋構造の形成性が良好であり、且つ、形成されたゲル膜の形状維持性に優れる。
また、高分子化合物の有する架橋可能基に着目すれば、架橋構造は、高分子化合物が有する架橋可能基100molに対し、架橋剤0.01mol〜80molを反応させて形成された架橋構造であることが好ましい。
【0035】
−二酸化炭素キャリア−
前記二酸化炭素キャリアは、二酸化炭素と親和性を有し、かつ、塩基性を示す各種の水溶性の無機物質であり、本発明においては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、及びアルカリ金属水酸化物から選択される。ここで、アルカリ金属としては、セシウム、ルビジウム、カリウム、及びナトリウムから選ばれたアルカリ金属元素が好ましく用いられる。
【0036】
アルカリ金属炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムなどが挙げられる。
アルカリ金属重炭酸塩としては、例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、及び炭酸水素セシウムなどが挙げられる。
アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び水酸化セシウムなどが挙げられる。
これらの中でも、二酸化炭素との親和性がよいという観点から、カリウム、ルビジウム、及びセシウムをアルカリ金属元素として含む化合物が好ましい。
【0037】
前記二酸化炭素キャリアの前記高分子化合物層における含有量は、前記水溶性高分子化合物1質量部に対して0.1質量部〜5質量部であることが好ましく、さらに0.2質量部〜4質量部であることがより好ましく、さらに0.3質量部〜3質量部であることが特に好ましい。含有量が前記範囲であることで、十分な二酸化炭素キャリア能が得られ、且つ、ゲル膜中において、キャリアが過剰に含まれる際に懸念される二酸化炭素キャリアの塩析が抑制される。
【0038】
−その他の成分−
高分子化合物層の形成に使用される組成物には、前記水溶性高分子化合物、架橋剤、二酸化炭素キャリア及び溶媒としての水に加え、種々の添加剤を併用してもよい。
(反応促進添加剤)
添加剤としては、二酸化炭素と二酸化炭素キャリアとの応を促進する目的で、反応促進添加剤である窒素含有化合物や硫黄酸化物を用いることが好ましい。
【0039】
前記窒素含有化合物としては、例えば、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類や、クリプタンド〔2.1〕、クリプタンド〔2.2〕などの環状ポリエーテルアミン類、クリプタンド〔2.2.1〕、クリプタンド〔2.2.2〕などの双環式ポリエーテルアミン類やポルフィリン、フタロシアニン、エチレンジアミン四酢酸などを用いることができる。
前記硫黄化合物としては、例えば、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオールなどを用いることができる。
【0040】
(酸化防止剤)
前記塗布液組成物には、本発明の効果を損なわない限り、酸化防止剤を含有してもよい。酸化防止剤を添加することで湿熱耐性をさらに向上させるという利点を有する。
酸化防止剤は市販品を用いてもよく、好適な酸化防止剤としては、例えば、ジブチルヒドロキシトルエン(BHT)、イルガノックス1010、イルガノックス1035FF、イルガノックス565などが挙げられる。
【0041】
(フィラー) 前記塗布液組成物には、フィラーを含有してもよい。
フィラーは前記水溶性高分子化合物や二酸化炭素キャリアとの親和性を有し、且つ、高圧環境下でのゲル膜の形状維持性を阻害しないものであれば、有機系・無機系のいずれであってもよい。
有機系フィラーとしては澱粉、パルプ、セルロース、メラニン系樹脂、ポリメチルメタアクリレート系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、ハイスチレン樹脂、クマロンインデン樹脂、フェノールホルムアルデヒド樹脂、変性メラニン樹脂、リグニン、ゴム粉、エボ粉、エポキシ系樹脂の他、ポリ乳酸等の生分解性樹脂等が挙げられる。
【0042】
無機系フィラーとしては、タルク、二酸化珪素、珪藻土、カオリン、雲母、アスベスト、石膏、グラファイト、ガラスバルーン、ガラスビーズ、ガラスファイバー、硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム、炭酸カルシウム、ウイスカー状炭酸カルシウム、炭酸マグネシウム、ドーソナイト、ドロマイト、チタン酸カリウム、カーボンブラック、ガラス繊維、アルミナ繊維、ボロン繊維、加工鉱物繊維、炭素繊維、炭素中空球、ベントナイト、モンモリロナイト、銅粉、硫酸ナトリウム、硫酸カリウム、硫酸亜鉛、硫酸銅、硫酸鉄、硫酸マグネシウム、硫酸アルミニウム、硫酸アルミニウムカリウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸アルミニウム、塩化アンモニウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、リン酸ナトリウム、クロム酸カリウム、クエン酸カルシウム、六ホウ化ランタン、アンチモン添加酸化錫、シリカ、重質、軽質または表面処理された炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、珪藻土、硫酸バリウム、硫酸カルシウム、ゼオライト、酸化亜鉛、珪酸、珪酸塩、マイカ、炭酸マグネシウム、ハロサイト、パイロフェライト、セリサイトなどのクレー、タルククレー、カオリン、水酸化アルミニウム、炭酸カルシウム、二酸化チタン、硫酸バリウム、サチンホワイト、タルク、ケイ酸塩、アルミナ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、水膨潤性フィロケイ酸塩、タルク、炭酸カルシウム、石膏(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト)等のスメクタイトやパーミキュライト等、スコリア、軽石等が挙げられる。
【0043】
前記塗布液組成物には、フィラーを1種類単独で用いても構わないし2種類以上併用してもよい。2種以上併用する場合、有機系フィラー又は無機系フィラーのそれぞれをくみあわせてもよく。有機系及び無機系フィラーの混合の形態で用いてもよい。
フィラーの粒子径としては特に制限は無いが、0.1μm〜5μm、好ましくは0.1μm〜2μm、より好ましくは0.3μm〜2μmの範囲であることが、欠陥を形成しにくい点から望ましい。なお、フィラーの粒径は光散乱法により測定される。
組成物にフィラーを用いる際の含有量としては、前記水溶性高分子化合物に対して0.001質量%〜70質量%の割合とすることが好ましい。
【0044】
フィラーを添加する際、フィラーを水溶液に分散させて調合した分散物を水溶性高分子化合物に混合して用いてもよく、水溶性高分子化合物にフィラーを直接分散させて用いてもよい。
好ましくは、チタン系フィラーやジルコニア系フィラーなどの金属系フィラー、硫酸バリウム等の無機フィラー、カーボンブラックなどから選ばれるフィラーを混合した水溶性高分子を用いる態様であり、フィラーとして更に好ましくは硫酸バリウム及びカーボン径フィラーが挙げられ、最も好ましくはカーボン系フィラーを分散させてなる水溶性高分子化合物を用いる態様である。
【0045】
(界面活性剤)
前記塗布液組成物には界面活性剤を含有してもよい。
界面活性剤を含有することで、高分子化合物層を形成する際に、支持体である多孔膜と高分子化合物層との界面に、界面活性剤が偏在し、これを仲介させることにより、界面活性剤の疎水部位が多孔膜表面に吸着することで高分子化合物層の多孔膜との界面に薄層を成し、二酸化炭素キャリアの透過を防ぐ。このことにより、二酸化炭素分離膜としての性能が安定する。また、前記塗布液組成物の塗布工程において、二酸化キャリアの染み出しが抑制され、かつ、疎水性の多孔膜との濡れ性を向上させることができるため、膜厚ムラを改善でき、更なる性能の安定性を付与できる。
【0046】
本発明に使用される界面活性剤としては、二酸化炭素キャリアの透過を防ぐ効果を損なわないように、界面活性剤の疎水部位が、面内に薄層を成すものであればよい。例えば、界面活性剤の物性はアニオン型、カチオン型、ノニオン型、及び両性型のいずれでもよいが、炭素数2〜50のアルキル鎖を有する化合物〔好ましくは長鎖(炭素数12〜50)のアルキル鎖を有する化合物〕、ポリオキシプロピレン鎖を含む化合物、及び、フッ素系置換基を有する化合物などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0047】
このような界面活性剤としては、例えば、ポリオキシエチレンポリオキシプロピレングリコール類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルエーテル類、フッ素系界面活性剤などが挙げられる。
これらのなかでも、特にフッ素系界面活性剤が、二酸化炭素キャリアの支持体への染み出しを抑制するという点で好ましく、本発明に使用されるフッ素系界面活性剤の市販品としては、Zonyl FSN100(ノニオン型フッ素系界面活性剤:シグマアルドリッチ社製)、サーフロンS−242(ノニオン型フッ素系界面活性剤:AGCセイミケミカル株式会社製)などが挙げられる。
【0048】
前記塗布液組成物に界面活性剤を含有する場合の含有量は、形成された高分子化合物層全体にたいし、固形分換算で0.01〜10質量%であることが好ましく、0.02〜9質量%であることがより好ましく、0.03〜8質量%であることがさらに好ましい。界面活性剤の含有量が、前記範囲であると、十分に二酸化炭素キャリアの支持体への染み出しが抑制され、界面活性剤の添加により懸念される塗布液の発泡など製造適性の低下が生じることがない。
【0049】
−100℃以上の耐熱性を有した疎水性の多孔膜(支持体)−
支持体は、二酸化炭素分離膜を支持するものであり、二酸化炭素透過性を有し、前記組成物を塗布してゲル膜である二酸化炭素分離膜(高分子化合物層)を形成し、膜を支持することができるものであって、100℃〜250℃の温度範囲において、多孔膜の形状を保持しうるものあれば特に限定されない。即ち、100℃以上の耐熱性とは、多孔膜を100℃以上の温度条件下に2時間保存した後も保存前の形態が維持され、熱収縮或いは熱溶融による目視で確認しうるカールが生じないことを意味する。
また、本発明において疎水性とは25℃における水の接触角が90°以上であることを指す。
【0050】
多孔膜の材質としては、紙、上質紙、コート紙、キャストコート紙、合成紙、セルロース、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネートなどの樹脂材料、金属、ガラス、セラミックスなどの無機材料等が挙げられる。樹脂材料としては、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン及びポリフッ化ビニリデン等が好適なものとして挙げられる。
【0051】
また、耐熱性の観点から好ましい材質としては、セラミック、ガラス、金属などの無機材料、100℃以上の耐熱性を有した有機樹脂材料などが挙げられ、高分子量ポリエステル、ポリオレフィン、耐熱性ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネート、金属、ガラス、セラミックスなどが好適に使用できる。より具体的には、セラミックス、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリスルホン、ポリイミド、ポリプロピレン、ポリエーテルイミド、及び、ポリエーテルエーテルケトンからなる群より選ばれた少なくとも1種の材料を含んで構成されることが好ましい。
より具体的には、ポリフェニルサルファイド、ポリスルホン、及び、セルロース等の材料からなるメンブレンフィルター膜、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、及び、高分子量ポリエチレン等の材料からなる延伸多孔膜、耐熱性ポリイミドナノファイバーの集積体からなる多孔膜などが挙げられ、耐熱性、空隙率、及び二酸化炭素の拡散阻害が小さく、強度、製造適性などが良好であるという観点から、特にポリテトラフルオロエチレンの延伸膜が好ましい。
これらの多孔膜は支持体として単独に用いてもよいが、表面、即ち、高分子化合物層と接触する面に疎水性の多孔膜を有するものであれば、補強用の支持体と一体化した複合膜も好適に使用できる。
【0052】
支持体は厚すぎるとガス透過性が低下し、薄すぎると強度に難がある。そこで支持体の厚さは30〜500μmが好ましく、さらには50〜300μmがより好ましく、さらには50〜200μmが特に好ましい。
【0053】
<高分子化合物層(二酸化炭素分離膜)の製造>
本発明に係る二酸化炭素分離部材における高分子化合物層(二酸化炭素分離膜)の製造方法は、まず、単一の架橋可能基を有する水溶性高分子化合物、二酸化炭素キャリア、水及び、好ましくは架橋剤を含有する高分子化合物層形成用組成物を調製し、前記多孔膜に調製された該組成物を塗布する工程を含む。
以下、本発明の二酸化炭素分離膜及びその製造方法について詳細に説明する。
【0054】
−高分子化合物層(ゲル膜)の作製−
既述の高分子化合物層形成用組成物に含まれる水溶性高分子化合物は二酸化炭素キャリアを担持するバインダーとして機能するものであり、水分を安定に保持してなるゲル膜の態様をとり、二酸化炭素キャリアによる二酸化炭素の分離機能を発揮させる。水溶性高分子化合物は、水に溶けて塗布液を形成することができるとともに、二酸化炭素キャリア保持能力が高いものが好ましい。
前記組成物に含まれる各成分を混合し、例えば、70℃〜95℃に加熱しながら10分〜10000分程度攪拌して、塗布液組成物を調製した後、これを前記疎水性の多孔膜上に塗布して塗布膜を設ける。
【0055】
塗布工程における組成物の温度は、組成や濃度に応じてゲル化や塩析が生じないように決めればよいが、温度が高すぎると組成物から溶剤が多量に蒸発して組成濃度が変化したり、局所的にゲル化が進行したり、塗布膜に蒸発痕が残る恐れがあるので、室温(25℃)以上であり、且つ、使用する溶剤沸点の5℃以下の温度範囲であることが好ましく、さらには室温以上溶剤沸点の15℃以下がより好ましく、さらには室温以上溶剤沸点の20℃以下が最も好ましい。より具体的には、溶剤として水(沸点:100℃)を用いた場合の好ましい温度範囲は、25℃〜95℃程度である。
【0056】
組成物の塗布方法としては、従来公知の方法を採用することができる。例えば、カーテンフローコーター、エクストルージョンダイコーター、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、リバースロールコーター、バーコーター等が挙げられる。特に、膜厚均一性、塗布量などの観点から、エクストルージョンダイコーターが好ましい。
【0057】
塗布層形成後、架橋剤の種類に応じて加熱するか或いは光照射を行い、高分子化合物層内に架橋構造を形成させることで安定なゲル膜である本発明に係る高分子化合物層が形成される。
高分子化合物層の膜厚は、必要な分離性能により適宜選択されるが、一般的には、0.1μm〜600μmが好ましく、0.5μm〜500μmがより好ましく、1μm〜400μmが特に好ましい。
本発明の二酸化炭素分離部材においては、高分子化合物層は、前記100℃以上の耐熱性を有した疎水性の多孔膜の表面に形成されればよいが、このとき、高分子化合物層は、多孔膜の表面に均一な厚みを有する層として存在してもよく、また、塗布液組成物の塗布時、或いは、架橋構造を形成する加熱又は光照射工程の途上で、塗布液の一部が多孔膜の空孔内部に浸入した状態でゲル化され、表面のみならず、多孔膜の空孔内に存在していてもよい。
【0058】
(キャリア拡散抑制層)
なお、本発明の二酸化炭素分離部材においては、支持体である多孔膜と、高分子化合物層との間に、二酸化炭素キャリアの拡散を抑制するためのキャリア拡散抑制層を有していてもよい。
前記二酸化炭素キャリアは、湿熱環境下でキャリアイオンの浸透を抑制することが求められる。即ち、キャリアイオンが浸透、拡散して高分子化合物層内に保持されず、流失することで二酸化炭素分離特性が経時的に低下するため、これを抑制することが、二酸化炭素分離部材の耐久性向上に重要である。
キャリア拡散を抑制するためには、様々な材料が考えられるが、キャリアイオンの浸透抑制に関して以下の二点の方法が考えられる。
1.逆浸透膜をキャリアイオン拡散抑制に用いる方法。
2.クーロン力によりキャリアイオンを保持する方法。
【0059】
1.逆浸透膜を使用する方法に関しては逆浸透膜を多孔質支持体に圧延などで重ね合わせて、その上にゲル膜を作製することで得られる。
逆浸透膜を使用する方法は、有効ではあるが、非常にコストが高い上、膜の張り合わせなど複雑な工程を要するという問題点も有する。
【0060】
他方、2.クーロン力によりキャリアイオンを保持する方法に関しては、多孔質支持体上へ、キャリアイオンを保持する機能を有する高分子化合物層を、例えば塗布法により簡易に形成することができる。
クーロン力によりキャリアイオンを保持する機能を有する素材としては、例えば、シロキサン、シリコーンゴム、ポリブタジエン、エチルセルロース、ポリフッ化ビニリデン、ポリプロピレン、ポリスルホン、ポリエーテルイミド、ポリエーテルサルファイ、ポリアクリル酸、及びポリビニルアルコールが挙げられ、これらを1種単独で用いても、2種類以上を組み合わせて用いてもよい。
キャリア拡散抑制層は、上記キャリアイオンを保持しうる素材を含有する塗布液を調製し、前記多孔膜(支持体)に塗布し、乾燥することで形成される。キャリア拡散抑制層の膜厚(塗布量)は、目的に応じて適宜選択されるが、例えば、0.01μm〜100μmの範囲であることが好ましい。
【0061】
また、このようなキャリア拡散抑制層が、例えばアクリル酸やスルホン酸など、水素イオン(H)供与性の材料により形成される場合には、以下に示す如き反応(反応1)を促進するため、炭酸ガスの脱離反応が促進され、初期性能のCO透過流速が向上し、二酸化炭素分離能が向上することも期待される。
(反応1) HCO+ H → HO + CO
キャリア拡散抑制層上に前記高分子化合物層を形成する場合には、予め前記の如くしてキャリア拡散抑制層が形成された多孔膜上に、前記高分子化合物層を既述の方法と同様にして形成すればよい。
【0062】
(製膜適性付与剤)
本発明に係る組成物には、塗布時の製膜安定性付与のために、セット剤や粘度調整剤、チキソトロピー性調整剤などを添加してもよい。
セット剤としては多糖類が好ましい。製膜性、入手容易性、コスト、膜強度などの点から寒天が最も好ましく、市販品として、伊那寒天UP−37、UM−11S、SY−8、ZY−4、ZY−6(以上、伊那寒天社製)、Agarose H、Agarose S(以上、ニッポンジーン社製)などが挙げられる。
粘度調整剤としては、水溶性増粘剤が好ましく、人工合成系が最も好ましい。水溶性人工合成増粘剤としては、ビニル系化合物、ビニリデン化合物、ポリビニルアルコール系化合物、ポリエーテル系化合物等が挙げられる。
チキソトロピー性調整剤としては、水溶性であるものが好ましく、もっと好ましくは、水溶性の天然合成増粘剤であり、合成雲母やカルボキシビニルポリマーが挙げられる。
これらの製膜適性付与剤は単独で用いても複数を混合して用いても良い。これらのには混合することでゲル化能の上がるものが知られており、ゲル化速度やゲル化能力、ゲル化温度の調整のために混合して用いることができる。
【0063】
<二酸化炭素分離モジュール>
二酸化炭素分離モジュールは、前記多孔質膜と二酸化炭素分離膜とが積層された本発明の二酸化炭素分離部材を平膜として設置してもよいし、逆浸透膜モジュールとして知られるスパイラル型や、例えば特開2010−279885公報に記載される如き形状を有するプリーツ型などに加工して利用することもできる。
以下、本発明の二酸化炭素分離膜をスパイラル型として組み込んだ二酸化炭素分離モジュールの例に挙げて説明する。
図1は、本発明の二酸化炭素分離モジュール10の一実施形態を示す、一部切り欠きを設けてなる概略構成図であり、図2は、その断面を表す斜視図である。
スパイラル型二酸化炭素分離膜モジュール10は、その基本構造として、有孔の中空状中心管12の回りに、二酸化炭素分離部材14とこれに隣接して設けられた流路材16とからなる積層体を単数あるいは複数を巻き回して構成される。二酸化炭素分離部材14と流路材16とにより形成された二酸化炭素を分離する領域の周辺は、モジュール内を通過する気体などの流体を遮断しうる材料で形成された被覆層18で被覆されている。
ここで、二酸化炭素分離部材14は、高分子化合物層と多孔膜の積層体である前記本発明の二酸化炭素分離部材14である。
二酸化炭素分離モジュール10に使用される流路材16は、供給される流体の乱流(膜面の表面更新)を促進して供給流体中の二酸化炭素の膜透過速度を増加させる機能と、供給側の圧損をできるだけ小さくする機能とが備わっていることが好ましい。
流路材16としては、スペーサーとしての機能を有し、且つ、流体に乱流を生じさせることが好ましいことから、ネット状の流路材16が好ましく用いられる。ネットの形状により流体の流路が変わることから、ネットの単位格子の形状は、目的に応じて、例えば、菱形、平行四辺形などの形状から選択して用いられる。流路材16の材質としては、何ら限定されるものではないが、本発明の二酸化炭素分離部材14が100℃以上の温度条件下で使用されることから、耐熱性の材料が好ましく、先に多孔膜の素材として挙げた材料が流路材16の材料として同様に好ましく用いられる。
【0064】
既述のように、本実施形態では、二酸化炭素分離モジュール10は、分離された二酸化炭素を回収するための有孔の中空状中心管12の周辺に、高分子化合物層及び多孔膜の積層体(二酸化炭素分離部材)14とネット状流路材16とを巻き付けることで形成された二酸化炭素を分離する領域を備え、その周辺が流体不透過性の被覆層18で被覆されている。
二酸化炭素を含む気体は、二酸化炭素分離部材端部20から供給され、前記被覆層18により区画された、本発明の二酸化炭素分離部材14を備える二酸化炭素を分離する領域を透過する際に、高分子化合物層14を透過して分離された二酸化炭素が中空状中心管12に集積され、該中空状中心管12に接続された開口部22より回収される。また、二酸化炭素分離部材14における多孔質膜の空隙や流路材16の空隙を通過した、二酸化炭素が分離された残余の気体は、二酸化炭素分離モジュール10において、二酸化炭素回収用の開口部22が設けされた側の、二酸化炭素分離部材の端部24より排出される。
二酸化炭素回収用の中空状中心管12には不活性ガス等から選ばれるキャリアガスが供給されてもよい。
【実施例】
【0065】
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
【0066】
(実施例1)
<二酸化炭素分離部材(1)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gとエポキシ架橋剤(EX−810、日油株式会社製)0.7gと純水33.86gと寒天0.5gを混合し、95℃で60分攪拌させた。
その後、40質量%の炭酸セシウム水溶液15gを滴下することで高分子化合物層形成用塗布液組成物を調液した。
疎水性を有する多孔膜であるs−PTFE(中尾フィルター社製、200μm厚)を支持体として、得られた塗布性組成物を塗布後、乾燥させることで、多孔膜上に架橋構造を有する高分子化合物を備える二酸化炭素分離部材(1)を作製した。
なお、PVAは単一の架橋可能基である−OHを有し、上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。なお上記反応により形成された架橋構造は二酸化炭素分離部材(1)におけるゲル膜を赤外線分光あるいはNMRを測定することで確認できる。
【0067】
(実施例2)
<二酸化炭素分離部材(2)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機チタン架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(2)を作製した。
上記反応により形成された架橋構造は(B)群中、−O−Ti−O−結合を有するものである。
(実施例3)
<二酸化炭素分離部材(3)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機ジルコニア架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(3)を作製した。
上記反応により形成された架橋構造は(B)群中、−O−Zr−O−結合を有するものである。
(実施例4)
<二酸化炭素分離部材(4)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてグルタルアルデヒド(和光純薬)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(4)を作製した。
上記反応により形成された架橋構造は(B)群中、アセタール結合を有するものである。
【0068】
(実施例5)
<二酸化炭素分離部材(5)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、分子量16.6万、けん化率99%のPVA5質量%水溶液50g(アルドリッチ社製)を用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(4)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
(実施例6)
<二酸化炭素分離部材(6)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、分子量13万、けん化率99%のPVA5質量%水溶液50g(アルドリッチ社製)を用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(6)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
(実施例7)
<二酸化炭素分離部材(7)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、分子量11万、けん化率99%のPVA5質量%水溶液(日本酢ビ・ポバール社製)50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(7)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
【0069】
(実施例8)
<二酸化炭素分離部材(8)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてグルタルアルデヒド(和光純薬)0.7gを利用した事以外は、実施例7と同様にして、二酸化炭素分離部材(8)を作製した。
上記反応により形成された架橋構造は(B)群中、アセタール結合を有するものである。
(実施例9)
<二酸化炭素分離部材(9)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機チタン架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、実施例7と同様にして、二酸化炭素分離部材(9)を作製した。
上記反応により形成された架橋構造は(B)群中、−O−Ti−O−結合を有するものである。
(実施例10)
<二酸化炭素分離部材(10)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、分子量3万のポリアリルアミン5質量%水溶液(シグマアルドリッチ社製)50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(10)を作製した。
なお、ポリアリルアミンは単一の架橋可能基である−NHを有し、上記反応により形成された架橋構造は(B)群中、−NH−CH−C(OH)−結合を有するものである。
【0070】
(実施例11)
<二酸化炭素分離部材(11)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機チタン架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、実施例10と同様にして、二酸化炭素分離部材(11)を作製した。
上記反応により形成された架橋構造は(B)群中、−O−Ti−O−結合を有するものである。
(実施例12)
<二酸化炭素分離部材(12)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、5質量%で分子量3万のポリエチレンイミン水溶液(シグマアルドリッチ社製)50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(12)を作製した。
なお、ポリエチレンイミンは単一の架橋可能基であるアミノ基を有し、上記反応により形成された架橋構造は(B)群中、−NH−CH−C(OH)−結合を有するものである。
(実施例13)
<二酸化炭素分離部材(13)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機チタン架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、実施例12と同様にして、二酸化炭素分離部材(13)を作製した。
上記反応により形成された架橋構造は(B)群中、−NH−Ti−O−結合を有するものである。
【0071】
(実施例14)
<二酸化炭素分離部材(14)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、5質量%で分子量2万のポリアリルアミン水溶液(シグマアルドリッチ社製)50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(14)を作製した。
なお、ポリアリルアミンは単一の架橋可能基である−NHを有し、上記反応により形成された架橋構造は(B)群中、−NH−CH−C(OH)−結合を有するものである。
(実施例15)
<二酸化炭素分離部材(15)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機チタン架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、実施例14と同様にして、二酸化炭素分離部材(15)を作製した。
上記反応により形成された架橋構造は(B)群中、−NH−Ti−O−結合を有するものである。
(実施例16)
<二酸化炭素分離部材(16)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、5質量%で分子量2万のポリエチレンイミン水溶液(シグマアルドリッチ社製)50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(16)を作製した。
上記反応により形成された架橋構造は(B)群中、−NH−CH−C(OH)−結合を有するものである。
【0072】
(実施例17)
<二酸化炭素分離部材(17)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−830、日油株式会社製)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(17)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
(実施例18)
<二酸化炭素分離部材(18)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−624B、日油株式会社製)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(18)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
(実施例19)
<二酸化炭素分離部材(19)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−521、日油株式会社製)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(19)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
【0073】
(実施例20)
<二酸化炭素分離部材(20)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−521、日油株式会社製)0.7gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(20)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
【0074】
(実施例21)
<二酸化炭素分離部材(21)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−810、日油株式会社製)0.5gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(21)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
(実施例22)
<二酸化炭素分離部材(22)作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−810、日油株式会社製)0.25gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(22)を作製した。
上記反応により形成された架橋構造は(B)群中、エーテル結合を有するものである。
【0075】
(比較例1)
<二酸化炭素分離部材(C−1)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、ポリビニルアルコール−ポリアクリル酸共重合体(ナトリウム塩、クラレ社製、商品名:クラストマーAP20)5質量%水溶液50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(C−1)を作製した。
(比較例2)
<二酸化炭素分離部材(C−2)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてグルタルアルデヒド(和光純薬)0.7gを利用した事以外は、比較例1と同様にして、二酸化炭素分離部材(C−2)を作製した。
(比較例3)
<二酸化炭素分離部材(C−3)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えて有機チタン架橋剤(TC−315、マツモトファインケミカル社製)0.7gを利用した事以外は、比較例比較例1と同様にして、二酸化炭素分離部材(C−3)を作製した。
(比較例4)
<二酸化炭素分離部材(C−4)の作製>
疎水性を有する多孔膜であるs−PTFE(中尾フィルター社製、200μm厚)に代えて、支持体として表面親水性(25℃における水の接触角が90°未満)のs−PTFE(中尾フィルター社製、テトラテックス7009)を用いた以外は実施例1と同様にして、二酸化炭素分離部材(C−4)を作製した。
実施例1〜22、比較例1〜4の構成は以下に示すとおりである。なお、下記にしめす各表において添加量の単位は、全て「質量%」である。
*1 分子量の単位: g・mol−1
*2 けん化率の単位:%
【0076】
【表1】

【0077】
−ガス分離評価−
実施例1〜22、比較例1〜4で作成した二酸化炭素分離部材を用いて二酸化炭素ガスの分離性能について、以下のように評価した。
多孔膜及び高分子化合物層の積層体を直径47mmに切り取り、PTFEメンブレンフィルターで挟んで透過試験サンプルを作製した。
テストガスとしてCO/H:10/90(容積比)の混合ガスを、相対湿度70%、流量100ml/分、温度130℃、全圧3atmで、前記の各サンプル(有効面積2.40cm)に供給し、透過側にArガス(流量90ml/分)をフローさせた。
透過してきたガスをガスクロマトグラフで分析し、CO透過速度と分離係数を算出した。初期0.7Mpaにおける値と初期5.0Mpaにおける値を測定し、その値より初期変動費を算出した。また、500時間後に5.0Mpaて測定し、その値と初期5.0Mpaの値を比較して変動率を算出した。変動率は小さいほど耐久性は良好であると評価する。結果を表2に示す。
−密着性評価−
実施例1〜22、比較例1〜4で作製した二酸化炭素分離部材を25℃、60%RHの条件で2時間調湿した。各膜の表面に、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて、合計100個の正方形の升目を刻み、その面に日東電工(株)製のポリエステル粘着テープ(No.31B)を貼りつけた。30分経時した後に、垂直方向にテープを素早く引き剥がし、剥がれた升目の数を数えた。同じ試験を3回行って平均を算出し、下記3段階の基準で評価した。
◎:100升において剥がれが全く認められなかった。
○:100升において1〜10升の剥がれが認められた。(許容範囲)
×:100升において11升以上の剥がれが認められた。
◎及び○の場合、支持体と二酸化炭素分離層との密着性が良好と判断し、×の場合、支持体と二酸化炭素分離層との密着性が不良と判断した。
結果を表2に示す。
【0078】
【表2】

【0079】
表2結果よりより、本発明に係る実施例1〜22の二酸化炭素分離部材は、いずれの条件でも二酸化炭素分離性能に優れ、且つ、耐久性も良好であることがわかる。また、実施例1〜6と実施例7〜9との対比により、PVAで分子量が13万以上であるものが特に優れることが確認された。この傾向は架橋剤を換えた場合でも同様であった。
他方、分子内に架橋可能基を2種以上有する共重合体高分子を用いた比較例1〜3では、500時間後の湿熱経時性能が著しく悪化することがわかった。これはエポキシ架橋剤がアクリル酸部位に選択的に反応し、エステル結合が形成され、エステル結合は湿熱経時特性が悪いため、加水分解などで結合が分解されたためと推定される。比較例1〜3のように、架橋剤を換えても全く同じ傾向を示した。
また、疎水性の多孔膜に代えて表面親水性の多孔膜を支持体として用いた場合には、多孔膜の空孔内にゲル膜が浸入し、密着性には優れるものの、二酸化炭素キャリアの拡散に起因するためか、湿熱経時性能が著しく悪化することがわかった。
【0080】
(実施例23)
<二酸化炭素分離部材(23)の作製>
0.02質量%のフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製))0.1gを更に追加した事以外は、実施例1と同様にして、二酸化炭素分離部材(24)を作製した。
(実施例24)
<二酸化炭素分離部材(24)の作製>
0.02質量%のフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製))0.1gに変えて、0.02質量%のフッ素系界面活性剤(サーフロン S−242、シグマアルドリッチ社製))を用いた事以外は、実施例24と同様にして、二酸化炭素分離部材(25)を作製した。
(実施例25)
<二酸化炭素分離部材(25)の作製>
40質量%の炭酸セシウム水溶液15gに変えて、40質量%炭酸カリウム3.2gとグリシン1.2gを用いた事以外は、実施例24と同様にして、二酸化炭素分離部材(26)を作製した。
(実施例26)
<二酸化炭素分離部材(26)の作製>
0.02質量%のフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製)0.1gの代わりにフッ素系界面活性剤(プルロニックPE6400、シグマアルドリッチ社製)0.1g含む水溶液を追加に添加した事以外は実施例24と同様にして、二酸化炭素分離部材(26)を作製した。
【0081】
(実施例27)
<二酸化炭素分離部材(27)の作製>
0.02質量%のフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製))2gを更に追加した事以外は、実施例1と同様にして、二酸化炭素分離部材(27)を作製した。
(実施例28)
<二酸化炭素分離部材(28)の作製>
0.02質量%のフッ素系界面活性剤(サーフロン S−242、シグマアルドリッチ社製))2gを更に追加した事以外は、実施例1と同様にして、二酸化炭素分離部材(28)を作製した。
(実施例29)
<二酸化炭素分離部材(29)の作製>
0.02質量%のフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製)0.1gの代わりにフッ素系界面活性剤(プルロニックPE6400、シグマアルドリッチ社製)2g含む水溶液を追加に添加した事以外は実施例1と同様にして、二酸化炭素分離部材(29)を作製した。
【0082】
(実施例30)
<二酸化炭素分離部材(30)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を0.2g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(30)を作製した。
(実施例31)
<二酸化炭素分離部材(31)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を0.2gの代わりにアルカリ性チタニアゾル(日産化学社製、ナノユースZR−40BL)0.1umの代わりに、アルカリ性チタニアゾル(日産化学社製、ナノユースZR−40BL)0.2g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(31)を作製した。
(実施例32)
<二酸化炭素分離部材(32)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を0.2gの代わりにカーボンナノファイバー(三菱マテリアル電子化成株式会社、CNT−F)0.1um粒子径のものを0.2g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(32)を作製した。
【0083】
(実施例33)
<二酸化炭素分離部材(33)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を0.1g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(33)を作製した。
(実施例34)
<二酸化炭素分離部材(34)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を0.2gの代わりに,アルカリ性チタニアゾル(日産化学社製、ナノユースZR−40BL)0.1g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(34)を作製した。
(実施例35)
<二酸化炭素分離部材(35)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を0.2gの代わりにカーボンナノファイバー(三菱マテリアル電子化成株式会社、CNT−F)0.1um粒子径のものを0.1g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(35)を作製した。
【0084】
(実施例36)
<二酸化炭素分離部材(36)の作製>
実施例1に記載の塗布液を、10質量%のシロキサン(信越化学)水溶液を塗布し、疎水性s−PTFE(中尾フィルター社製、200μm厚)の上にシロキサン層を10umで形成させたs−PTFE上に塗布することで、二酸化炭素分離部材(36)を作製した。
(実施例37)
<二酸化炭素分離部材(37)の作製>
実施例1に記載の塗布液を、10質量%ポリアクリル酸(シグマアルドリッチ社製)水溶液を塗布し、疎水性s−PTFE(中尾フィルター社製、200μm厚)の上にアクリル酸層を10umで形成させた疎水性s−PTFE(中尾フィルター社製、200μm厚)s−PTFE上に塗布することで、二酸化炭素分離部材(37)を作製した。
【0085】
(実施例38)
<二酸化炭素分離部材(38)の作製>
実施例1に記載の塗布液を、10質量%ポリアクリル酸(シグマアルドリッチ社製)水溶液を塗布し、疎水性s−PTFE(中尾フィルター社製、200μm厚)の上にアクリル酸層を0.5umで形成させた疎水性s−PTFE(中尾フィルター社製、200μm厚)s−PTFE上に塗布することで、二酸化炭素分離部材(38)を作製した。
(実施例39)
<二酸化炭素分離部材(39)の作製>
実施例1に記載の塗布液を、10質量%ポリアクリル酸(シグマアルドリッチ社製)水溶液を塗布し、疎水性s−PTFE(中尾フィルター社製、200μm厚)の上にアクリル酸層を0.5umで形成させた疎水性s−PTFE(中尾フィルター社製、200μm厚)s−PTFE上に塗布することで、二酸化炭素分離部材(39)を作製した。
(実施例40)
<二酸化炭素分離部材(40)の作製>
分子量18万、けん化率99%のPVA5質量%水溶液(アルドリッチ社製)50gに変えて、分子量18万、けん化率85%のPVA5質量%水溶液(アルドリッチ社製)50gを用いた事以外は、実施例1と同様にして、二酸化炭素分離部材(40)を作製した。
【0086】
(実施例41)
<二酸化炭素分離部材(41)の作製>
エポキシ架橋剤(EX−810、日油株式会社製)0.7gに変えてエポキシ架橋剤(EX−810、日油株式会社製)2.0gを利用した事以外は、実施例1と同様にして、二酸化炭素分離部材(41)を作製した。
(実施例42)
<二酸化炭素分離部材(42)の作製>
0.02質量%のフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製)gの代わりにフッ素系界面活性剤(Zonyl FSN100、シグマアルドリッチ社製)2g含む水溶液を追加に添加した事以外は実施例24と同様にして、二酸化炭素分離部材(42)を作製した。
(実施例43)
<二酸化炭素分離部材(43)の作製>
アルカリ性ジルコニアゾル(日産化学社製、ナノユースZR−40BL)0.1um粒子径を1g分散させて塗布液を作製した以外は実施例1と同様にして、二酸化炭素分離部材(43)を作製した。
【0087】
実施例23〜実施例43の二酸化炭素分離部材の構成を下記表3に示す。また、これらを実施例1と同様にして評価した結果を下記表4に示す。
*1 透過流速単位:1×10−5cm(STP)/(s・cm・cmHg)
*2 α=Q(CO)/Q(H
全てn=5の平均値を提示
【0088】
【表3】

【0089】
【表4】

【0090】
表4の結果より、本発明の二酸化炭素分離部材は、二酸化炭素分離能及びその持続性に優れる。特に、実施例1と実施例23〜29との対比より、高分子化合物層に界面活性剤を添加することで耐久性がさらに向上することがわかる。また、実施例30〜35より、高分子化合物層にフィラーを添加することにより、二酸化炭素分離の得及び初期変動率が改良されることがわかる。
さらに、多孔膜と高分子化合物層との間に、キャリア拡散抑制層を設けた場合、膜厚は非常に薄ものであるが、耐久性のさらなる向上に有用であることがわかる。
【0091】
(実施例44)
−二酸化炭素分離モジュールの作製−
実施例1で作製した二酸化炭素分離膜と多孔質膜とを積層した二酸化炭素分離部材(積層体)14と流路材16とを19組用いて、直径59mmの有孔の中心管12に巻き回して、図1に示す構造のスパイラル型二酸化炭素分離モジュール10を作製した。
作製した本発明の二酸化炭素分離モジュールは、内蔵する二酸化炭素分離膜の性能の通り、二酸化炭素分離農が良好で、且つ、長寿命であることを確認した。
【符号の説明】
【0092】
10 二酸化炭素分離モジュール
12 有孔の中空状中心管(中空状中心管)
14 二酸化炭素分離部材
16 流路材
18 被覆層(流体非透過性の被覆層)

【特許請求の範囲】
【請求項1】
100℃以上の耐熱性を有した疎水性の多孔膜と、
該多孔膜の表面に形成され、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選択された少なくとも1種の二酸化炭素キャリアと水分を含み、且つ、下記(A)群より選ばれた単一の架橋可能基により形成された、下記(B)群より選ばれた耐加水分解性結合を含む架橋構造を有する高分子化合物層と、を有し、
100℃〜250℃の温度条件下で二酸化炭素ガスと水素ガスとの混合物より二酸化炭素ガスを選択的に透過させる二酸化炭素分離部材。
(A)群:−OH、−NH、−Cl、−CN、―COOH、エポキシ基
(B)群:エーテル結合、アセタール結合、−C−N−C(OH)−、−O−M−O−(Mは、Ti又はZrを表す)、−NH−M−O−(Mは、Ti又はZrを表す)、ウレタン結合、−CH−CH(OH)−、アミド結合
【請求項2】
前記高分子化合物層を構成する高分子化合物が、単一の架橋可能基である−OHを有する重量平均分子量が130000以上6000000以下の高分子化合物である請求項1に記載の二酸化炭素分離部材。
【請求項3】
前記高分子化合物が、重量平均分子量が130000以上6000000以下のポリビニルアルコールである請求項2に記載の二酸化炭素分離部材。
【請求項4】
前記高分子化合物層を構成する高分子化合物が、単一の架橋可能基である−NHを有する重量平均分子量が10000以上6000000以下の高分子化合物である請求項1に記載の二酸化炭素分離部材。
【請求項5】
前記架橋構造が、前記高分子化合物が有する単一の架橋可能基に対し、2官能以上のエポキシ化合物から選ばれた架橋剤を反応させて形成されたエーテル結合を含む架橋構造である請求項1から請求項4のいずれか1項に記載の二酸化炭素分離部材。
【請求項6】
前記架橋構造が、前記高分子化合物が有する架橋可能基100molに対し、架橋剤0.01mol〜80molを反応させて形成された架橋構造である請求項1〜請求項5のいずれか1項に記載二酸化炭素分離部材。
【請求項7】
前記アルカリ金属炭酸塩、アルカリ金属重炭酸塩、アルカリ金属水和物が、セシウム、ルビジウム、カリウム、及びナトリウムから選ばれたアルカリ金属元素を有する請求項1〜請求項6のいずれか1項に記載二酸化炭素分離部材。
【請求項8】
前記高分子化合物層が、さらに、界面活性剤を含有する請求項1〜請求項7のいずれか1項に記載二酸化炭素分離部材。
【請求項9】
前記高分子化合物層が、さらに、フィラーを含有する請求項1〜請求項8のいずれか1項に記載二酸化炭素分離部材。
【請求項10】
前記高分子化合物層が、さらに、製膜適性付与剤を含有する請求項1〜請求項9のいずれか1項に記載二酸化炭素分離部材。
【請求項11】
前記高分子化合物層と前記疎水性の多孔膜との間に、前記二酸化炭素キャリアの拡散を抑制するキャリア拡散抑制層を有する請求項1〜請求項10のいずれか1項に記載二酸化炭素分離部材。
【請求項12】
前記疎水性の多孔膜が、セラミックス、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ポリエーテルスルフォン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルフォン(PSF)、ポリイミド(PI)、ポリプロピレン(PP)、ポリエーテルイミド、及び、ポリエーテルエーテルケトンからなる群より選ばれた少なくとも1種を含んで構成された多孔膜である請求項1〜請求項11のいずれか1項に記載の二酸化炭素分離部材。
【請求項13】
請求項1〜請求項12のいずれか1項に記載の二酸化炭素分離部材の製造方法であって、
100℃以上の耐熱性を有した疎水性の多孔膜上に、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群より選択される少なくとも1種の二酸化炭素キャリアと水分を含み、下記(A)群より選ばれた単一の架橋可能基を有する高分子化合物の水溶液と架橋剤とを含有するキャスト溶液を塗布し、
キャスト液中で前記高分子化合物が有する単一の架橋可能基と架橋剤とを反応させて、下記(B)群より選らばれた耐加水分解性結合を含む架橋構造を有する高分子化合物層を形成する二酸化炭素分離部材の製造方法。
(A)群:−OH、−NH、−Cl、−CN、―COOH、エポキシ基
(B)群:エーテル結合、アセタール結合、−C−N−C(OH)−、−O−M−O−(Mは、Ti又はZrを表す)、−NH−M−O−(Mは、Ti又はZrを表す)、ウレタン結合、−CH−CH(OH)−、アミド結合
【請求項14】
前記高分子化合物層が、架橋構造を有するポリビニルアルコールゲルを含んで構成される層である請求項13に記載の二酸化炭素分離部材の製造方法。
【請求項15】
請求項1〜請求項12のいずれか1項に記載の二酸化炭素分離部材を備えてなる二酸化炭素分離モジュール。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−27841(P2013−27841A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−167196(P2011−167196)
【出願日】平成23年7月29日(2011.7.29)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】