説明

光学フィルム、偏光板及び表示装置

【課題】本発明の目的は、鉛筆硬度の高い光学フィルムの提供、及びそれを用いた偏光板、表示装置を提供することにある。
【解決手段】フィルム基材上に機能性層として少なくともハードコート層を有する光学フィルムにおいて、該機能性層の少なくともいずれかの層にかご状シルセスキオキサンを含有してなることを特徴とする光学フィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学フィルム、偏光板及び表示装置に関し、鉛筆硬度の上昇した光学フィルム、偏光板及び表示装置に関する。
【背景技術】
【0002】
近年、ノートパソコン、携帯電話等のフルカラー化或いはディスプレイの高精細化等に伴って反射防止機能、帯電防止機能等の付与された高機能の光学フィルムが求められている。最近では、視認性を改善するため、表面に反射防止性、防汚性等を付与することが求められており、例えば、セルロースエステルフィルム上に、直接或いは他の層を介して金属酸化物等の機能性層を有する光学フィルムが開発されている。また、表示装置の薄型化のため、使用するフィルムの膜厚もますます薄いものが求められており、或いは、大画面化のため、光学フィルムの幅も広いものが求められている。特に大画面においては平面性に優れた光学フィルムが求められているが、従来の光学フィルムでは特に広幅、薄膜では平面性に優れたものが得られず、また耐傷性についても広い面積では十分なものが得られなかった。
【0003】
例えば、特許文献1には紫外線吸収剤を含有するセルロースエステルフィルム上に紫外線硬化樹脂層を設けた例が示されているが、鉛筆硬度が2H程度しかなく、十分な硬度とはいえなかった。
【0004】
一般に光学フィルムは、表面硬度を確保する為に、紫外線硬化樹脂層のようなハードコート層をプラスチックフィルム上に直接、或いは0.1〜1μm程度の下層を介して3〜10μm程度の膜厚の層として形成される。しかしながら、従来の光学フィルムは、そのハードコート層の硬度が不十分であったこと、下地のプラスチックフィルム基材の変形により、ハードコート層も変形し、光学フィルム全体としての硬度は低く、十分に満足出来るものではなかった。セルロースエステルフィルム上に、紫外線硬化樹脂層を上記の厚みで塗設した光学フィルムにおいては、鉛筆硬度で2H程度が一般的であり、4H以上の十分な硬度は得られなかった。
【0005】
一方で、特許文献2では、ハードコート層の膜厚を厚くすることによって鉛筆硬度を高くする方法が開示されている。確かに、ハードコート層の膜厚を厚くすることは鉛筆硬度を向上するためには効果的である。しかしながら、ハードコート層の膜厚を厚くすると平面性が低下しやすくなるだけでなく、薄型表示装置に用いるための薄膜化を損なう恐れがあり、特にハードコート層の膜厚を20〜200μmとすることは問題がある。
【0006】
また、セルロースエステルフィルムには、耐久性を付与するために紫外線吸収剤が添加されている。特許文献3には紫外線吸収剤を含有するセルローストリアセテートフィルム上にハードコート層を形成した例が記載されているが、これらも鉛筆硬度で2H程度しかなく、十分なレベルとはいえなかった。
【0007】
また、ハードコート層の上に反射防止層を塗設して反射防止フィルムを作製した場合、前記鉛筆硬度の低下や平面性の劣化は、反射防止そのものの機能や取扱い性を劣化させ、該反射防止フィルムを偏光板や表示装置に用いると視認性低下、色むら、傷等が発生する原因となり大きな問題となる。
【特許文献1】特開2001−183528号公報
【特許文献2】特開2003−57402号公報
【特許文献3】特開2001−91705号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
従って本発明の目的は、鉛筆硬度の高い光学フィルム、及びそれを用いた偏光板、表示装置を提供することにある。
【課題を解決するための手段】
【0009】
本発明の上記課題は以下の構成により達成される。
【0010】
1.フィルム基材上に機能性層として少なくともハードコート層を有する光学フィルムにおいて、該機能性層の少なくともいずれかの層にかご状シルセスキオキサンを含有してなることを特徴とする光学フィルム。
【0011】
2.前記ハードコート層がかご状シルセスキオキサンを含有することを特徴とする前記1に記載の光学フィルム。
【0012】
3.前記ハードコート層上に、直接または他の層を介して低屈折率層が積層されてなることを特徴とする前記1または2に記載の光学フィルム。
【0013】
4.前記低屈折率層が、少なくともかご状シルセスキオキサンとシリカ系微粒子とを含有することを特徴とする前記3に記載の光学フィルム。
【0014】
5.導電性層を有し、該導電性層中にかご状シルセスキオキサンを含有することを特徴とする前記1〜4のいずれか1項に記載の光学フィルム。
【0015】
6.前記1〜5のいずれか1項に記載の光学フィルムを少なくとも一方の面に有することを特徴とする偏光板。
【0016】
7.前記1〜5のいずれか1項に記載の光学フィルム、または前記6に記載の偏光板を有することを特徴とする表示装置。
【発明の効果】
【0017】
本発明により、鉛筆硬度の高い光学フィルム、それを用いた偏光板及び表示装置を提供することができる。
【発明を実施するための最良の形態】
【0018】
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0019】
本発明者らは上記課題に鑑み鋭意検討した結果、フィルム基材上に機能性層として少なくともハードコート層を有する光学フィルムにおいて、該機能性層の少なくともいずれかの層にかご状シルセスキオキサンを含有してなる光学フィルムにより、驚くべきことに該機能性層の鉛筆硬度が向上することを見出し、本発明を成すに至った次第である。
【0020】
更に、かご状シルセスキオキサンをハードコート層や、低屈折率層に含有することで、光学フィルムの鉛筆硬度の低下や平面性の劣化を改善でき、該光学フィルムを偏光板や表示装置に用いることで、視認性低下、色むら、傷等の発生を解消できるという特徴も見出したものである。
【0021】
以下、本発明を詳細に説明する。
【0022】
〔かご状シルセスキオキサン〕
本発明で用いられるかご状シルセスキオキサンについて説明する。
【0023】
シルセスキオキサン(Silsesqui oxane)はTレジンとも呼ばれるもので、通常のシリカが〔SiO2〕の一般式で表されるのに対し、シルセスキオキサン(ポリシルセスキオキサンとも言う)は〔RSiO1.5〕で表される化合物であり、通常はテトラエトキシシランに代表されるテトラアルコキシシラン(Si(OR′)4)の1つのアルコキシ基をアルキル基またはアリール基に置き換えた(RSi(OR′)3)化合物の加水分解−重縮合で合成されるポリシロキサンであり、分子配列の形状として、代表的には無定形、ラダー状、かご状(完全縮合ケージ状)があるが、本発明では特にかご状シルセスキオキサンが有用である。
【0024】
本発明で用いられるかご状シルセスキオキサンとしては、具体的には〔RSiO1.58の化学式で表されるタイプ(一般式(1))、〔RSiO1.5〕10の化学式で表されるタイプ(一般式(2))、〔RSiO1.512の化学式で表されるタイプ(一般式(3))、〔RSiO1.514の化学式で表されるタイプ(一般式(4)、一般式(5))及び〔RSiO1.516の化学式で表されるタイプ(一般式(6)、一般式(7))が知られている。
【0025】
【化1】

【0026】
【化2】

【0027】
この中で本発明での使用にあたり最も好ましいものは一般式(1)で表される立方体構造のもの(T8−シルセスキオキサンとも呼ばれる)ものである。
【0028】
より具体的には、「高分子学会誌 第47巻12月号(1998年)第899ページ」やチッソ株式会社/アズマックス株式会社発行のカタログ「特殊シリコン試薬第7版(平成10年11月3日発行)」の第351ページに詳しい説明が記載されている。
【0029】
本発明で用いられる一般式(1)〜(7)で表される化合物において、Rで表されるアルキル基としては、直鎖状のものでも分岐状のものでもよく、更に置換基によって置換されていてもよい。具体的には、メチル基、エチル基、シクロペンチル基、シクロヘキシル基、イソプロピル基、2−エチルヘキシル基、tert−ブチル基、2−クロロエチル基、メタクリロキシプロピル基、アリル基、3−アミノプロピル基、3−メルカプトプロピル基、3−グリシドキシプロピル基等が挙げられる。
【0030】
本発明で用いられる一般式(1)〜(7)で表される化合物において、Rで表されるアルケニル基としては、直鎖状のものでも分岐状のものでもよく、更に置換基によって置換されていてもよい。具体的には、ビニル基、1−シクロヘキセニル基、2,2−ジメチルビニル基等が挙げられる。
【0031】
本発明で用いられる一般式(1)〜(7)で表される化合物において、Rで表されるアリール基としては、6π系でも10π系でもよく、更に置換基によって置換されていてもよい。具体的には、フェニル基、1−ナフチル基、2−ナフチル基、フェナントリル基等が挙げられる。
【0032】
本発明で用いられる一般式(1)〜(7)で表される化合物において、Rで表される置換基又は水素原子の中で好ましいものは、水素原子、メチル基、エチル基、シクロペンチル基、シクロヘキシル基、イソプロピル基、2−エチルヘキシル基、2−クロロエチル基、メタクリロキシプロピル基、アリル基、3−アミノプロピル基、3−メルカプトプロピル基、3−グリシドプロピル基、ビニル基、フェニル基である。
【0033】
R′についてはRの好ましい置換基としてあげたアルキル基と同じものを表す。
【0034】
かご状シルセスキオキサンは、対応する(RSi(OR′)3)化合物の加水分解−重縮合で合成されるが、その具体例を以下に示す。
【0035】
【化3】

【0036】
【化4】

【0037】
【化5】

【0038】
【化6】

【0039】
【化7】

【0040】
【化8】

【0041】
【化9】

【0042】
【化10】

【0043】
【化11】

【0044】
【化12】

【0045】
【化13】

【0046】
【化14】

【0047】
【化15】

【0048】
【化16】

【0049】
この中で、ヒドロ−T8−シルセスキオキサン(S−1)、メタクリロキシプロピルヘプタシクロペンチル−T8−シルセスキオキサン(S−12)、オクタキス(ジメチルシロキシ)−T8−シルセスキオキサン(S−13)及びオクタビニル−T8−シルセスキオキサン(S−14)はチッソ株式会社から市販されている。
【0050】
また、例示化合物S−25〜S−53はPOSS(Polyhedral Oligomeric Silsesquioxane)という商品名で、Hybrid Plastics社から市販されている。POSSには、POSS Molecular Silicas、Poss Silanols、POSS Functionalized Mnonomers、POSS Polymers & Resinsという4つのカテゴリーに分類される多種類の化合物がある。POSSは粒径1nm程度の三次元かご状構造をしており、本発明に用いる化合物としては、より好ましい素材である。
【0051】
本発明は、フィルム基材上に設けられた機能性層の少なくともいずれかの層にかご状シルセスキオキサンを含有してなる光学フィルムであることが特徴である。
【0052】
機能性層は、例えば、ハードコート層、導電性層、低屈折率層等を挙げることができるが、それらのいずれかの層にかご状シルセスキオキサンを添加する。いずれか1層のみに添加してもよく、また、複数の層に添加してもよい。
【0053】
例えば、ハードコート層における、かご状シルセスキオキサンの好ましい添加量は固形分に対して3〜50%である。
【0054】
導電性層における、かご状シルセスキオキサンの好ましい添加量は1〜15%であり、低屈折率層におけるかご状シルセスキオキサンの好ましい添加量は、かご状シルセスキオキサン:バインダー樹脂=2:98〜50:50が好ましい。更に好ましくは5:95〜30:70である。
【0055】
かご状シルセスキオキサンは、機能性層を形成する塗布液に、使用する溶媒に希釈して添加してもよいし、該溶媒及び分散機を用いて分散後添加してもよい。
【0056】
〔フィルム基材〕
本発明に用いられるフィルム基材としては、製造が容易であること、ハードコート層との密着性が良好である、光学的に等方性である、光学的に透明であること等が好ましく、透明フィルムであることが好ましい。
【0057】
本発明でいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。
【0058】
上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。
【0059】
本発明で好ましく用いられるノルボルネン系樹脂フィルムとは、ノルボルネン構造を有する非晶性ポリオレフィンフィルムで、例えば三井石油化学(株)製のAPOや日本ゼオン(株)製のゼオネックス、JSR(株)製のARTON等がある。
【0060】
本発明においては、中でもセルロースエステル系フィルムを用いることが好ましい。
【0061】
セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得る。
【0062】
アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することができる。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。
【0063】
本発明に用いられるセルロースエステルは、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。
【0064】
中でも、プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、偏光板の保護フィルムとして好ましい。
【0065】
特にアセチル基の置換度をX、プロピオニル基の置換度をYとした時、XとYが下記の範囲にあるセルロースアセテートプロピオネートが好ましい。
【0066】
2.0≦X+Y≦2.9
0.1≦Y≦1.8
特に、2.2≦X+Y≦2.8
0.3≦Y≦1.2であることが好ましい。
【0067】
アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することができる。
【0068】
セルロースエステルの数平均分子量は、50000〜250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80000〜150000である。
【0069】
また、重量平均分子量(Mw)で50000〜350000のものが用いられる。60000〜300000のものが更に好ましく、80000〜250000が特に好ましい。
【0070】
セルロースエステルの平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィーを用いて公知の方法で測定することができる。これを用いて数平均分子量、重量平均分子量を測定する。
【0071】
測定条件は以下の通りである。
【0072】
〈ゲルパーミエーションクロマトグラフィー:GPCによる分子量測定〉
GPCによる数平均分子量の測定方法は、試料固形分濃度が0.1%となるようにテトラヒドロフランを用いて希釈した。粒子を含むためフィルターを用いて粒子を除去し、カラム温度25℃で、以下の条件により測定を行った。
【0073】
カラム;東ソー社TSKgelG5000HXL−TSKgelG2000H XL
溶離液;THF(テトラヒドロフラン)
ポンプ;L6000(日立製作所(株)製)
流量 :1.0ml/min
検出 ;RI Model 504(GLサイエンス社製)
試料濃度;0.8%
標準試料・校正曲線;標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000〜500迄の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔にすることが好ましい。
【0074】
本発明のフィルム基材は、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤、脂肪酸エステル系可塑剤、多価カルボン酸エステル系可塑剤等を好ましく用いることができる。
【0075】
中でも、多価アルコールエステル系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等が好ましい。特に多価アルコールエステル系可塑剤を用いることが好ましい。
【0076】
多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。
【0077】
本発明に好ましく用いられる多価アルコールは次の一般式(a)で表される。
【0078】
一般式(a) R1−(OH)n
但し、R1はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。
【0079】
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
【0080】
多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
【0081】
好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
【0082】
脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1〜20であることが更に好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
【0083】
好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
【0084】
好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。
【0085】
好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基或いはエトキシ基などのアルコキシ基を1〜3個を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
【0086】
多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
【0087】
多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
【0088】
以下に、多価アルコールエステルの具体的化合物を例示する。
【0089】
【化17】

【0090】
【化18】

【0091】
【化19】

【0092】
【化20】

【0093】
グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
【0094】
フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
【0095】
クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
【0096】
脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
【0097】
多価カルボン酸エステル系可塑剤も好ましく用いることができる。具体的には特開2002−265639号公報の段落番号[0015]〜[0020]記載の多価カルボン酸エステルを可塑剤の一つとして添加することが好ましい。
【0098】
また、他の可塑剤としてリン酸エステル系可塑剤を用いることもでき、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
【0099】
このほか、特開2003−12859号記載のアクリルポリマーなどを可塑剤として含有させることも好ましい。
【0100】
フィルム基材中の上記可塑剤の総含有量は、固形分総量に対し、5〜20質量%が好ましく、6〜16質量%が更に好ましく、特に好ましくは8〜13質量%である。また、2種の可塑剤の含有量は各々少なくとも1質量%以上であり、好ましくは各々2質量%以上含有することである。
【0101】
多価アルコールエステル系可塑剤は1〜15質量%含有することが好ましく、特に3〜11質量%含有することが好ましい。少ないと平面性の劣化が認められ、多過ぎるとブリードアウトがしやすい。多価アルコールエステル系可塑剤とその他の可塑剤との質量比率は1:4〜4:1の範囲であることが好ましく、1:3〜3:1であることが更に好ましい。可塑剤の添加量が多過ぎても、また少な過ぎてもフィルムが変形しやすく好ましくない。
【0102】
本発明のフィルム基材には、紫外線吸収剤が好ましく用いられる。
【0103】
紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。
【0104】
本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。
【0105】
ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。
【0106】
UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
【0107】
UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
【0108】
また、特開2001−187825号に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。
【0109】
また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039号の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。
【0110】
また、本発明のフィルム基材には滑り性を付与するため、微粒子を用いることができる。
【0111】
微粒子としては、無機化合物の例としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
【0112】
微粒子の一次粒子の平均粒子径は5〜50nmが好ましく、更に好ましいのは7〜20nmである。これらは主に粒子径0.05〜0.3μmの2次凝集体として含有されることが好ましい。フィルム基材中のこれらの微粒子の含有量は0.05〜1質量%であることが好ましく、特に0.1〜0.5質量%が好ましい。共流延法による多層構成のフィルムの場合は、表面にこの添加量の微粒子を含有することが好ましい。
【0113】
二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
【0114】
酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。
【0115】
微粒子としてポリマー粒子を用いることもでき、ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
【0116】
これらの中でもアエロジル200V、アエロジルR972Vがフィルム基材の濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明のフィルム基材においてはハードコート層を設けるのとは反対面側の動摩擦係数が1.0以下であることが好ましい。
【0117】
本発明のフィルム基材として、市販のセルロースエステルフィルムを用いることも好ましく、例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC4FR、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が、製造上、コスト面、透明性、密着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
【0118】
(溶液流延法)
フィルム基材の溶液流延法による製膜は、セルロースエステル、及び上記各種添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
【0119】
ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。
【0120】
ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70〜98質量%であり、貧溶剤が2〜30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルのアシル基置換度によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
【0121】
本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。
【0122】
また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n−ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。
【0123】
上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤または膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
【0124】
加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
【0125】
溶剤を添加する際の加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45〜120℃であり、60〜110℃がより好ましく、70℃〜105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
【0126】
または冷却溶解法も好ましく用いられ、これによって酢酸メチル等の溶媒にセルロースエステルを溶解させることができる。
【0127】
調製されたセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001〜0.008mmの濾材がより好ましく、0.003〜0.006mmの濾材が更に好ましい。
【0128】
濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれている不純物、特に輝点異物を除去、低減することが好ましい。
【0129】
輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にフィルム基材を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、更に好ましくは50個/m2以下であり、更に好ましくは0〜10個/cm2以下である。また、0.01mm以下の輝点も少ない方が好ましい。
【0130】
ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることが更に好ましい。
【0131】
濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
【0132】
ここで、ドープの流延について説明する。
【0133】
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
【0134】
フィルム基材が良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。
【0135】
本発明においては、残留溶媒量は下記式で定義される。
【0136】
残留溶媒量(質量%)={(M−N)/N}×100
なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
【0137】
また、フィルム基材の乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。
【0138】
フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
【0139】
本発明のフィルム基材は、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで搬送方向に延伸し、更にウェブの両端をクリップ等で把持するテンター方式で幅方向に延伸を行うことが好ましい。縦方向、横方向ともに好ましい延伸倍率は1.01〜1.3倍であり、1.05〜1.15倍が更に好ましい。縦方向及び横方向延伸により面積が1.12〜1.44倍となっていることが好ましく、1.15〜1.32倍となっていることが好ましい。これは縦方向の延伸倍率×横方向の延伸倍率で求めることができる。縦方向と横方向の延伸倍率のいずれかが1.01倍以上であれば平面性のよいフィルムが得られ好ましい。
【0140】
剥離直後に縦方向に延伸するために、剥離張力及びその後の搬送張力によって延伸することが好ましい。例えば剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220〜300N/mである。また、搬送ロールの周速差を制御して延伸することができる縦延伸装置を用いることも好ましい。
【0141】
ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で熱風で行うことが好ましい。
【0142】
ウェブの乾燥工程における乾燥温度は30〜200℃で段階的に高くしていくことが好ましく、50〜180℃の範囲で段階的に高くすることが寸法安定性をよくするため更に好ましい。
【0143】
フィルム基材の膜厚は、特に限定はされないが10〜200μmが好ましく用いられる。特に膜厚は10〜100μmであることが特に好ましい。更に好ましくは20〜80μmである。最も好ましくは35〜70μmである。また、共流延法によって多層構成としたフィルム基材も好ましく用いることができる。
【0144】
本発明のフィルム基材は、幅1m以上であり、幅1.4〜4mのものが好ましく用いられる。特に好ましくは1.4〜3mである。4mを超えると搬送が困難となる。また、フィルム基材表面の中心線平均粗さ(Ra)は0.001〜1μmの範囲であることが好ましい。
【0145】
本発明のフィルム基材は、偏光板保護フィルムとして有用であり、複屈折による位相差の発現をできるだけ抑制した光学的に等方性を有する保護フィルムや、所望の位相差を有する視野角拡大に供される位相差フィルムをフィルム基材として用いることができる。
【0146】
上記保護フィルムとしては、23℃55%RHの環境下における下記式で表される面内リターデーションRoが0≦Ro≦50nm、かつ厚み方向のリターデーションRtが−400nm≦Rt≦400nmの範囲であることが好ましい。上記位相差フィルムとしては、面内リターデーションRoが20≦Ro≦70nmで、かつ厚み方向のリターデーションRtは70≦Rt≦400nmであることが好ましい。更にRtは100〜400nmであることが好ましく、100〜200nmであることがより好ましい。また、特にRt/Roは1.5〜6.0であることが好ましい。
【0147】
リターデーションRo、Rt或いは長尺フィルムの幅手方向と遅相軸とのなす角θ(°)は自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA−21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、フィルム基材の590nmにおける複屈折率測定を行い、屈折率nx、ny、nzを求め、下記式に従ってRo、Rtを算出する。
【0148】
Ro=(nx−ny)×d
Rt={(nx+ny)/2−nz}×d
(式中、フィルム面内の遅相軸方向の屈折率をnx、面内で遅相軸に直交する方向の屈折率をny、厚み方向の屈折率をnz、dはフィルムの厚み(nm)を表す。)
上記リターデーションの調整は、セルロースエステルの種類、アシル基置換度、添加剤の種類と含有量、フィルム膜厚、延伸操作等により制御できる。
【0149】
〔機能性層〕
次いで、本発明の光学フィルムに設けることのできる機能性層について説明する。機能性層は特に限定されるものではなく、ハードコート層、反射防止層、防汚層、バックコート層、アンチカール層、導電性層(帯電防止層ともいう)、下引き層、光散乱層、接着層等が挙げられる。
【0150】
本発明は該機能性層の少なくともいずれかの層に、かご状シルセスキオキサンとを含有することにより、高い鉛筆硬度を有する機能性層を形成することが特徴である。
【0151】
機能性層の中で、光学フィルムにおいては特に有用なハードコート層、反射防止層及び導電性層について詳細を述べる。
【0152】
〔ハードコート層〕
本発明の光学フィルムは、フィルム基材上にハードコート層を設けるか、またはフィルム基材と反射防止層の間にハードコート層として活性線硬化樹脂を含有する層を設けることが好ましい。
【0153】
特に好ましくは、ハードコート層が、活性線硬化樹脂と本発明に係るかご状シルセスキオキサンとを含有することである。
【0154】
本発明でいう「活性線硬化樹脂」とは、紫外線や電子線のような活性線(「活性エネルギー線」ともいう。)照射により架橋反応等を経て硬化する樹脂をいう。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。
【0155】
紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。
【0156】
紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号に記載のものを用いることができる。
【0157】
例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
【0158】
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号に記載のものを用いることができる。
【0159】
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号に記載のものを用いることができる。
【0160】
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
【0161】
これら紫外線硬化性樹脂の光重合開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光重合開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光重合開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。紫外線硬化性樹脂組成物に用いられる光重合開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。
【0162】
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
【0163】
本発明において使用し得る紫外線硬化性樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用できる。
【0164】
また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
【0165】
こうして得たハードコート層には耐傷性、滑り性や屈折率を調整するために無機化合物または有機化合物の微粒子を含んでもよい。
【0166】
ハードコート層に使用される無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。
【0167】
また有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物に加えることができる。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)が挙げられる。
【0168】
これらの微粒子粉末の平均粒径としては、0.01〜5μmが好ましく0.1〜5.0μm、更に、0.1〜4.0μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有することが好ましい。紫外線硬化性樹脂組成物と微粒子の割合は、樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。
【0169】
これらのハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。塗布後、加熱乾燥し、UV硬化処理を行う。
【0170】
紫外線硬化性樹脂を光硬化反応により硬化させ、ハードコート層を形成するための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm2、好ましくは5〜150mJ/cm2であるが、特に好ましくは20〜100mJ/cm2である。
【0171】
また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性に優れたフィルムを得ることができる。
【0172】
ハードコート層塗布液には溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
【0173】
ハードコート層は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001〜0.1μmのクリアハードコート層、または微粒子等を添加しRaが0.1〜1μmに調整された防眩性ハードコート層であることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製非接触表面微細形状計測装置WYKO NT−2000を用いて測定することができる。
【0174】
更にハードコート層には、シリコーン系界面活性剤或いはポリオキシエーテル化合物を含有させることが好ましい。これらは塗布性を高め、これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
【0175】
また、ハードコート層は、2層以上の重層構造を有していてもよい。その中の1層は例えば導電性微粒子、または、イオン性ポリマーを含有する所謂導電性層としてもよいし、また、種々の表示素子に対する色補正用フィルターとして色調調整機能を有する色調調整剤(染料もしくは顔料等)を含有させてもよいし、また電磁波遮断剤または赤外線吸収剤等を含有させそれぞれの機能を有するようにすることは好ましい。
【0176】
ハードコート層塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として0.1〜40μmが適当で、好ましくは、0.5〜30μmである。また、ドライ膜厚としては平均膜厚0.1〜30μm、好ましくは1〜20μmである。
【0177】
ハードコート層は塗布乾燥後に、紫外線を照射するのがよく、必要な活性線の照射量を得るための照射時間としては、0.1秒〜1分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。
【0178】
また、これら活性線照射部の照度は0.05〜0.2W/m2であることが好ましい。
【0179】
〔反射防止層〕
反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
【0180】
本発明の光学フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。
【0181】
フィルム基材/ハードコート層
フィルム基材/ハードコート層/中屈折率層/低屈折率層
フィルム基材/ハードコート層/中屈折率層/高屈折率層/低屈折率層
フィルム基材/ハードコート層/低屈折率層
フィルム基材/ハードコート層/導電性層
フィルム基材/ハードコート層/導電性層/低屈折率層
フィルム基材/ハードコート層/高屈折率層(導電性層)/低屈折率層
フィルム基材/ハードコート層/防眩性層
フィルム基材/ハードコート層/防眩性層/低屈折率層
フィルム基材/導電性層/ハードコート層/低屈折率層
バックコート層/フィルム基材/ハードコート層
バックコート層/フィルム基材/ハードコート層/防眩性層
バックコート層/フィルム基材/ハードコート層/導電性層
バックコート層/フィルム基材/ハードコート層/低屈折率層
バックコート層/フィルム基材/ハードコート層/中屈折率層/低屈折率層
バックコート層/フィルム基材/ハードコート層/防眩性層
バックコート層/フィルム基材/ハードコート層/防眩性層/低屈折率層
バックコート層/フィルム基材/ハードコート層/導電性層/低屈折率層
バックコート層/フィルム基材/ハードコート層/高屈折率層(導電性層)/低屈折率層
バックコート層/フィルム基材/導電性層/ハードコート層/低屈折率層
これらハードコート層、導電性層、低屈折率層のいずれかにかご状シルセスキオキサンを添加することが好ましい。かご状シルセスキオキサンは、いずれか1層のみに添加してもよく、また、複数の層に添加してもよい。
【0182】
〔低屈折率層〕
本発明に用いられる低屈折率層は、少なくともかご状シルセスキオキサンとシリカ系微粒子とを含有することが好ましく、その屈折率は、支持体であるフィルム基材の屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
【0183】
低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。
【0184】
本発明に用いられる低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。
【0185】
なお、低屈折率層形成用組成物には、下記一般式(OSi−1)で表される有機珪素化合物若しくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。
【0186】
一般式(OSi−1):Si(OR)4
前記一般式で表される有機珪素化合物は、式中、Rは炭素数1〜4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
【0187】
他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
【0188】
(中空シリカ系微粒子)
中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
【0189】
なお、空洞粒子は内部に空洞を有する粒子であり、空洞は被覆層(粒子壁ともいう。)で覆われている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子の平均粒子径は、形成される低屈折率層の平均膜厚の3/2〜1/10好ましくは2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)、或いはこれらを含む混合溶媒が好ましい。
【0190】
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部の空隙部分に進入して粒子の屈折率を増加させ、低屈折率の効果が十分得られなくなることがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
【0191】
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。
【0192】
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
【0193】
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
【0194】
このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空微粒子は製造される。
【0195】
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
【0196】
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
【0197】
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
【0198】
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al23、TiO2またはZrO2等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
【0199】
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
【0200】
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOX)に換算し、MOX/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOX/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。
【0201】
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
【0202】
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
【0203】
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
【0204】
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
【0205】
また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
【0206】
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
【0207】
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0208】
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
【0209】
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
【0210】
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
【0211】
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0212】
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
【0213】
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるような量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
【0214】
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
【0215】
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
【0216】
このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。なお、中空シリカ系微粒子は触媒化成(株)から市販されているものも好ましく利用することができる。
【0217】
外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子の低屈折率層中の含有量は、10〜50質量%であることが好ましい。低屈折率の効果を得る上で、15質量%以上が好ましく、50質量%を超えるとバインダー成分が少なくなり膜強度が不十分となる。特に好ましくは20〜50質量%である。
【0218】
低屈折率層への添加方法としては、例えば前記テトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
【0219】
また、本発明では低屈折率層に、下記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物を含有させることもできる。
【0220】
【化21】

【0221】
前記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物について説明する。
【0222】
式中、R1〜R6は炭素数1〜16、好ましくは1〜4のアルキル基、炭素数1〜6、好ましくは1〜4のハロゲン化アルキル基、炭素数6〜12、好ましくは6〜10のアリール基、炭素数7〜14、好ましくは7〜12のアルキルアリール基、アリールアルキル基、炭素数2〜8、好ましくは2〜6のアルケニル基、または炭素数1〜6、好ましくは1〜3のアルコキシ基、水素原子またはハロゲン原子を示す。
【0223】
Rfは−(Cabc)−を表し、aは1〜12の整数、b+cは2aであり、bは0〜24の整数、cは0〜24の整数を示す。このようなRfとしては、フルオロアルキレン基とアルキレン基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物としては、(MeO)3SiC242424Si(MeO)3、(MeO)3SiC244824Si(MeO)3、(MeO)3SiC2461224Si(MeO)3、(H52O)3SiC244824Si(OC253、(H52O)3SiC2461224Si(OC253で表されるメトキシジシラン化合物等が挙げられる。
【0224】
バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、形成される透明被膜自体が疎水性を有しているので、透明被膜が充分緻密化しておらず、多孔質であったり、またクラックやボイドを有している場合であっても、水分や酸・アルカリ等の薬品による透明被膜への進入が抑制される。更に、基板表面や下層である導電性層中に含まれる金属等の微粒子と水分や酸・アルカリ等の薬品とが反応することもない。このため、このような透明被膜は、優れた耐薬品性を有している。
【0225】
また、バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強度に優れた透明被膜を得ることができる。更に、バインダーが、このような構成単位を有するフッ素置換アルキル基含有シラン化合物を含んでいると、下層に導電性層が形成されている場合には、バインダーの収縮率が、導電性層と同等か近いものであるため導電性層と密着性に優れた透明被膜を形成することができる。更に、透明被膜を加熱処理する際に、収縮率の違いから、導電性層が剥離して、透明導電性層に電気的接触のない部分が生じることもない。このため、膜全体として充分な導電性を維持できる。
【0226】
フッ素置換アルキル基含有シラン化合物と、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、消しゴム強度または爪強度で評価される膜強度が高く、鉛筆硬度も高く、強度の上で優れた透明被膜を形成することができる。
【0227】
本発明に用いられる低屈折率層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
【0228】
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
【0229】
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
【0230】
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
【0231】
低屈折率層のその他のバインダーとして用いられるポリマーとしては、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、フルオロアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂が挙げられる。
【0232】
低屈折率層は、全体で5〜80質量%のバインダーを含むことが好ましい。バインダーは、中空シリカ系微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように適宜調整する。
【0233】
(溶媒)
本発明に係る低屈折率層は有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
【0234】
低屈折率層塗布組成物中の固形分濃度は1〜4質量%であることが好ましく、該固形分濃度が4質量%以下にすることによって、塗布ムラが生じにくくなり、1質量%以上にすることによって乾燥負荷が軽減される。
【0235】
〔高屈折率層〕
本発明においては、反射防止層として、上述の低屈折率層の他に、下記のような高屈折率層を有することが好ましく、特に該高屈折率層は本発明に係る活性線硬化樹脂とかご状シルセスキオキサンとを含有することが好ましい。
【0236】
本発明に用いられる高屈折率層には金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
【0237】
これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。
【0238】
高屈折率層の屈折率は、具体的には、支持体であるフィルムの屈折率より高く、23℃、波長550nm測定で、1.5〜2.2の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。
【0239】
金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑える事もできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。
【0240】
前記金属酸化物微粒子を含有する高屈折率層の厚さは5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。
【0241】
使用する金属酸化物微粒子と後述する活性線硬化樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。
【0242】
本発明において用いられる金属酸化物微粒子の使用量は高屈折率層中に5質量%〜85質量%が好ましく、10質量%〜80質量%であることがより好ましく、20〜75質量%が最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多過ぎると膜強度の劣化などが発生する。
【0243】
上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
【0244】
また金属酸化物微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。
【0245】
本発明では、更にコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性を更に向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。
【0246】
コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることができるが、ルチル型の酸化チタンを主成分としてもよい。
【0247】
シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。
【0248】
コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、更に好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の無機微粒子を併用してもよい。
【0249】
コアとなる酸化チタンは、液相法または気相法で作製されたものを使用できる。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることができる。
【0250】
本発明に係る高屈折率層もしくは前述の低屈折率層には、下記一般式(CL1)で表される化合物またはそのキレート化合物を含有することができ、硬度などの物性を改善させることができる。
【0251】
一般式(CL1) AnMBx-n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
【0252】
加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記一般式(CL1)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化性樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。
【0253】
チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。
【0254】
ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。
【0255】
遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。
【0256】
金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。
【0257】
本発明に係る高屈折率層には、活性線硬化樹脂を、かご状シルセスキオキサンや金属酸化物微粒子のバインダーとして、塗膜の製膜性や物理的特性の向上のために含有させることが好ましい。活性線硬化樹脂としては、紫外線や電子線のような活性線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができる。官能基としては(メタ)アクリロイルオキシ基等のような不飽和二重結合を有する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を2個以上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることができる。必要に応じて光重合開始剤を組み合わせてもよい。このような活性線硬化樹脂としては、ポリオールアクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートもしくはそれらの混合物が用いられる。例えば多官能アクリレート化合物等が挙げられ、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる化合物であることが好ましい。ここで、多官能アクリレート化合物とは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
【0258】
多官能アクリレート化合物のモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートが好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
【0259】
活性線硬化樹脂の添加量は、高屈折率組成物では固形分中の15質量%以上50質量%未満であることが好ましい。
【0260】
本発明に係る活性線硬化樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを質量比で3:7〜1:9含有することが好ましい。
【0261】
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
【0262】
本発明に用いられる高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
【0263】
〔導電性層〕
導電性層はフィルム基材上に設けることができ、例えばフィルム基材と前記ハードコート層との間、ハードコート層と反射防止層との間、または該反射防止層が設けられた側とは反対の面のフィルム基材上に塗設することができる。
【0264】
更に該導電性層はかご状シルセスキオキサンを含有することが好ましい。
【0265】
導電性層は、支持体(樹脂フィルム等)の取扱の際に、光学フィルムが帯電するのを防ぐ機能を付与するものであり、具体的には、イオン導電性物質や導電性微粒子を含有する層を設けることによって行う。ここでイオン導電性物質とは電気伝導性を示し、電気を運ぶ担体であるイオンを含有する物質のことであるが、例としてはイオン性高分子化合物を挙げることができる。
【0266】
本発明に用いられる導電性層の表面比抵抗は1011Ω/□(25℃、55%RH)以下に調整されることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、109Ω/□(25℃、55%RH)以下である。
【0267】
ここで、表面比抵抗値の測定の詳細は実施例に記載するが、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。
【0268】
また、本発明に用いられる導電性層上には、更にオーバーコート層を最表面層として設けるが、表面比抵抗値の測定は、導電性層が設けられている側の最表面層における表面比抵抗値を実質的に導電性層の表面比抵抗値として定義する。
【0269】
本発明に用いられる導電性層の表面比抵抗値を上記記載の範囲に調整するためには、下記に示すような導電性材料が好ましく用いられる。
【0270】
本発明に用いられる導電性材料としては、イオン性高分子化合物、金属酸化物等が好ましく用いられる。
【0271】
イオン性高分子化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物;特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基をもつアイオネン型ポリマー;特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853、同62−9346にみられるような、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;等を挙げることができる。
【0272】
特に好ましいイオン性高分子化合物としては、下記一般式〔P〕及び〔Pa〕、〔Pb〕の構造のユニットを有するポリマーが挙げられる。
【0273】
【化22】

【0274】
【化23】

【0275】
式中R3、R4、R5、R6は炭素数1〜4の置換或いは未置換のアルキル基を表し、R3とR4及び/またはR5とR6が結合してピペラジンなどの含窒素複素環を形成してもよい。A、B及びDはそれぞれ炭素数2〜10の置換或いは未置換のアルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、−R7COR8−、−R9COOR10OCOR11−、−R12OCR13COOR14−、−R15−(OR16m−、−R17CONHR18NHCOR19−、−R20OCONHR21NHCOR22−または−R25NHCONHR24NHCONHR25−を表す。R7、R8、R9、R11、R12、R14、R15、R16、R17、R19、R20、R22、R23及びR25はアルキレン基、R10、R13、R18、R21及びR24はそれぞれ置換または未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、アルキレンアリーレン基から選ばれる連結基、mは1〜4の正の整数を表し、X-はアニオンを表す。
【0276】
但し、Aがアルキレン基、ヒドロキシアルキレン基或いは、アリーレンアルキレン基である時には、Bがアルキレン基、ヒドロキシルアルキレン基或いはアリーレンアルキレン基ではないことが好ましい。
【0277】
Eは単なる結合手、−NHCOR26CONH−またはDから選ばれる基を表す。R26は置換或いは未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、またはアルキレンアリーレン基を表す。
【0278】
1、Z2は−N=C−基は共に5員または6員環を形成するのに必要な非金属原子群(≡N+[X-]−なる4級塩の形でEに連結してもよい)を表す。
【0279】
nは5〜300の整数を表す。
【0280】
中でも、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく、ダイオキシンの発生防止等環境安全性の観点から、塩素イオンを含まず、かつ、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく用いられる。
【0281】
以下に、本発明に用いられるイオン性高分子化合物の具体例を挙げるが本発明はこれらに限定されない。
【0282】
【化24】

【0283】
【化25】

【0284】
【化26】

【0285】
【化27】

【0286】
【化28】

【0287】
【化29】

【0288】
【化30】

【0289】
本発明に用いられるイオン性高分子化合物は、これを単独で用いてもよいし、或いは数種類のイオン性高分子化合物を組み合わせて使用してもよい。本発明に用いられるイオン性高分子化合物の樹脂フィルム中の含有量は、0.02g〜1.0g/m2が好ましく、特に好ましくは、0.02g〜0.5g/m2である。
【0290】
また、導電性材料としては、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が107Ω・cm以下であるような導電性材料が好ましく用いられる。
【0291】
前記導電性材料としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。
【0292】
金属酸化物の例としては、ZnO、TiO2、SnO2、Al23、In23、SiO2、MgO、BaO、MoO2、V25等、或いはこれらの複合酸化物が好ましく、特にZnO、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiO2に対してはNb、Ta等の添加、またSnO2に対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。
【0293】
また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は107Ω・cm以下、特に105Ω・cm以下である。
【0294】
更に、本発明においては、導電性層中に微粒子を添加してもよく、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウム等を構成成分として含有する微粒子を挙げることができる。
【0295】
上記記載の微粒子の平均粒径は、0.01μm〜10μmが好ましく、より好ましくは0.01μm〜5μm、また添加量は、塗布剤中の固形分に対して質量比で0.05部〜10部が好ましく、特に好ましいのは0.1部〜5部である。
【0296】
また、本発明に用いられる導電性層が十分な帯電防止効果を示し、かつ、オーバーコート層との易接着性を保持するためには、セルロースエステル系樹脂またはアクリル系樹脂を含有することが好ましい。
【0297】
セルロースエステル系樹脂としては、例えばセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、またはセルロースナイトレート等のセルロース誘導体が挙げられる。
【0298】
また、アクリル系樹脂としては、例えば、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが好ましく用いられる。
【0299】
ここで使用する樹脂は、導電性層で使用している樹脂全体の60質量%以上、更に好ましくは80質量%以上であることが好ましく、必要に応じて活性線硬化樹脂或いは熱硬化樹脂を添加することもできる。これらの樹脂はバインダーとして下記のような溶剤に溶解した状態で塗設される。
【0300】
導電性層を塗設するための塗布組成物には、次の溶剤が好ましく用いられる。溶剤としては、炭化水素、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒(メチレンクロライド)を適宜混合して使用することができるが特にこれらに限定されるものではない。
【0301】
上記炭化水素類としては、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブタノール、2−ブタノール、tert−ブタノール、ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(C1〜C4)類としては、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステル類としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、その他の溶媒としてメチレンクロライド、N−メチルピロリドンなどが挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。
【0302】
導電性層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。
【0303】
〔バックコート層〕
本発明の光学フィルムは、ハードコート層を設けた側と反対側の面にバックコート層を設けることが好ましい。バックコート層は、ハードコート層やその他の層を設けることで生じるカールを矯正するために設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。なお、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加されることが好ましい。
【0304】
バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。
【0305】
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
【0306】
これらの中でもアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。本発明の光学フィルムは、活性線硬化樹脂層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。
【0307】
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%含有されることが好ましく、0.1〜10質量%であることがより好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく、0.5%以下であることがより好ましく、特に0.0〜0.1%であることが好ましい。
【0308】
バックコート層の塗布に用いられる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム、水、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノン、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、または炭化水素類(トルエン、キシレン)等があげられ、適宜組み合わされて用いられる。
【0309】
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて光学フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。
【0310】
バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体または共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ウレタン樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマー等が市販されており、この中から好ましいモノを適宜選択することもできる。例えば、バインダーとして用いられる樹脂としてはセルロースジアセテート、セルロースアセテートプロヒオネートなどのアセチル化セルロースとアクリル樹脂のブレンド物を用いることが好ましく、アクリル樹脂からなる微粒子を用いて、微粒子とバインダーとの屈折率差を0〜0.02未満とすることで透明性の高いバックコート層とすることができる。
【0311】
バックコート層を塗設する順番は本発明の光学フィルムの活性線硬化樹脂層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。または2回以上に分けてバックコート層を塗布することもできる。また、バックコート層は偏光子との接着性を改善するための易接着層を兼ねることも好ましい。
【0312】
(反射防止層の反射率)
前記反射防止層の反射率は分光光度計により測定を行うことができる。その際、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。反射率は低いほど好ましいが、可視光領域の波長における平均値が1.5%以下であることが好ましく、最低反射率は0.8%以下であることが好ましい。また、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。
【0313】
また、反射防止処理を施した表示装置表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、薄型テレビ等の最表面に使用する場合にはニュートラルな色調が好まれる。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。
【0314】
高屈折率層と低屈折率層の膜厚は、各々の層の屈折率より反射率、反射光の色味を考慮して常法に従って計算で求められる。
【0315】
(表面処理及び塗設)
本発明は各層を塗布する前に表面処理することが好ましい。表面処理方法としては、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられる。
【0316】
反射防止層の各層は、フィルム基材上に、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法を用いて、塗布により形成することができる。塗布に際しては、光学フィルムが、幅が1.4〜4mでロール状に巻き取られた状態から繰り出して、上記塗布を行い、乾燥・硬化処理した後、ロール状に巻き取られることが好ましい。
【0317】
更に、本発明の光学フィルムは、フィルム上に前記ハードコート層及び反射防止層を積層した後、ロール状に巻き取った状態で50〜160℃で加熱処理を行う製造方法によって製造されることが好ましい。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば、50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。通常は、巻外部、巻中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に設定することが好ましく、50〜60℃付近で7日間程度行うことが好ましい。
【0318】
《偏光板》
本発明の光学フィルムを用いた偏光板について述べる。
【0319】
偏光板は一般的な方法で作製することができる。本発明の光学フィルムの裏面側をアルカリ鹸化処理し、処理した光学フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に該光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の光学フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20〜70nm、Rtが100〜400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いることが好ましい。これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することができる。または、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。或いは、特開2003−12859号記載のリターデーションRoが590nmで0〜5nm、Rtが−20〜+20nmの無配向フィルムも好ましく用いられる。
【0320】
本発明の光学フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
【0321】
裏面側に用いられる偏光板保護フィルムとしては、市販のセルロースエステルフィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC4FR−1、KC4FR−2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が好ましく用いられる。
【0322】
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明の光学フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
【0323】
《表示装置》
本発明の光学フィルムを用いて作製した偏光板を表示装置に組み込むことによって、種々の視認性に優れた本発明の表示装置を作製することができる。
【0324】
本発明の光学フィルムは前記偏光板に組み込まれ、反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。
【0325】
また、本発明の光学フィルムは耐傷性、平面性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。
【0326】
本発明の光学フィルムを貼合した偏光板をVA型液晶ディスプレイであるシャープ製32型テレビAQ−32AD5の予め貼合されていた偏光板の替わりに用いたところ、優れた視認性を有し、かつ長期の湿度変動を伴う耐久試験においても表示品位の変化のない液晶ディスプレイであることが確認された。
【実施例】
【0327】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0328】
〈フィルム基材〉
フィルム基材は下記のものを使用した。
【0329】
KC8UX2MW(コニカミノルタオプト(株)製)
KC4UX2MW(コニカミノルタオプト(株)製)
KC4UY(コニカミノルタオプト(株)製)
KC8UY(コニカミノルタオプト(株)製)
KC4UE(コニカミノルタオプト(株)製)
KC4FR−2(コニカミノルタオプト(株)製)
KC8UXTW(コニカミノルタオプト(株)製)
フィルム基材A(溶融流涎フィルム)
フィルム基材B(高弾性率フィルム)
(フィルム基材A(溶融流涎フィルム)の作製方法)
セルロースアセテートプロピオネート 100質量部
(60℃で24時間真空乾燥済のアセチル基の置換度1.95、プロピオニル基の置換度0.7、数平均分子量75,000)
可塑剤
(1) トリフェニルホスフェート 10質量部
(2) エチルフタリルエチルグリコレート 2質量部
紫外線吸収剤
(1) チヌビン109(チバスペシャルティケミカルズ(株)製) 0.5質量部
(2) チヌビン171(チバスペシャルティケミカルズ(株)製) 0.5質量部
(3) チヌビン326(チバスペシャルティケミカルズ(株)製) 0.3質量部
酸化防止剤 各々0.01質量部
(1) 2,6−ジ−t−ブチル−p−クレゾール
(2) ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕
上記材料の混合物を、2軸式押出し機を用いて230℃で溶融混合し、ペレット化した。このペレットを用いて、Tダイから溶融物をフィルム状に冷却ドラム上に、溶融温度250℃で溶融押し出しし、冷却固化させて未延伸セルロースアセテートプロピオネート樹脂フィルム(ウェブ)を得た。
【0330】
(フィルム基材B(高弾性率フィルム)の作製方法)
〈セルロースエステルフィルム〉
(二酸化珪素分散液A)
アエロジル972V(日本アエロジル(株)製) 12質量部
(一次粒子の平均径16nm、見掛け比重90g/リットル)
エタノール 88質量部
以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は200ppmであった。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液Aを作製した。
【0331】
(インライン添加液Aの作製)
チヌビン109(チバスペシャルティケミカルズ(株)製) 11質量部
チヌビン171(チバスペシャルティケミカルズ(株)製) 5質量部
メチレンクロライド 100質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
【0332】
これに二酸化珪素分散希釈液Aを36質量部、撹拌しながら加えて、更に30分間撹拌した後、セルロースアセテートプロピオネート(アセチル基置換度1.9、プロピオニル基置換度0.8)6質量部を撹拌しながら加えて、更に60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW−PPS−1Nで濾過し、インライン添加液Aを調製した。
【0333】
(ドープ液Aの調製)
セルロースエステル(リンター綿から合成されたセルローストリアセテート)
100質量部
(Mn=148000、Mw=310000、Mw/Mn=2.1、アセチル基置換度2.92)
トリメチロールプロパントリベンゾエート 5.0質量部
エチルフタリルエチルグリコレート 5.5質量部
メチレンクロライド 440質量部
エタノール 40質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液Aを調製した。
【0334】
製膜ライン中で日本精線(株)製のファインメットNFでドープ液Aを濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液Aを濾過した。濾過したドープ液Aを100質量部に対し、濾過したインライン添加液Aを2質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi−Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、2000mm幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が120%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。その後、温度165℃で、テンターでTD方向(フィルムの搬送方向と直交する方向)に1.2倍に延伸しながら、MD方向(フィルムの搬送方向と平行方向)に1.1倍延伸を行った。このときの残留溶剤量は2%であった。
【0335】
その後、110℃及び120℃の乾燥ゾーンを多数のロールで順次搬送させながら乾燥を終了させ、1500mm幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、巻き取り初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、セルロースエステルフィルムを得た。セルロースエステルフィルムの残留溶剤量は0.1%未満であり、平均膜厚は80μm、巻長さは4000mであった。このときのフィルムの弾性率は、MD方向4000(MPa)、TD方向3700(MPa)であった。
【0336】
実施例1
〈光学フィルム1〜33の作製〉
〔ハードコートフィルムの作製〕
膜厚40、80μm、屈折率1.49、巻き長2500mのセルローストリアセテート(TAC)フィルムに、下記のハードコート層塗布液を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液1を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を100mJ/cm2として塗布層を硬化させ、膜厚6μmのハードコート層を形成し、表1、2、3記載のハードコート層付き光学フィルム(ハードコートフィルム)を作製した。
【0337】
更にバックコート層組成物をウェット膜厚14μmとなるように押し出しコーターで塗布し、85℃にて乾燥し巻き取り、バックコート層を設けた。
【0338】
〈光学フィルム34〜43の作製〉
〔導電性層の作製〕
表1、2、3記載のハードコートフィルム上に、下記導電性層塗布液を押し出しコーターで塗布し、80℃で1分間乾燥させ、次いで紫外線を0.1J/cm2照射して硬化させ、更に100℃で1分熱硬化させ、厚さが50nmの導電性層を設けた。
【0339】
〈光学フィルム44〜62の作製〉
〔低屈折率層の作製〕
前記導電性層上に、下記の低屈折率層塗布組成物を押し出しコーターで塗布し、100℃で1分間乾燥させた後、紫外線を0.1J/cm2照射して硬化させ、更に120℃で5分間熱硬化させ、厚さ80nmとなるように低屈折率層を設けた。
【0340】
〈光学フィルム63〜72の作製〉
〔低屈折率層の作製〕
表1、2、3記載のハードコートフィルム上に下記の低屈折率層塗布組成物を押し出しコーターで塗布し、100℃で1分間乾燥させた後、紫外線を0.1J/cm2照射して硬化させ、更に120℃で5分間熱硬化させ、厚さ80nmとなるように低屈折率層を設けた。
【0341】
《ハードコート(HC)層》
以下、かご状シルセスキオキサンを含まないものを「a」、含むものを「b」とした。
【0342】
(ハードコート層塗布液1a(HC1a))
下記材料を攪拌、混合しハードコート層塗布液1a(HC1a)とした。
【0343】
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 200質量部
重合開始剤(IRGACURE184)(チバスペシャルティケミカルズ(株)製)
20質量部
プロピレングリコールモノメチルエーテル 110質量部
酢酸エチル 110質量部
(ハードコート層塗布液1b(HC1b))
下記材料を攪拌、混合しハードコート層塗布液1b(HC1b)とした。
【0344】
アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 200質量部
重合開始剤(IRGACURE184)(チバスペシャルティケミカルズ(株)製)
20質量部
プロピレングリコールモノメチルエーテル 110質量部
酢酸エチル 110質量部
表1、2、3記載の例示かご状シルセスキオキサン 20質量部
(ハードコート層塗布液2a(HC2a))
下記ハードコート層用組成物の成分を十分混合した後、ハードコート層塗布液2a(HC2a)を調製した。
【0345】
9,9−ビス(4−(2−アクリロイルオキシエトキシ)フェニル)フルオレン
5質量部
(新中村化学社製;NKエステルA−BPEF)
ジペンタエリスリトールヘキサアクリレート(DPHA、6官能) 3質量部
ペンタエリスリトールトリアクリレート(PETA、3官能) 2質量部
重合開始剤(IRGACURE184)(チバスペシャルティケミカルズ(株)製)
0.3質量部
重合開始剤(DAROCUR TPO)(チバスペシャルティケミカルズ(株)製)
0.3質量部
メチルエチルケトン 10質量部
(ハードコート層塗布液2b(HC2b))
下記の成分を十分混合した後、ハードコート層塗布液2b(HC2b)を調製した。
【0346】
9,9−ビス(4−(2−アクリロイルオキシエトキシ)フェニル)フルオレン
5質量部
(新中村化学社製;NKエステルA−BPEF)
ジペンタエリスリトールヘキサアクリレート(DPHA、6官能) 3質量部
ペンタエリスリトールトリアクリレート(PETA、3官能) 2質量部
重合開始剤(IRGACURE184)(チバスペシャルティケミカルズ(株)製)
0.3質量部
重合開始剤(DAROCUR TPO)(チバスペシャルティケミカルズ(株)製)
0.3質量部
メチルエチルケトン 10質量部
表1、2、3記載の例示かご状シルセスキオキサン 0.5質量部
(ハードコート層塗布液3a(HC3a))
下記材料を攪拌、混合しハードコート層塗布液3a(HC3a)とした。
【0347】
ジペンタエリスルトールヘキサアクリレート 20質量部
ジペンタエリスルトールペンタアクリレート 10質量部
ペンタエリスルトールテトラアクリレート 20質量部
重合開始剤(IRGACURE184)(チバスペシャルティケミカルズ(株)製)
5質量部
酢酸メチル 50質量部
(ハードコート塗布液3b(HC3b))
下記材料を攪拌、混合しハードコート層塗布液3b(HC3b)とした。
【0348】
ジペンタエリスルトールヘキサアクリレート 20質量部
ジペンタエリスルトールペンタアクリレート 10質量部
ペンタエリスルトールテトラアクリレート 20質量部
重合開始剤(IRGACURE184)(チバスペシャルティケミカルズ(株)製)
5質量部
酢酸メチル 50質量部
表1、2、3記載の例示かご状シルセスキオキサン 10質量部
《バックコート層》
〈バックコート層の形成〉
(バックコート層用塗布組成物)
アセトン 30質量部
酢酸エチル 45質量部
イソプロピルアルコール 10質量部
ジアセチルセルロース 0.6質量部
超微粒子シリカ2%アセトン分散液 0.2質量部
(日本アエロジル株式会社製アエロジル200V)
《導電性(ANS)層》
(導電性層塗布液1a(ANS1a))
下記材料を攪拌、混合し導電性層塗布液1a(ANS1a)とした。
【0349】
アンチモン酸亜鉛ゾル(CX−Z610M−F2、日産化学工業(株)製)
55質量部
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
(導電性層塗布液1b(ANS1b))
下記材料を攪拌、混合し導電性層塗布液1b(ANS1b)とした。
【0350】
アンチモン酸亜鉛ゾル(CX−Z610M−F2、日産化学工業(株)製)
55質量部
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
表1、2、3記載の例示かご状シルセスキオキサン 5質量部
(導電性層塗布液2a(ANS2a))
下記材料を攪拌、混合し導電性層塗布液2a(ANS2a)とした。
【0351】
導電性酸化スズ(三菱マテリアル製のS−2000) 55質量部
(下記使用溶媒にて希釈・分散して添加した。)
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
(導電性層塗布液2b(ANS2b))
下記材料を攪拌、混合し導電性層塗布液2b(ANS2b)とした。
【0352】
導電性酸化スズ(三菱マテリアル製のS−2000) 55質量部
(下記使用溶媒にて希釈・分散して添加した。)
電離放射線硬化型樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
表1、2、3記載の例示かご状シルセスキオキサン 5質量部
(導電性層塗布液3a(ANS3a))
下記材料を攪拌、混合し導電性層塗布液3a(ANS3a)とした。
【0353】
導電性酸化チタン(石原産業FTシリーズ) 55質量部
(下記使用溶媒にて希釈・分散して添加した。)
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
(導電性層塗布液3b(ANS3b))
下記材料を攪拌、混合し導電性層塗布液3b(ANS3b)とした。
【0354】
導電性酸化チタン(石原産業FTシリーズ) 55質量部
(下記使用溶媒にて希釈・分散して添加した。)
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
表1、2、3記載の例示かご状シルセスキオキサン 5質量部
(導電性層塗布液4a(ANS4a))
下記材料を攪拌、混合し導電性層塗布液4a(ANS4a)とした。
【0355】
American Dye Source, Inc.社製の自己ドープ型ポリチオフェン(商品名:ADS2010P、粉状の固体) 55質量部
(下記使用溶媒にて希釈して添加した。)
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
(導電性層塗布液4b(ANS4b))
下記材料を攪拌、混合し導電性層塗布液4b(ANS4b)とした。
【0356】
American Dye Source, Inc.社製の自己ドープ型ポリチオフェン(商品名:ADS2010P、粉状の固体) 55質量部
(下記使用溶媒にて希釈して添加した。)
活性線硬化樹脂:ジペンタエリスリトールヘキサアクリレート 9質量部
光重合開始剤:イルガキュア907(チバスペシャルティケミカルズ(株)製)
2質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 250質量部
イソプロピルアルコール 500質量部
メチルエチルケトン 80質量部
表1、2、3記載の例示かご状シルセスキオキサン 5質量部
《低屈折率層》
(低屈折率層塗布液1a(低1a))
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン289gとエタノール553gを混和し、これに1.6%酢酸水溶液157gを添加し、25℃のウォーターバス中で30時間攪拌することで加水分解物Aを調製した。
【0357】
下記材料を攪拌、混合し低屈折率層塗布液1a(低1a)とした。
【0358】
テトラエトキシシラン加水分解物A 102質量部
中空シリカ系微粒子分散液(下記P−1) 26質量部
KBM503(シランカップリング剤、信越化学(株)製) 4質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 2質量部
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
〈中空シリカ系微粒子P−1の調製〉
平均粒径5nm、SiO2濃度20質量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として0.98質量%のケイ酸ナトリウム水溶液9000gとAl23として1.02質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al23核粒子分散液を調製した。(工程(a))
この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2濃度3.5質量%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。(工程(b))
次いで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、更に濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO2・Al23多孔質粒子の分散液を調製した(工程(c))。上記多孔質粒子分散液1500gと、純水500g、エタノール1,750g及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO228質量%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。次いで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ系微粒子の分散液(P−1)を調製した。
【0359】
(低屈折率層塗布液1b(低1b))
下記材料を攪拌、混合し低屈折率層塗布液1b(低1b)とした。
【0360】
テトラエトキシシラン加水分解物A 102質量部
中空シリカ系微粒子分散液(上記P−1) 26質量部
KBM503(シランカップリング剤、信越化学(株)製) 4質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 2質量部
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
表1、2、3記載の例示かご状シルセスキオキサン 2質量部
(低屈折率層塗布液2a(低2a))
下記材料を攪拌、混合し低屈折率層塗布液2a(低2a)とした。
【0361】
テトラエトキシシラン加水分解物A 102質量部
コロイダルシリカIPA−ST(固形分30%)(日産化学) 17.3質量部
KBM503(シランカップリング剤、信越化学(株)製) 4質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 2質量部
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
(低屈折率層塗布液2b(低2b))
下記材料を攪拌、混合し低屈折率層塗布液2b(低2b)とした。
【0362】
テトラエトキシシラン加水分解物A 102質量部
コロイダルシリカIPA−ST(固形分30%)(日産化学) 17.3質量部
KBM503(シランカップリング剤、信越化学(株)製) 4質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 2質量部
プロピレングリコールモノメチルエーテル 430質量部
イソプロピルアルコール 430質量部
表1、2、3記載の例示かご状シルセスキオキサン 2質量部
(低屈折率層塗布液3a(低3a))
下記材料を攪拌、混合し低屈折率層塗布液3a(低3a)とした。
【0363】
アクリル基を含有するパーフルオロ系重合体(デュポン社製開発品) 50質量部
ELCOM V−8209(触媒化学工業(株)製のイソプロピルアルコール分散中空シリカ系微粒子、固型分20%) 20質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 2質量部
イソプロピルアルコール 500質量部
プロピレングリコールモノメチルエーテル 500質量部
(低屈折率層塗布液3b(低3b))
下記材料を攪拌、混合し低屈折率層塗布液3b(低3b)とした。
【0364】
アクリル基を含有するパーフルオロ系重合体(デュポン社製開発品) 50質量部
ELCOM V−8209(触媒化学工業(株)製のイソプロピルアルコール分散中空シリカ系微粒子、固型分20%) 20質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 2質量部
表1、2、3記載の例示かご状シルセスキオキサン 5質量部
イソプロピルアルコール 500質量部
プロピレングリコールモノメチルエーテル 500質量部
(低屈折率層塗布液4a(低4a))
下記材料を攪拌、混合し低屈折率層塗布液4a(低4a)とした。
【0365】
プロピレングリコールモノメチルエーテル 431質量部
イソプロピルアルコール 431質量部
酢酸 2.89質量部
加水分解物A(固型分11.2%換算) 130質量部
アルミニウムエチルアセトアセテート・ジイソプロピレート(川研ファインケミカル社製ALCH)のイソプロピルアルコール希釈液(固型分10%) 2.25質量部
FZ−2207(10%プロピレングリコールモノメチルエーテル溶液、東レ・ダウコーニング社製) 2.40質量部
〈加水分解物Aの調製〉
テトラエトキシシラン97.3g(商品名:KBE04、信越化学工業社製)とエタノール186gを混合し、これに1.64%酢酸水溶液52.9gを添加した後に、室温(25℃)にて20時間攪拌した所で、ELCOM V−8209(触媒化学工業(株)製のイソプロピルアルコール分散中空シリカ系微粒子、固型分20%)116g、γ−メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業社製)4.80g、を添加し、0.975%酢酸水溶液43.4gをこの順に添加し、更に2時間攪拌して加水分解物Aを調製した。
【0366】
(低屈折率層塗布液4b(低4b))
下記材料を攪拌、混合し低屈折率層塗布液4b(低4b)とした。
【0367】
プロピレングリコールモノメチルエーテル 431質量部
イソプロピルアルコール 431質量部
酢酸 2.89質量部
表1、2、3記載の例示かご状シルセスキオキサン 40質量部
加水分解物A(固型分11.2%換算) 130質量部
アルミニウムエチルアセトアセテート・ジイソプロピレート(川研ファインケミカル社製ALCH)のイソプロピルアルコール希釈液(固型分10%) 2.25質量部
FZ−2207(10%プロピレングリコールモノメチルエーテル溶液、東レ・ダウコーニング社製) 2.40質量部
《評価》
上記作製した光学フィルム1〜72の鉛筆硬度を下記方法により測定した。
【0368】
(鉛筆硬度)
JIS K 5400に準拠した鉛筆硬度試験を行った。但し、荷重は500gとして実施した。
【0369】
光学フィルムの層構成詳細、及び評価結果を下記表1、2、3に示す。
【0370】
【表1】

【0371】
【表2】

【0372】
【表3】

【0373】
上表から、本発明の光学フィルム1〜27、32〜41、44〜59、63〜68は、かご状シルセスキオキサンを含有しない比較例の光学フィルムに対し、鉛筆硬度が向上していることが分かる。
【0374】
実施例2
次いで、実施例1で作製した光学フィルム1〜72を用いて偏光板を作製した。
【0375】
a)偏光膜の作製
厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光膜を得た。
【0376】
b)偏光板の作製
下記工程1〜5に従って偏光膜と上記光学フィルム1〜72、裏面側のセルロースエステルフィルムとしてKC8UCR−5(コニカミノルタオプト(株)製)を貼り合わせて偏光板を作製した。裏面側の偏光板保護フィルムは位相差を有するセルロースエステルフィルムであり、リターデーション値はRo=43nm、Rt=132nmであった。
【0377】
工程1:50℃の1モル/Lの水酸化ナトリウム溶液に60秒間浸漬し、次いで水洗し乾燥して、偏光膜と貼合する側を鹸化した光学フィルム、セルロースエステルフィルムを得た。
【0378】
工程2:前記偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒浸漬した。
【0379】
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した光学フィルム、セルロースエステルフィルムの上にのせて、更に反射防止層が外側になるように積層し、配置した。
【0380】
工程4:工程3で積層した光学フィルムと偏光膜とセルロースエステルフィルム試料を圧力20〜30N/cm2、搬送スピードは約2m/分で貼合した。
【0381】
工程5:80℃の乾燥機中に工程4で作製した偏光膜と、光学フィルム及びセルロースエステルフィルムとを貼り合わせた試料を2分間乾燥し、偏光板1〜72を作製した。
【0382】
《液晶表示装置の作製》
液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
【0383】
市販の32型液晶テレビ(MVA型セル)の予め貼合されていた表面の偏光板を剥がして、上記作製した偏光板1〜72をそれぞれ液晶セルのガラス面に貼合した。
【0384】
その際、その偏光板の貼合の向きは、位相差を有するセルロースエステルフィルムの面が、液晶セル側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置1〜72を各々作製した。
【0385】
《評価》
得られた液晶表示装置1〜72を用いて、加工の際の傷の付き難さ、帯電によるゴミ等の付着、色むら等の視認性を各々目視にて評価した。その結果、本発明の光学フィルムを用いた偏光板/液晶表示装置1〜27、32〜41、44〜59、63〜68は、表面に傷が付きにくく、色むら等の視認性に優れることが分かった。特に導電性層を設けた偏光板/液晶表示装置34〜37、51〜56、59は帯電によるゴミ等の付着もなく加工性が非常に良好であった。

【特許請求の範囲】
【請求項1】
フィルム基材上に機能性層として少なくともハードコート層を有する光学フィルムにおいて、該機能性層の少なくともいずれかの層にかご状シルセスキオキサンを含有してなることを特徴とする光学フィルム。
【請求項2】
前記ハードコート層がかご状シルセスキオキサンを含有することを特徴とする請求項1に記載の光学フィルム。
【請求項3】
前記ハードコート層上に、直接または他の層を介して低屈折率層が積層されてなることを特徴とする請求項1または2に記載の光学フィルム。
【請求項4】
前記低屈折率層が、少なくともかご状シルセスキオキサンとシリカ系微粒子とを含有することを特徴とする請求項3に記載の光学フィルム。
【請求項5】
導電性層を有し、該導電性層中にかご状シルセスキオキサンを含有することを特徴とする請求項1〜4のいずれか1項に記載の光学フィルム。
【請求項6】
請求項1〜5のいずれか1項に記載の光学フィルムを少なくとも一方の面に有することを特徴とする偏光板。
【請求項7】
請求項1〜5のいずれか1項に記載の光学フィルム、または請求項6に記載の偏光板を有することを特徴とする表示装置。

【公開番号】特開2009−42351(P2009−42351A)
【公開日】平成21年2月26日(2009.2.26)
【国際特許分類】
【出願番号】特願2007−205222(P2007−205222)
【出願日】平成19年8月7日(2007.8.7)
【出願人】(303000408)コニカミノルタオプト株式会社 (3,255)
【Fターム(参考)】