説明

位相変調系列再生装置

【課題】電波の状態が悪くS/N比が小さい場合であっても、直接スペクトル拡散信号から逆拡散の同期タイミングを効率よく検出し、位相変調系列を正しく推定する。
【解決手段】取得した所定長のスペクトル拡散信号を分割した複数の継続区間のそれぞれに対して、相関関数の総和を算出する相関処理、集積相関関数を算出する積分処理、および拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界の各候補を検出する検出処理を2回実施するようにし、周波数最適値算出部により、最初の検出処理で得られた周波数シフトの候補の中から周波数シフトの最適値を算出し、同じ1継続区間分の拡散信号に対する2回目の処理における相関処理では、周波数シフトの最適値の周辺においてのみ行うようにし、2回目の検出データで長時間の位相変調系列を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、直接スペクトル拡散方式の通信に係り、特にスペクトル拡散信号から、位相変調系列により位相変調されている、拡散符号の位相変調系列を取得する位相変調系列再生装置に関するものである。
【背景技術】
【0002】
直接スペクトル拡散方式では、送信側で拡散符号を用いて信号をスペクトル拡散し、受信側では、受信信号を送信側と同じ拡散符号を用いて、送信側と同期するタイミングで逆拡散することで元の信号を読み出す。GPS(Global Positioning System;全地球測位システム)において、GPS衛星から送信される信号は、C/Aコード(Coarse/Acquisition Code)と呼ばれる拡散符号を用いて直接スペクトル拡散した信号である。GPS衛星ごとにC/Aコードが決まっているので、受信側では、受信対象とするGPS衛星のC/Aコードを用いて受信信号を逆拡散して、所望のGPS衛星からの信号を得る。
GPSにおいては、信号の遅延時間を利用してGPS衛星とGPS測位装置との間の距離を測定し、複数のGPS衛星からの距離に基づいて、GPS測位装置の位置を割り出す。初期状態においては、GPS衛星とGPS測位装置との間の距離が不明であるため、遅延時間も不明である。したがって、受信側では逆拡散のタイミングを同期させることができない。
【0003】
一般に、直接スペクトル拡散には、擬似乱数符号を拡散符号として用いる。GPS信号の拡散に用いられているC/Aコードは、ゴールド系列と呼ばれる擬似乱数符号である。擬似乱数符号を用いて直接スペクトル拡散した信号は、逆拡散のタイミングが同期していれば受信側で信号を検出できるが、タイミングがずれた場合、信号が検出できなくなる。これを解決するために、受信側では、逆拡散のタイミングを少しずつずらして、信号が検出できるタイミングを探すことで、逆拡散のタイミングの同期を取るようにしている。すなわち、同期のタイミングを変数として、受信信号と、自身で発生させた拡散符号との相関値を求め(相互相関関数CCF;Cross Correlation Function、以下単に「相関関数」という。)、相関値の絶対値が最大になるタイミング(拡散符号開始時点)を求めれば、逆拡散のタイミングを同期させることができる。
【0004】
ところで、GPS測位装置が室内等、電波が微弱な場所にある場合、S/N比(Signal/Noise Ratio;信号雑音比)が小さく、信号が雑音に埋もれてしまうので、逆拡散のタイミングが同期できた場合であっても、必ずしも相関値の絶対値が最大になるとは限らない点が課題となる。これを解決する方法として、従来、長時間にわたり相関をとることが行われている。その理由は、直接スペクトル拡散された信号は基本的に拡散符号の繰り返しであるから、拡散符号の複数の周期にわたって相関をとれば、信号は相乗し、雑音は打ち消し合い、S/N比を向上させるので、信号の検出が可能になるからである。しかし、直接スペクトル拡散された信号は、単純に拡散符号の繰り返しではなく、拡散符号の所定の周期毎に情報符号により位相変調されている。例えば、二値符号化された信号を直接スペクトル拡散した場合、元の信号の「0」に拡散符号の繰り返しが対応し、元の信号の「1」に拡散符号の極性を逆転させたものの繰り返しが対応する。また、例えばGPS信号においては、C/Aコードの一周期は1ミリ秒である。C/Aコード20周期で一単位となり、これが航法データ1ビットに対応する。したがって、20ミリ秒ごとに、C/Aコードの極性が反転している可能性がある。
元の信号の値が変化する境界を超えて相関をとると、拡散符号の極性が逆なので、信号が打ち消し合ってしまう。その結果、信号の検出が困難となる。
【0005】
この問題を解決する方法として、例えば特許文献1に記載の技術がある。この技術によれば、良好な受信状態にある本部サーバがGPS信号を受信し、航法データを得る。GPS測位装置では、電波が微弱で、逆拡散のタイミングを同期させることが困難な場合、本部サーバから航法データを受信する。GPS測位装置は、本部サーバから受信した航法データを用いて、受信GPS信号の極性を反転させた上で、相関をとるようにしている。これにより、元の信号の値が変化する境界を超えて長時間にわたる相関をとっても、信号が打ち消し合うことなく、逆拡散の同期タイミングを検出することを可能にする。
【0006】
【特許文献1】特開2001−349935号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の従来の技術では、GPS測位装置の受信状態が悪い場合に、本部サーバが代わりに航法データを受信し、その航法データを用いてGPS測位装置が逆拡散の同期タイミングを検出するようにしているが、そのためには、あらかじめ本部サーバを別に設けておく必要があり、また、GPS測位装置と本部サーバとが通信する必要があるので、GPS測位装置がそのための通信機能を有する必要が生じる。これらによりシステムが大掛かりとなり、GPS測位装置の製造コストに影響する。また、通信機能の追加によりGPS測位装置自体が重くなるので、携帯性が悪くなる。さらに、なんらかの障害によって本部サーバと通信できなくなる場合には、逆拡散の同期タイミングを検出できなくなるという問題もある。
【0008】
この発明は、上記問題点を解決するためになされたもので、電波の状態が悪くS/N比が小さい場合であっても、直接スペクトル拡散信号から逆拡散の同期タイミングを効率よく検出し、航法データビット系列、すなわち位相変調系列を正しく推定する位相変調系列再生装置を得ることを目的とする。
【課題を解決するための手段】
【0009】
この発明に係る位相変調系列再生装置は、スペクトル拡散信号を取得し、所定長の拡散信号を複数の継続区間に分割して保存する拡散信号取得部と、拡散信号の拡散符号と同じ形式の符号を記憶し出力する拡散符号記憶部と、所定の長さの位相変調系列を複数記憶し出力する位相変調系列記憶部と、拡散信号取得部で取得した拡散信号の1継続区間分を周波数シフトさせながら、当該周波数シフトさせた信号と上記拡散符号記憶部から出力された拡散符号との相関関数を計算し、相関関数の総和を算出する相関処理部と、相関処理部で算出された相関関数の総和に対して、位相変調系列記憶部の所定の長さの位相変調系列に従って位相変調の補正を行った後、拡散符号開始時点、周波数シフト、位相変調系列、位相変調境界を変数として集積相関関数を算出する積分処理部と、積分処理部で算出された集積相関関数の中から、拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界の各候補を検出する検出部と、検出部で検出された周波数シフトの候補の中から、周波数シフトの最適値を算出する周波数最適値算出部と、拡散信号の継続区間ごとに検出された位相変調系列をつなぎ合わせて、長時間の位相変調系列を生成する位相変調系列連接処理部を備え、相関処理部は、同じ1継続区間分の拡散信号に対して、周波数最適値算出部で算出された周波数シフトの最適値の周辺においてのみ相関処理を再度行い、積分処理部は、再度の相関処理で得られた相関関数の総和に対して積分処理を再度行い、検出部は、再度の積分処理で得られた集積相関関数に対して検出処理を再度行い、検出部の再度の検出処理で得られた拡散符号開始時点、周波数シフトおよび位相変調系列を、位相変調系列連接処理部で用いるデータとして出力するものである。
【発明の効果】
【0010】
この発明によれば、スペクトル拡散信号における反復信号の極性反転を考慮して、複数の可能性について相関をとり、集積相関関数とし、求めた集積相関関数に基づいて単位信号の開始時点の候補を絞り込むので、反復信号の極性反転について予め知る必要がない。また、絞り込んだ候補の中から算出した周波数シフトの最適値を用いて再度、相関関数の積算を行い、相関値が最も大きくなる位相変調系列を検出できるようにしたので、検出された位相変調系列が真の位相変調系列と異なる確率を減少させる。したがって、電波の状態が悪くS/N比が小さい場合であっても、直接スペクトル拡散信号から逆拡散の同期タイミングを効率よく検出し、航法データビット系列、すなわち位相変調系列を正しく推定することが可能となる。
【発明を実施するための最良の形態】
【0011】
実施の形態1.
この発明は、スペクトル拡散通信において、拡散符号開始時点と位相変調系列を検出する位相変調系列再生装置に関するものであり、例えば、CDMA通信、無線LAN通信にも使用できるが、以下の実施の形態では、GPS信号を例に説明し、位相変調系列再生装置を適用したGPS測位装置について説明する。
GPS信号形式の一例を図2に示す。GPS信号は、搬送波中心周波数1.57542MHzのCW(Continuous Wave)信号が拡散符号であるC/Aコードによりスペクトル拡散変調された信号(これを、スペクトル拡散信号と呼ぶ。)である。また、C/Aコードは、20周期を1単位として、航法データビット系列(この発明では主として、位相変調系列と呼ぶ。)と呼ばれる情報符号系列により位相変調されている。したがって、GPS受信機は、この情報符号系列を解読することにより、衛星軌道情報を得ることができる。また、受信機内部で発生させたC/Aコードと同じ拡散符号を用いて受信GPS信号と相関演算を行うことにより、その相関関数(ピーク位置)から拡散符号開始時点(遅延時間)を知ることができる。また、各衛星の遅延時間と解読された衛星軌道情報を用いることにより測位計算を行うことができる。
【0012】
この実施の形態1では、受信GPS信号を所定の継続区間に分割し、分割された継続区間内の受信GPS信号を周波数シフトさせながら、シフトさせた信号と拡散符号との相関関数を算出し、その後、位相変調系列の総当り探索とC/Aコードの周波数シフト探索を行い、相関演算およびコヒーレント積分処理を行う。ここで、コヒーレント積分とは、受信GPS信号の拡散符号(C/Aコード)をC/Aコード1周期毎に分断し、各分断したC/Aコードと受信機内部で発生させたC/Aコードとの相互相関関数を、継続区間内において加算し、加算結果を自己が検出した位相変調系列(航法データ)あるいは本部サーバから受け取った航法データに基づいて極性を合わせて加算することで積み上げることをいう。ここでは、継続区間、すなわちコヒーレント積分を行う航法データビット数を5(=100ミリ秒)としたときを例に説明する。
【0013】
図1はこの発明の実施の形態1による位相変調系列再生装置を適用したGPS測位装置の機能構成を示すブロック図である。
GPS測位装置は、GPSアンテナ101、受信部102、A/D(アナログ・デジタル)変換部103、データ記憶部104、データ読出し部105、拡散符号発生部(拡散符号記憶部)106、相関処理部(積算相関関数算出部)108、位相変調系列発生部(位相変調系列記憶部)107、積分処理部(集積相関関数算出部)109、検出部110、データ保持部111、周波数最適値算出部112、位相変調系列連接処理部113、測位計算部114および位置表示部115を備えている。これらのうち実線で囲まれた部分がこの発明の位相変調系列再生装置であり、破線で囲まれた部分が拡散信号取得部である。
【0014】
次に動作について説明する。
図1において、まず、GPSアンテナ101でGPS信号を受信すると、受信部102で増幅や周波数の変換等の処理を行った後、A/D変換部103でA/D変換を行ってデジタルデータ(図2で示したようなスペクトル拡散信号)に変換する。なお、IF(Intermediate Frequency)周波数に周波数変換した後に、A/D変換を行う構成も考えられるが、ここではベースバンドに周波数変換し、ベースバンド信号をA/D変換する構成について説明する。A/D変換されたデータはデータ記憶部104に記録される。データ記憶部104では、航法データビット境界の探索のため、相関演算処理をC/Aコード1周期分毎にシフトさせて20ミリ秒まで行うことを考慮して、120ミリ秒の受信拡散信号を保存する。また、保存する受信拡散信号のデータを、更に1ミリ秒の時間長の複数のブロック(継続区間)に分割して保存する。データ読出し部105は、データ記憶部104に記憶した受信拡散信号の最初のブロックを読み出し、相関処理部108に送る。
【0015】
拡散符号発生部106では、受信対象とするGPS衛星の番号に応じたC/Aコードを発生し、そのC/Aコードに対して1チップ内をサンプリング周波数に応じて補間して記憶する。記憶したコードは相関処理部108に送られる。相関処理部108では、データ読出し部105から送られた最初のブロック分の受信拡散信号を周波数シフトさせながら、当該周波数シフトさせた信号と拡散符号発生部106から送られたC/Aコードとの相関関数ryv(q,i,nf )を次式を用いて計算する。
【数1】

ここで、y(q,n)はデータ読出し部105が送った受信拡散信号を表す。qは受信信号を1ミリ秒毎に分割したq番目の信号ブロックを示し、nはその信号ブロックにおけるn番目のサンプルデータを示す。v(n)は拡散符号発生部106で生成したC/Aコード、ΔTはA/D変換部103のサンプリング周期、Δfは周波数ステップである。航法データビット系列の正確な推定のためにはコヒーレント積分時間をTcとして、1/2/Tc以下にΔfを設定する必要がある。それはTc時間内に信号位相がπ/2変化すると、航法データビット系列による位相変化と判別できなくなってしまうためである。NはC/Aコード1周期(=1ミリ秒)内に含まれるサンプル数(=fs /1000)であり、iは相関関数のラグ、nf は周波数インデックスである。また、*は複素共役を意味する。ここで、信号遅延時間は、ryv(q,i,nf )の絶対値が最大となるときのラグipeakを用いて、ipeakΔTとして計算される。以後、iをラグ、ipeakΔTを遅延時間と呼ぶ。
【0016】
図3はS/N比が比較的高い場合の任意のqにおける相関関数ryv(q,i,nf )の時間−周波数プロットを示す。図に示すように、信号ピークが得られていることが分かる。ところが低S/N比環境では、図のようなピークが検出できず、それゆえ後段のコヒーレント積分処理が必要になる。
次に、相関処理部108では、航法データ1ビット分に相当する相関関数の20個ずつの総和(積算相関関数の一例)を計算する。ところが、航法データビット境界が未知であり、位相変調を行い足し算するだけでは、ビット境界のずれによる積分損失が発生する可能性がある。したがって、航法データビット境界、すなわち相関関数の足し算を開始する位置をシフトさせながら、相関関数の20個ずつの総和s_ryvを次式のように計算する。
【数2】

ここで、nb は航法データビット境界を探索するインデックスであり、C/Aコード20周期分までシフトさせれば、その中には境界が必ず含まれることになるので、nb は0〜19までの整数である。
このようにして計算された相関関数の総和s_ryvは積分処理部109に送られる。
【0017】
位相変調系列発生部107では、所定の長さの位相変調系列、すなわち航法データ5ビット分に相当する位相変調系列を総当りで発生し記憶する。反転したビット系列による積分結果の絶対値は同じであるから、発生させる位相変調系列のパターンは24 通りになる。以下に航法データ5ビット分の位相変調系列Bs を示す。
【数3】

ここで、0は0位相変調、1はπ位相変調を示す。
以下、Bs の各要素をbs (ns ,p)と表現する。ここで、ns およびpは、それぞれBs の行番号と列番号であり、またそれぞれ、位相変調系列の総当りインデックスと航法データビットのインデックスを表している。
位相変調系列発生部107は、以上のようにして発生させた位相変調系列を積分処理部109に送る。
【0018】
積分処理部109では、相関処理部108で算出された相関関数の総和s_ryv(p,i,nf ,nb )に対して、位相変調系列発生部107で発生させた位相変調系列Bs に従って位相変調の補正を行った後、集積相関関数を算出し、感度向上を図る。すなわち、相関関数の20個の和s_ryvに対して位相変調の補正を行い、複数の航法データビットに及ぶコヒーレント積分を実行する。コヒーレント積分によって得られる集積相関関数g_ryv(i,nf ,nb ,ns )は次式のようになる。
【数4】

相関関数の積算動作の概略を図4に示す。このようにして積分処理部109で得られる集積相関関数g_ryvは、遅延時間、周波数インデックス、航法データビット境界インデックスおよび位相変調系列のインデックスの4つのパラメータを持つ関数であり、これら全てのインデックスを変化させて計算する。算出された集積相関関数g_ryvは検出部110に送られる。
【0019】
検出部110では、まず積分処理部109で算出された集積相関関数g_ryvの絶対値の中から、設定した閾値を超えた相関値を検出する。なお、閾値を設定する代わりに、検出すべき相関値の数を予め設定しておいて、集積相関関数の絶対値を大きい順に検出し、設定値を満たすまで検出するようにしてもよい。次に、検出された相関値から、遅延時間、周波数シフトインデックス、航法データビット境界インデックスおよび航法データビット系列インデックスを検出し、データ保持部111に送り保存する。
L個の相関値を検出したときの、各パラメータをp(l) ,i(l) ,nf(l) ,nb(l) (l=1,2,・・・,L)とおく。そのときの相関値はg_ryv(i(l) ,nf(l) ,nb(l) ,ns(l) )となる。また、l個の相関値のうち絶対値が最大となるときの相関値をg_ryv(i(lpeal) ,nf(lpeak) ,nb(lpeak) ,ns(lpeak) )とおく。雑音が無い場合の、i(lpeal) ,nb(lpeak) ,ns(lpeak) における周波数軸方向の相関値|g_ryv(i(lpeal) ,nf,nb(lpeak) ,ns(lpeak) )|は図5に示すようになる。この場合の相関値は周波数シフト真値を中心にシンク関数となり、nf(lpeak)Δfが周波数シフト真値に最も近接する。また、このときの位相変調系列bs (ns(lpeak)、p)は航法データビット系列真値に一致する。ところが、雑音の影響がある場合、相関値が乱されると、図6に示すようになる。この場合、nf(lpeak) Δfは周波数シフト真値に最も近接するとは限らない。周波数シフト真値との周波数差により位相が回転し、推定された位相変調系列bs (ns(lpeak) 、p)は真値と異なる可能性が生じる。
【0020】
図7は、航法データビット系列の真値が0,0,0,0であり、雑音が無い場合のi(lpeal) , nb(lpeak) ,ns(lpeak) における積算相関関数s_ryv(p、i(lpeal) 、nf(lpeak) 、nb(lpeak) )を複素平面上に示したものである。航法ビットの増加にともない周波数差による位相変化があるが、位相回転はπ/4以内であり、このときの位相変調系列としては0,0,0,0が推定されることが分かる。一方、図8は雑音がある場合の積算相関関数を複素平面上に示したものである。雑音が無い場合と比較し、nf(lpeak)Δfと周波数オフセット真値との差が増大しているため、位相回転量が増加し、3ビット目、4ビット目は位相がπ/2以上反転していることが分かる。この場合に推定される位相変調系列は0,0,1,1である。
【0021】
したがって、正確な航法データビット系列を求めるためには、まず正確な周波数シフトを知る必要がある。そのために周波数最適値算出部112が設けられている。周波数最適値算出部112では、データ保持部111に保存された、検出部110で検出されたL個の周波数シフトの候補の中から、周波数シフトの最適値を、次のようにして算出する。
集積相関関数の周波数分布は図5に示したように左右対称であるので、検出部110で検出される周波数シフトの中央値は真値に近づくことが期待される。具体的には、検出されたL個の周波数シフトを大きい順に並べ替えて、順番が中央の値nf(center)Δfを抽出し、これを最適値とする。また、別の方法として、L個の周波数シフトのうちに、中央値nf(center)Δfから大きく外れた周波数シフトを除外して、残った周波数シフトを平均することで、真値に近い周波数シフトnf(mean)Δfを求め、最適値としても良い。このように算出された周波数シフトの最適値は相関処理部108に渡される。
【0022】
相関処理部108では、最初に処理したブロックの受信拡散信号に対して、周波数最適値算出部112で算出された周波数シフトの最適値、すなわち周波数シフトの真値に近い値nf(center)Δfあるいはnf(mean)Δfの周辺において、相関処理を再度行う。この場合の周波数範囲は、例えば、nf(center)Δf−0.5Δf〜nf(center)Δf+0.5Δfと設定する。相関処理部108で算出された相関関数の総和に対して、積分処理部109により集積相関関数を再度算出し、さらに検出部110でも、集積相関関数から遅延時間、周波数オフセット、航法データビット境界および航法データビット系列を検出する。この場合、相関値の絶対値が最大となるときの位相変調系列を推定する。このようにして推定された位相変調系列は、周波数シフトが真値に近いので、図8のような位相回転は発生せず、航法データビット系列の真値である可能性が高まる。以上のようにして得られた遅延時間、周波数オフセット、航法データビット境界および航法データビット系列は位相変調系列連接処理部113に送られる。
以上の最初のブロックの受信拡散信号に対する処理が完了したら、データ記憶部104は、次のブロックの受信拡散信号、すなわち80〜200ミリ秒の信号を記憶する。ここで、次のブロックは最初のブロックと40ミリ秒分重なっていることに注意する。次のブロックにおいても上記と同様の処理を行い、算出された遅延時間、周波数シフト、航法データビット境界および航法データビット系列は位相変調系列連接処理部113に送られる。
【0023】
位相変調系列連接処理部113では、受信拡散信号の最初のブロック(継続区間)において検出された位相変調系列と次のブロック(継続区間)において検出された位相変調系列をつなぎ合わせて、長時間の情報符号系列を生成する。具体的には、最初の継続区間0〜120ミリ秒で検出された航法データビット系列と次の継続区間80〜200ミリ秒で検出された航法データビット系列をつなぎ合わせる処理を行う。単純に最初の継続区間で検出された航法データビット系列と次の継続区間で検出された航法データビット系列をつなぎ合わせることはできない。なぜなら、周波数シフト真値と推定された周波数シフトの間には僅かな誤差があり、この誤差によりGPS信号の位相が最初の継続区間と次ぎの継続区間で変化してしまい、航法データビット系列が反転する可能性が生じるからである。そこで、位相変調系列連接処理部113では、最初の継続区間と次の継続区間を航法データビット系列1ビット分あるいは複数ビット分をオーバーラップさせて処理を行うことにより、最初の継続区間の終わりの1ビットあるいは複数ビットと次の継続区間の最初の1ビットあるいは複数ビットは一致することになる。オーバーラップした航法データビット系列が一致している場合、互いの航法データビット系列をそのままつなぎ合わせ、一方、オーバーラップした航法データビット系列が反転している場合には、どちらかの航法データビット系列を反転させてつなぎ合わせ、連続した長時間のビット系列を得ることができる。例えば継続区間を航法データビット1ビット分オーバーラップさせたときの一例について説明する。最初の継続区間において推定された航法データビット系列が0,1,0,1,0であり、次の区間で推定されたビット系列が、1,1,0,0,1であった場合、オーバーラップした航法ビットが反転しているので、次のビット系列を反転させてつなぎ合わせ、0,1,0,1,0,0,1,1,0という2つの継続区間分の航法データビット系列を得ることができる。
【0024】
以上の操作を少なくとも4衛星について30秒間繰り返すことにより、30秒間分の航法データビット系列を得る。測位計算を行うためには、衛星の軌道情報が必要であるが、何も情報が与えられていない状態では、航法データビット系列を解読することにより得る。衛星の軌道情報はアルマナックと呼ばれ、30秒間分の航法データビット系列を解読することにより得られる。したがって、得られた4衛星の30秒間分の航法データビット系列、遅延時間、周波数シフト、航法ビット境界は測位計算部114に送られる。また、1衛星についてアルマナック情報を得たのちに、観測状態の良い衛星を3つ以上探して、その衛星について周波数シフト探索範囲を限定して、上記の相関処理、積分処理、検出処理を行う構成でも良い。
次に、測位計算部114では、位相変調系列連接処理部113から送られた遅延時間と航法データビット系列を解読することにより得られた衛星軌道情報を用いて測位計算を行い、GPS測位装置100の位置座標を特定し、位置表示部115に得られた位置情報を送って表示させる。
【0025】
以上のように、この実施の形態1よれば、取得した所定長のスペクトル拡散信号を分割した複数の継続区間のそれぞれに対して、相関関数の総和を算出する相関処理、集積相関関数を算出する積分処理、および拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界の各候補を検出する検出処理を2回実施するようにし、最初の検出処理で得られた周波数シフトの候補の中から周波数シフトの最適値を算出し、同じ1継続区間分の拡散信号に対する2回目の処理における相関処理では、1回目に得た周波数シフトの最適値の周辺においてのみ行うようにしたので、相関値が最も大きくなる位相変調系列を検出することができる。したがって、電波の状態が悪くS/N比が小さい場合であっても、直接スペクトル拡散信号から逆拡散の同期タイミングを効率よく検出し、航法データビット系列、すなわち位相変調系列の誤る確率を軽減することが可能となる。
【0026】
実施の形態2.
上記実施の形態1では、検出処理により検出された周波数シフトの中央値を算出し、その中央値周辺において再度相関処理、積分処理、検出処理を行うことで、検出された位相変調系列が航法データビット系列の真値である可能性を高めている。しかし、周波数シフト中央値を算出する際の周波数シフトの数が少ない場合、中央値と真値との差が大きくなり、二回目の検出処理において推定された位相変調系列を誤る可能性が高くなってしまう。あるいは二回目の検出処理において、信号ではない誤ったピークを検出した場合、推定された位相変調系列は航法データビット系列ではなくなってしまう。この実施の形態2では、この問題を解決する方法について述べる。
【0027】
図9はこの発明の実施の形態2による位相変調系列再生装置を適用したGPS測位装置の機能構成を示すブロック図である。図において、上記実施の形態1の図1に相当する機能部には同一符号を付す。この実施の形態2は、実施の形態1の構成に対して、開始時点最適値算出部901と位相変調境界最適値算出部902を新たに加えた構成を持つ。
開始時点最適値算出部901は、検出部110で検出された拡散符号開始時点の候補の中から、拡散符号開始時点の最適値を算出する手段である。位相変調境界最適値算出部902は、検出部110で検出された位相変調境界候補に基づいて、位相変調境界の最適値を算出する手段である。
データ記憶部104は、受信拡散信号の例えば0〜700msまでのデータを記憶する。実施の形態1と同様に、相関処理、積分処理、検出処理は100ms毎に行うとして、航法ビット境界探索のため120ms間のデータを1ブロックとして扱う。位相変調系列連接処理部113のために、2ブロック目以降のデータは、20ms〜40ms程度オーバーラップさせておく。例えば20msオーバーラップさせる場合、80ms〜200msまでを2ブロック目として保存し、合計6ブロックを保存するものとする。
【0028】
データ読出し部105では、1ブロック目(0〜120ms)の受信拡散信号をデータ記憶部104から読み出して相関処理部108に送る。相関処理部108、積分処理部109および検出部110は、実施の形態1と同様の動作を行う。検出部110で検出された相関値、遅延時間、周波数シフト、航法データビット系列および航法データビット境界はデータ保持部111に送られ保存される。次に、データ読出し部105は、2ブロック目(80〜200ms)の受信信号データをデータ記憶部104から読み出し、相関処理部108、積分処理部109および検出部110において同様な処理を行う。以上の操作を全6ブロックまで読み出して繰り返し、各ブロックの検出された相関値、周波数シフト、航法データビット系列および航法データビット境界はデータ保持部111に保存される。
【0029】
データ保持部111では、各ブロックにおいて検出された周波数シフト候補を周波数最適値算出部112に、遅延時間候補を開始時点最適値算出部901に、また航法データビット境界を位相変調境界最適値算出部902に送る。
周波数最適値算出部112では、データ保持部111から送られた全ブロックにおいて検出された周波数シフトの中から中央値を算出する。全ブロック間(500ms)において周波数シフトが変化しないとすれば、周波数シフトの中央値nf(center)Δfは真値に近づくことが想定されるので、この中央値を周波数シフトの最適値とする。また、周波数シフトの中央値nf(center)Δfから大きく外れた周波数シフト値を除外して、全ブロックの周波数シフトを平均した平均値nf(mean)Δfを求めたものを最適値としてもよい。このように算出された周波数シフトの最適値は相関処理部108に送られる。
開始時点最適値算出部901では、データ保持部111から送られてきた、全ブロックにおいて検出された遅延時間(拡散符号開始時点の候補)の中から中央値i(center) ΔTを算出する。全ブロック間(700ms)間において、遅延時間は周波数シフトの影響によりシフトするので、遅延時間の中央値i(center) ΔTは全ブロック間の平均的な値となることが想定されるので、この遅延時間の中央値を、拡散符号開始時点の最適値とする。このように算出された拡散符号開始時点の最適値は相関処理部108に送られる。
【0030】
位相変調境界最適値算出部902では、データ保持部111から送られた、検出された全ブロックの航法ビット境界値の中で最頻値(検出された回数が最も多かった値)となる
値を算出し、航法データビット境界(位相変調境界)の最適値とする。航法データビット境界は、0〜19までの整数値であり、受信信号データ長に依らず一定である。つまりデータ処理時間とともに変化はしない。ただし、航法データビット系列が同一であるブロック(例えば、航法データビット系列が0,0,0,0,0の場合)では、航法ビット境界をどこに設定したとしても、積分された相関値の絶対値は同じ値になるため、検出された航法ビット境界が真値である可能性は1/20と低い。しかし、航法データビット系列が例えば1,0,1,0,1であった場合、航法データビット系列境界を誤ることにより相関値の絶対値は0〜18/20倍となり、検出部110により検出されたビット系列境界は真値である可能性が高くなる。したがって、複数ブロックで検出された航法ビット境界を用いることにより航法ビット境界の真値の推定が可能となる。航法データビット境界の最頻値はビット境界の真値に近づくことが想定されるので、この航法ビット境界の最頻値nb(mode)を航法データビット境界の最適値とする。このように算出された航法データビット境界の最適値は積分処理部109に送られる。
【0031】
次に、データ読出し部105は、データ記憶部104から1番目ブロック(0〜100ms)の受信信号データを再度読み出し、相関処理部108に送る。相関処理部108では、送られてきた1番目ブロックの受信拡散信号を、周波数最適値算出部112で最初の処理データから得た周波数シフトの最適値の周辺において周波数シフトさせ、かつ開始時点最適値算出部901で最初の処理データから得た拡散符号開始時点の最適値を基に設定した遅延時間範囲(開始時点範囲)内で、拡散符号発生部106の拡散符号との相関処理を再度行い、相関関数の総和s_ryv(p,i,nf ,nb )を算出する。この場合、周波数シフトの最適値は周波数シフト中央値nf(center)Δfあるいは周波数シフト平均値nf(mean)Δf、ラグ中央値i(center) であるが、探索を行う周波数範囲は、例えば、(nf(center)±0.5)Δfと設定し、遅延時間範囲は、i(center) ΔT±1μsecと設定する。また、検出された周波数シフトにより探索を行う範囲を変化させる構成でも良い。
【0032】
積分処理部109では、相関処理部108の再度の処理で算出された相関関数の総和s_ryv(p,i,nf ,nb )と位相変調系列発生部107が送った位相変調系列Bsとを用い、かつ航法データビット境界として位相変調境界最適値算出部902で最初の一連の処理データから得た航法データビット境界の最適値周辺においてのみC/Aコード周期間のコヒーレント積分を再度行い、集積相関関数g_ryv(i,nf,nb,ns)を算出する。
検出部110では、積分処理部109の再度の処理で算出された集積相関関数g_ryv(i,nf,nb,ns)の絶対値が最大となるときの、遅延時間推定値、周波数シフト推定値、航法データビット境界および位相変調系列を検出する。
以上の処理操作を全ブロック(0〜700ms)の受信拡散信号に対して繰り返し、全ブロックについて検出された遅延時間推定値、周波数シフト推定値、航法ビット境界および位相変調系列はデータ保持部111に保存される。
【0033】
次に、データ保持部111に保存された、全ブロックの位相変調系列、遅延時間推定値、周波数シフト推定値および位相変調境界推定値は位相変調系列連接処理部113に渡される。位相変調系列連接処理部113では、全ブロックの位相変調系列を実施の形態1と同様に連接処理し、0〜700msの航法データビット系列を生成する。
以上の操作をデータ記憶部104に記憶した1秒間のデータについて行い、1秒間分の遅延時間、周波数シフト、航法ビット境界および航法データビット系列を取得する。また、これらの動作を他の衛星について繰り返して行い、合計4個以上の衛星の遅延時間、周波数シフト、航法ビット境界および航法データビット系列を取得する。4個以上の衛星の各パラメータを取得した後、データ記憶部104は次の1秒間の受信信号データを取得する。
以上の操作を繰り返して得られた4個以上の衛星に関する30秒間分の、遅延時間、周波数シフトおよび航法データビット系列は測位計算部115に送られる。測位計算部115では、航法データビット系列から航法メッセージの復調を行い、復調された航法メッセージと各衛星の遅延時間から測位計算を行い、GPS測位装置の位置を算出する。
【0034】
以上のように、この実施の形態2によれば、受信拡散信号の全ブロックの1回目の処理において周波数シフトの最適値、遅延時間(拡散符号開始時点)の最適値および航法ビット境界(位相変調境界)の最適値を算出し、全ブロックに対する再度の処理で、周波数シフトの最適値の周辺において、かつ遅延時間の最適値を基に設定した遅延時間範囲内で相関処理を行い、航法ビット境界の最適値周辺においてのみ積分処理を行うようにしたので、不要な相関ピークを取り除き、真の相関ピークのみを検出できるため、推定された位相変調系列が真の航法データビット系列となる可能性が高まり、室内等のより低いSN比においても測位が可能となる。
【図面の簡単な説明】
【0035】
【図1】この発明の実施の形態1によるによる位相変調系列再生装置を適用したGPS測位装置の機能構成を示すブロック図である。
【図2】GPS受信信号の構成を示すタイムチャートである。
【図3】この発明の実施の形態1に係る相関処理部で算出する相関関数の時間−周波数プロット例を示す説明図である。
【図4】この発明の実施の形態1に係る積分処理部で算出する集積相関関数の例を示す説明図である。
【図5】雑音がない場合の集積相関関数の周波数軸上の表現の一例を示す説明図である。
【図6】雑音がある場合の集積相関関数の周波数軸上の表現の一例を示す説明図である。
【図7】雑音がない場合の集積相関関数の複素平面上の表現の一例を示す説明図である。
【図8】雑音がある場合の集積相関関数の複素平面上の表現の一例を示す説明図である。
【図9】この発明の実施の形態2によるによる位相変調系列再生装置を適用したGPS測位装置の機能構成を示すブロック図である。
【符号の説明】
【0036】
101 GPSアンテナ、102 受信部、103 A/D変換部、104 データ記憶部、105 データ読出し部、106 拡散符号発生部(拡散符号記憶部)、107 位相変調系列発生部(位相変調系列記憶部)、108 相関処理部、109 積分処理部、110 検出部、111 データ保持部、112 周波数最適値算出部、113 位相変調系列連接処理部、114 測位計算部、115 位置表示部、901 開始時点最適値算出部、902 位相変調境界最適値算出部。

【特許請求の範囲】
【請求項1】
スペクトル拡散信号を取得し、所定長の拡散信号を複数の継続区間に分割して保存する拡散信号取得部と、
上記拡散信号の拡散符号と同じ形式の符号を記憶し出力する拡散符号記憶部と、
所定の長さの位相変調系列を複数記憶し出力する位相変調系列記憶部と、
上記拡散信号取得部で取得した拡散信号の1継続区間分を周波数シフトさせながら、当該周波数シフトさせた信号と上記拡散符号記憶部から出力された拡散符号との相関関数を計算し、相関関数の総和を算出する相関処理部と、
上記相関処理部で算出された相関関数の総和に対して、上記位相変調系列記憶部の所定の長さの位相変調系列に従って位相変調の補正を行った後、拡散符号開始時点、周波数シフト、位相変調系列、位相変調境界を変数として集積相関関数を算出する積分処理部と、
上記積分処理部で算出された集積相関関数の中から、拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界の各候補を検出する検出部と、
上記検出部で検出された周波数シフトの候補の中から、周波数シフトの最適値を算出する周波数最適値算出部と、
上記拡散信号の継続区間ごとに検出された位相変調系列をつなぎ合わせて、長時間の位相変調系列を生成する位相変調系列連接処理部を備え、
上記相関処理部は、同じ1継続区間分の拡散信号に対して、上記周波数最適値算出部で算出された周波数シフトの最適値の周辺においてのみ相関処理を再度行い、上記積分処理部は、再度の相関処理で得られた相関関数の総和に対して積分処理を再度行い、上記検出部は、再度の積分処理で得られた集積相関関数に対して検出処理を再度行い、上記検出部の再度の検出処理で得られた拡散符号開始時点、周波数シフトおよび位相変調系列を、上記位相変調系列連接処理部で用いるデータとして出力することを特徴とする位相変調系列再生装置。
【請求項2】
上記スペクトル拡散信号を取得し、所定長の拡散信号を複数の継続区間に分割して保存する拡散信号取得部と、
上記拡散信号の拡散符号と同じ形式の符号を記憶し出力する拡散符号記憶部と、
所定の長さの位相変調系列を複数記憶し出力する位相変調系列記憶部と、
上記拡散信号取得部で取得した所定長の拡散信号の各継続区間に対して、処理対象とする継続区間の拡散信号を周波数シフトさせながら、当該周波数シフトさせた信号と上記拡散符号記憶部から出力された拡散符号との相関関数を計算し、相関関数の総和を継続区間毎に算出する相関処理部と、
上記相関処理部で算出された継続区間毎の相関関数の総和それぞれに対して、上記位相変調系列記憶部の所定の長さの位相変調系列に従って位相変調の補正を行った後、拡散符号開始時点、周波数シフト、位相変調系列、位相変調境界を変数として集積相関関数を継続区間毎に算出する積分処理部と、
上記積分処理部で算出された継続区間毎の集積相関関数の中から、拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界の各候補を継続区間毎に検出する検出部と、
上記検出部により検出された所定長の拡散信号の全ての継続区間の周波数シフトの候補の中から、周波数シフトの最適値を算出する周波数最適値算出部と、
上記検出部により検出された所定長の拡散信号の全ての継続区間の拡散符号開始時点の候補の中から、拡散符号開始時点の最適値を算出する開始時点最適値算出部と、
上記検出部により検出された所定長の拡散信号の全ての継続区間の位相変調境界の候補の中から、位相変調境界の最適値を算出する位相変調境界最適値算出部と、
上記拡散信号の継続区間ごとに検出された位相変調系列をつなぎ合わせて、長時間の位相変調系列を生成する位相変調系列連接処理部を備え、
上記相関処理部は、最初に処理した同一の拡散信号の各継続区間に対して、上記周波数最適値算出部で算出された周波数シフトの最適値の周辺において、かつ上記開始時点最適値算出部で算出された拡散符号開始時点の最適値を基に設定した開始時点範囲内で相関処理を再度行い、上記積分処理部は、再度の相関処理で得られた各相関関数の総和に対して位相変調境界最適値算出部で算出された位相変調境界の最適値周辺においてのみ積分処理を再度行い、上記検出部は、再度の積分処理で得られた各集積相関関数に対して検出処理を再度行い、再度の検出処理で得られた拡散符号開始時点、周波数シフトおよび位相変調系列を、上記位相変調系列連接処理部で用いるデータとして出力することを特徴とする位相変調系列再生装置。
【請求項3】
周波数最適値算出部は、検出部により検出された周波数シフトの候補の中央値を算出し、当該中央値を周波数シフトの最適値とすることを特徴とする請求項1または請求項2記載の位相変調系列再生装置。
【請求項4】
周波数最適値算出部は、検出部により検出された周波数シフトの候補の中央値を算出し、当該中央値周辺における周波数シフトの候補の平均値を算出して周波数シフトの最適値とすることを特徴とする請求項1または請求項2記載の位相変調系列再生装置。
【請求項5】
開始時点最適値算出部は、検出部により検出された拡散符号開始時点の候補の中央値を算出し、当該中央値を拡散符号開始時点の最適値とすることを特徴とする請求項2記載の位相変調系列再生装置。
【請求項6】
位相変調境界最適値算出部は、検出部により検出された位相変調境界の候補の最頻値を算出し、当該最頻値を位相変調境界の最適値とすることを特徴とする請求項2記載の位相変調系列再生装置。
【請求項7】
検出部は、集積相関関数の絶対値と所定の閾値を比較し、絶対値が当該閾値を上回る場合の集積相関関数から、拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界を検出することを特徴とする請求項1または請求項2記載の位相変調系列再生装置。
【請求項8】
検出部は、集積相関関数の絶対値を大きい順に、かつ集積相関関数が所定の数を満たすまで検出し、検出された集積相関関数から拡散符号開始時点、周波数シフト、位相変調系列および位相変調境界の候補を検出することを特徴とする請求項1または請求項2記載の位相変調系列再生装置。
【請求項9】
位相変調系列連接処理部は、所定の継続区間と次の継続区間で検出された位相変調系列を所定のビット数だけ照らし合わせ、照らし合わせたビットの極性が反転していた場合には、どちらかの位相変調系列を反転させて接続し、一方、照らし合わせたビットの極性が同じであった場合には、互いの位相変調系列をそのまま接続して、長時間の位相変調系列を得ることを特徴とする請求項1または請求項2記載の位相変調系列再生装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−322233(P2007−322233A)
【公開日】平成19年12月13日(2007.12.13)
【国際特許分類】
【出願番号】特願2006−152320(P2006−152320)
【出願日】平成18年5月31日(2006.5.31)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】