説明

光計測装置及び計測システム

【課題】様々な計測対象物質に対して高い分解能でレーザ誘起ブレイクダウン分光法による計測を行うことができ、さらに、小型で可搬性に優れ、簡便かつ安全に計測を行うことができる光計測装置及び計測システムを提供する。
【解決手段】光計測装置106は、物点102及び像点の一方から光が入射されたときにこの光を他方で集光させる光学素子114と、物点におけるエネルギ密度が物点102に存在する計測対象物質のブレイクダウン閾値以上となる光を光学素子114に入射させ光学素子114を介してこの光を物点102に集光させるレーザ光源120及び第1の光ファイバ112と、光学素子114により該光学素子114の像点側で集光された光を分光測定し該分光測定の結果を信号として出力する第2の光ファイバ116及び分光測定部118とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分光分析を行うための光計測装置及び計測システムに関し、特に、レーザ誘起ブレイクダウン分光法(Laser-Induced Breakdown Spectroscopy:LIBS)による分光分析を行うための光計測装置及び計測システムに関する。
【背景技術】
【0002】
従来、物質の組成等について情報を得るための手法として、特許文献1に記載されているように、レーザ誘起ブレイクダウン分光法(Laser-Induced Breakdown Spectroscopy:以下「LIBS」という。)が知られている。LIBSは、計測対象物質に対してレーザ光を集光させて照射し、集光位置において計測対象物質にレーザ誘起ブレイクダウンを起こさせてプラズマ化させ、発生したプラズマから生じる光を検出し分光することによって、計測対象物質についての種々の情報を得るものである。
【0003】
この手法は、主として固体表面の成分分析等に用いられてきた。例えば、火星表面の成分分析や、ボブスレー競技会において、ボブスレーエッジの表面塗料について規定違反の有無の判別検査などに利用されている。
【0004】
【特許文献1】特開2004−226252号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、計測対象物質にレーザ誘起ブレイクダウンを起こさせるためには、計測対象物質にブレイクダウン閾値以上の高いエネルギ密度の光を照射する必要がある。したがって、従来、LIBSによる計測においては、光源として高出力のガスレーザが使用されてきた。そのためLIBSによる計測を実行するための計測装置は、装置全体が大掛かりなものとなっており、可搬性に欠けていた。
【0006】
また、このような計測装置においては、レーザ光源の出力があまりにも高すぎるため、可燃性のガス、液体、プラズマ、生体及びその組織、生体に由来するタンパク質、糖、核酸などを対象にすると、計測対象物質を変化させてしまって所望の計測が行えず、さらには計測対象物質を破損してしまう虞もある。また、レーザ光源の出力があまりに高いため、計測装置に用いる光学素子などの部品の損耗も激しかった。
【0007】
さらに、このような計測装置においては、高エネルギのレーザ光束によってレーザ誘起ブレイクダウンを起こさせるため、計測対象物質の広い範囲が長時間に亘ってブレイクダウンされてしまう事態が発生し、ごく局所的な計測範囲での計測が困難であった。すなわち、従来の計測装置においては、空間的にも時間的にも高分解能化することが困難であった。
【0008】
また、この計測装置は、レーザ光を計測対象物質に照射するための光学系と、プラズマから生じる光を集光するための光学系との2つの光学系を備えて構成されている。そのため、従来の計測装置においては、これら2つの光学系の相対位置を高精度に調整しなければならず、利便性に欠けていた。
【0009】
そこで、本発明は、前述の実情に鑑みて提案されるものであって、様々な計測対象物質に対して高い分解能でLIBSによる計測を行うことができ、さらに、小型で可搬性に優れ、簡便かつ安全に計測を行うことができる光計測装置及び計測システムを提供することを目的とする。
【課題を解決するための手段】
【0010】
前述の課題を解決し、前記目的を達成するため、本発明に係る計測装置は、以下のいずれか一の構成を有するものである。
【0011】
〔構成1〕
物点及び像点のいずれか一方からの光が入射されたときにこの光を他方において集光させる光学素子と、光学素子の像点からこの光学素子に光を入射させこの光学素子の物点に存在する計測対象物質のブレイクダウン閾値以上のエネルギ密度の光を該光学素子を介して該物点に集光させる光出射手段と、光学素子の像点に集光された光を分光測定しこの分光測定の結果を信号として出力する分光測定手段とを有することを特徴とするものである。
【0012】
〔構成2〕
構成1を有する光計測装置において、光出射手段は、光学素子の物点に存在する計測対象物質の最小着火エネルギ密度未満のエネルギ密度の光を該光学素子を介して該物点に集光させることを特徴とするものである。
【0013】
〔構成3〕
構成1を有する光計測装置において、分光測定手段からの分光測定の結果に基づいて光出射手段の出射光を制御する制御手段を有し、光出射手段は、光学素子の物点に存在する計測対象物質の最小着火エネルギ密度以上のエネルギ密度の光を該光学素子を介して該物点に集光させることを特徴とするものである。
【0014】
〔構成4〕
構成1乃至構成3のいずれか一を有する光計測装置において、光出射手段は、光学素子の像点を通る予め定められた光軸に沿って光を入射させることを特徴とするものである。
【0015】
〔構成5〕
構成1乃至構成3のいずれか一を有する光計測装置において、光出射手段は、複数の出射位置を有し、光学素子の複数の物点において出射光を集光させることを特徴とするものである。
【0016】
〔構成6〕
構成5を有する光計測装置において、分光測定手段は、複数の物点に対応する複数の像点から選択した複数の集光点における光のそれぞれを分光測定し、これら各分光測定の結果をそれぞれ信号として出力することを特徴とするものである。
【0017】
〔構成7〕
構成1乃至構成6のいずれか一を有する光計測装置において、光出射手段は、予め定められた回数だけ光学素子に光を入射させることを特徴とするものである。
【0018】
〔構成8〕
構成1乃至構成7のいずれか一を有する光計測装置において、分光測定手段は、逐次的に分光測定を行い、各分光測定の結果を時系列信号として出力することを特徴とするものである。
【0019】
〔構成9〕
構成1乃至構成8のいずれか一を有する光計測装置において、光学素子は、物点から入射した光を反射させて像点に集光させ、像点から入射した光を反射させて物点に集光させる反射光学素子であることを特徴とするものである。
【0020】
〔構成10〕
構成9を有する光計測装置において、反射光学素子は、物点側より順に第1面及び第2面を有して一体的に形成され、第1面及び第2面がそれぞれ第1領域と第2領域とを有し、第1面の第1領域が物点側に対する凹面の透過面となされ、第2面の第1領域が物点側に対する凹面反射面となされ、第1面の第2領域が反射面となされ、第2面の第2領域が透過面となされ、物点から入射した光を第2面の第1領域及び第1面の第2領域において反射して像点に集光させ、像点から入射した光を第1面の第2領域及び第2面の第1領域において反射して物点に集光させることを特徴とするものである。
【0021】
〔構成11〕
構成1乃至構成10のいずれか一を有する光計測装置において、光出射手段が光学素子に入射させる光は、レーザ光束であることを特徴とするものである。
【0022】
〔構成12〕
構成10を有する光計測装置において、光出射手段が光学素子に入射させる光は、TEM01モードのレーザ光束であることを特徴とするものである。
【0023】
〔構成13〕
構成1乃至構成8のいずれか一を有する光計測装置において、光学素子は、物点から入射した光を屈折させて像点に集光させ、像点から入射した光を屈折させて物点に集光させる屈折光学素子であることを特徴とするものである。
【0024】
〔構成14〕
構成13を有する光計測装置において、光出射手段が光学素子に入射させる光は、予め定められた波長成分の光であることを特徴とするものである。
【0025】
また、本発明に係る計測システムは、以下のいずれか一の構成を有するものである。
【0026】
〔構成15〕
構成1乃至構成14のいずれか一を有する光計測装置と、光計測装置の光計測装置から出力される信号に基づいて、計測対象物質に関する所定の情報を生成する信号処理手段とを有することを特徴とするものである。
【0027】
〔構成16〕
構成15を有する計測システムにおいて、信号処理手段は、分光測定手段による分光測定の結果におけるピーク検出を行い、検出したピークの所定の特徴量に基づいて、計測対象物質の所定の特徴に関する情報を生成することを特徴とするものである。
【0028】
〔構成17〕
構成16を有する計測システムにおいて、情報生成手段は、検出したピークの所定の特徴量として、検出したピークの高さ、スペクトル線幅、ラインシェイプ及びシフト量の少なくとも一の特徴量に基づいて、計測対象物質の所定の特徴に関する情報を生成することを特徴とするものである。
【0029】
〔構成18〕
構成16を有する計測システムにおいて、情報生成手段は、検出したピークの所定の特徴量として、検出したピークの所定の特徴に関する統計量に基づいて、計測対象物質の所定の特徴に関する情報を生成することを特徴とするものである。
【0030】
〔構成19〕
構成15乃至構成18のいずれか一を有する計測システムにおいて、情報生成手段は、計測対象物質に関する所定の情報として、計測対象物質の量に関する情報を生成することを特徴とするものである。
【0031】
〔構成20〕
構成15乃至構成18のいずれか一を有する計測システムにおいて、情報生成手段は、計測対象物質に関する所定の情報として、計測対象物質の濃度に関する情報を生成することを特徴とするものである。
【0032】
〔構成21〕
構成15乃至構成18のいずれか一を有する計測システムにおいて、情報生成手段は、計測対象物質に関する所定の情報として、計測対象物質の温度に関する情報を生成することを特徴とするものである。
【0033】
〔構成22〕
構成15乃至構成18のいずれか一を有する計測システムにおいて、情報生成手段は、計測対象物質に関する所定の情報として、計測対象物質の圧力に関する情報を生成することを特徴とするものである。
【0034】
〔構成23〕
構成15乃至構成18のいずれか一を有する計測システムにおいて、情報生成手段は、計測対象物質に関する所定の情報として、計測対象物質のプラズマ特性評価値を生成することを特徴とするものである。
【0035】
〔構成24〕
構成6を有する光計測装置と、光計測装置の分光測定手段から出力される複数の集光点における光の分光測定の結果に基づいて計測対象物質の位置と該計測対象物質の所定の特徴との関係に関する情報を生成する信号処理手段とを有することを特徴とするものである。
【0036】
〔構成25〕
構成8を有する光計測装置と、光計測装置から出力される時系列信号に基づいて時間経過と計測対象物質の所定の特徴との関係に関する情報を生成する信号処理手段とを有することを特徴とするものである。
【0037】
〔構成26〕
構成14を有する光計測装置と、光計測装置において光計測装置から出力される信号及び光出射手段が光学素子に入射させる光の波長特性に基づいて該計測対象物質に関する所定の情報を生成する信号処理手段とを有することを特徴とするものである。
【発明の効果】
【0038】
本発明に係る光計測装置においては、計測対象物質のブレイクダウンを生じさせる光の計測対象物質への集光と、ブレイクダウンにより生じたプラズマからの光の集光とが、一の光学素子によって行われる。そのため、2つの光学系を備えていた従来の計測装置に比較して小型化が可能であり、また、2つの光学系の相対位置を高精度に調整する必要がないため計測が容易であり、利便性が向上されている。
【0039】
本発明に係る光計測装置においては、ブレイクダウンが生じるまさにその位置について、その時刻にプラズマから生じた光を分光測定することが可能である。したがって、より高精度の計測が可能になる。
【0040】
本発明に係る光計測装置においては、計測対象物質のブレイクダウン閾値以上最小着火エネルギ密度未満となる光を光学素子により計測対象物質に集光させるので、計測対象物質を発火させることなくブレイクダウンを生じさせることができる。したがって、計測対象物質を発火させてしまって所望の計測目的を果せなくなること、または、計測対象物質を破損してしまうことを回避でき、安全かつ的確な計測が可能になる。
【0041】
また、本発明に係る光計測装置においては、光計測装置によって計測対象物質に化学的反応を生じさせたり、組成変化を生じさせたり、着火させたりすることも可能である。さらに、分光測定手段の出力信号に基づいて出射光を制御することにより、効率よく計測対象物質に化学反応、組成変化、または、着火を生じさせることが可能になる。
【0042】
本発明に係る光計測装置においては、計測対象物質の複数の位置でブレイクダウンを生じさせることができる。複数の位置でのブレイクダウンにより生じた光を光学素子によって集光させ、分光測定手段によって分光測定することにより、計測対象物質に関するより多くの情報を得ることが可能になる。
【0043】
本発明に係る光計測装置においては、計測対象物質に対し段階的にエネルギを与えたり、複数回連続でブレイクダウンを生じさせたりすることが可能になる。このようにしてブレイクダウンにより生じた光を光学素子によって集光させ、分光測定手段によって分光測定することにより、計測対象物質に関するより多くの情報を得ることが可能になる。
【0044】
本発明に係る光計測装置においては、光学素子が反射光学素子である場合において、反射によって集光を行う構成となっているため、色収差等、屈折光学系に特有の収差が発生せず、光出射手段が出射させる光をごく狭い領域に集光させ、その領域のみにブレイクダウンを生じさせることができる。したがって、空間的にも時間的にも高い分解能での計測が可能となる。加えて、低エネルギの光でブレイクダウンを生じさせることが可能となるため、光計測装置の小型化が可能になり可搬性が向上するだけでなく、計測の際の安全性を向上させることも可能になる。
【0045】
本発明に係る光計測装置においては、レーザ光束は、指向性、収束性に優れているため、また、波長を一定に保つことができるため、レーザ光束を光学素子に入射させ光学素子を介してこのレーザ光束を計測対象物点に集光させることにより、高効率で計測対象物質におけるブレイクダウンを生じさせることができる。
【0046】
本発明に係る光計測装置においては、光学素子が反射光学素子である場合において、TEM01モードのレーザ光束を光学素子に入射させることにより、光学素子の構造上光が物点に到達しうる光路に、レーザ光束のエネルギを集中させることができる。したがって、高効率にブレイクダウンを生じさせることが可能になる。
【0047】
本発明に係る光計測装置においては、光学素子が屈折光学素子である場合において、光学素子は、屈折によって集光を行う構成となっているため、色収差等、屈折光学系に特有の収差を利用したブレイクダウンの誘起、または、プラズマから生じた光の分光測定が可能になる。この場合においては、光出射手段が光学素子に入射させる光は、予め定められた波長成分の光であることが好ましい。
【0048】
本発明に係る光計測装置においては、屈折光学素子の収差を利用して、入射させた光の波長に応じて定められる所定の位置においてブレイクダウンを生じさせることができる。
【0049】
本発明に係る光計測装置においては、ブレイクダウンによって結像面上の複数の点に対し共役な複数の位置でプラズマから生じた光を分光測定することができる。
【0050】
本発明に係る光計測装置においては、最適なタイミングの測定結果を得ることが可能である。また、計測対象物質の時間変化についても情報を得ることが可能である。
【0051】
本発明に係る計測システムにおいては、計測対象物質への集光とプラズマから生じる光の集光とを一の光学素子によって行い、集光された光の分光測定の結果に基づいて、計測対象物質に関する情報を生成する構成となっている。そのため、2つの光学系を有する従来の計測装置を用いて計測を行うよりも可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に計測対象物質の所定の特徴に関する情報を得ることが可能である。
【0052】
本発明に係る計測システムにおいては、分光測定手段による分光測定の結果におけるピークの所定の特徴量に基づいて、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に計測対象物質の所定の特徴に関する情報を得ることが可能である。
【0053】
本発明に係る計測システムにおいては、ピークの高さ、スペクトル線幅、ラインシェイプ及びシフト量の少なくとも一の特徴量に基づいて、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に計測対象物質の所定の特徴に関する情報を得ることが可能である。
【0054】
本発明に係る計測システムにおいては、ピークの所定の特徴に関する統計量に基づいて、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に計測対象物質の所定の特徴に関する情報を得ることが可能である。
【0055】
本発明に係る計測システムにおいては、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に計測対象物質の量、濃度、温度、または、圧力に関する情報を得ることが可能である。
【0056】
本発明に係る計測システムにおいては、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に、計測対象物質のプラズマ特性評価値を得ることが可能である。
【0057】
本発明に係る計測システムにおいては、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に計測対象物質に関するより多くの情報を得ることが可能である。
【0058】
本発明に係る計測システムにおいては、屈折光学素子の収差を利用して、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に、入射させた光の波長に応じて定められる所定の位置における計測対象物質の所定の特徴に関する情報を得ることが可能である。
【0059】
本発明に係る計測システムにおいては、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に、複数の位置と計測対象物質の所定の特徴との関係に関する情報を得ることが可能である。
【0060】
本発明に係る計測システムにおいては、可搬性に優れ、空間的にも時間的にも高い分解能で簡便かつ安全に時間と計測対象物質の所定の特徴との関係に関する情報を得ることが可能である。
【発明を実施するための最良の形態】
【0061】
以下、本発明を実施するための最良の形態を図面を参照しながら説明する。
【0062】
なお、以下の説明に用いる図面では、同一の部品に同一の符号を付してある。それらの名称及び機能も同一である。したがって、同一の部品についての詳細な説明は繰返さないこととする。
【0063】
〔第1の実施形態〕
図1に、本発明の第1の実施形態に係る計測システムの概略構成を示す。この計測システム100は、図1に示すように、所定の計測位置102に存在する固体、液体、または、気体(以下、「計測対象物質」という。)に対し、LIBSによる分光測定を行う装置である。すなわち、計測位置102に存在する計測対象物質がプラズマ化して生じる光の強度に応じた電気信号104を出力する光計測装置106と、光計測装置106により出力された電気信号104に対し種々の信号処理を実行することにより計測位置102に存在するプラズマ等及び計測対象物質(以下、「計測対象」という。)の物理・化学状態等に関する解析を行いその解析結果108を出力する信号処理装置110とを有する。
【0064】
光計測装置106は、計測位置102に存在する計測対象物質にブレイクダウンを生じさせるレーザ光束を発生するレーザ光源120と、一端がレーザ光源120に接続され、該一端から入射されたレーザ光を他端より出射する第1の光ファイバ112と、第1の光ファイバ112の他端と計測位置102との間に配置され、第1の光ファイバ112から出射されたレーザを計測位置102に集光させるとともに、計測位置102で発したプラズマから生じる光を第1の光ファイバ112側の所定位置で集光させる光学素子114と、プラズマから生じた光の光学素子114による集光位置に一端が配置され、該一端に入射した光を他端より出射させる第2の光ファイバ116と、第2の光ファイバ116の他端に接続され、該他端から出射された光を分光し、分光された各成分の強度に応じた信号を電気信号104として出力する分光測定部118とを有する。レーザ光源120は、具体的にはNd−YAG(Neodymium-Yttrium Aluminum Garnet)レーザ光源である。
【0065】
図2に、本実施形態に係る光学素子114の断面図を示す。光学素子114は、図2に示すように、第1面130及び第2面132を有する一体的な光学素子である。これら第1面130及び第2面132間は、透光性のある一様な媒質となっている。媒質は、具体的にはいわゆる光学ガラス、または、合成石英等である。
【0066】
第1面130及び第2面132は、それぞれ外周側の第1領域130A、132Aと、中央部の第2領域130B、132Bとを有する。第1面130の第1領域130Aは、所定の点102Aを曲率中心とする球面の透過面となっている。第1面130の第2領域130Bには、金属材料等の反射材料(例えば、アルミニウム)からなる第1の反射膜134が被着形成されている。そのため、第1面130の第2領域130Bは、媒質側からの入射光の反射面となっている。さらに、反射膜134の計測位置102側には、計測対象から反射膜134を保護するための保護膜136が形成されている。第2面132の第1領域132Aには、第1の反射膜134のものと同様の反射材料からなる第2の反射膜138が被着形成されている。すなわち第2面132の第1領域132Aは、媒質側からの光の凹面反射面となっている。第2面132の第2領域132Bは、所定の点140を曲率中心とする球面の透過面となっている。以下、点102Aを「物点」といい、点140を「像点」という。
【0067】
像点140からの光は、第2面132の第2領域132Bに入射し、第2面132の第2領域132Bを透過する。この際、像点140からの光は、屈折されることがなく直進する。第2面132の第2領域132Bを透過した光は、第1面130と第2面132との間の媒質中を進行して、第1面130の第2領域130Bにおいて反射される。そして、第1面130の第2領域130Bにおいて反射された光は、第2面132の第1領域132Aにおいて反射され、第1面130の第1領域130Aを通して出射され、物点102Aに集光する。この際、物点102Aへ向かう光は、第1面130の第1領域130Aを透過するときには、屈折されることがなく、直進する。
【0068】
逆に、物点102Aからの光は、第1面130の第1領域130Aに入射し、第1面130と第2面132との間の媒質中を進行して、第2面132の第1領域132Aにおいて反射される。そして、第2面132の第1領域132Aにおいて反射された光は、第1面130の第2領域130Bにおいて反射され、第2面132の第2領域132Bを通して出射され、像点140に集光される。
【0069】
したがって、この光学素子114においては、物点102Aからの光及び像点140からの光のいずれに対しても、それらの光路に寄与する面が反射面のみであるため、色収差の発生がない。
【0070】
第1の光ファイバ112の出射端面112Aは、像点140の近傍に、第1面130の第2領域130Bに向けて配置される。そのため第1の光ファイバ112を介して出射されるレーザ光束は、光学素子114により、点102Bで集光される。また、第2の光ファイバ116の入射端面116Aもまた、像点140の近傍に、第1面130の第2領域130Bに向けて配置される。そのため点102Cで生じた光が、光学素子114により第2の光ファイバ116に集光される。
【0071】
したがって、図1に示すように、レーザ光源120がレーザ光束を出射すると、点102Bにある計測対象物質がブレイクダウンされ、プラズマ化することになる。この反応が生じた領域(以下、この領域を「反応帯」という。)が点102Cにまで到ると、点102Cにおいてプラズマから光が発生する。この光は第2の光ファイバ116の入射端面116Aにおいて集光され、第2の光ファイバ116に入射される。入射されたこの光は、第2の光ファイバ116を介して分光測定部118側の端面に入射されることになる。
【0072】
図3に、分光測定部118(図1参照)の構成を示す。分光測定部118は、図3に示すように、第2の光ファイバ116から出射される光の光軸上に配置され、第2の光ファイバ116から出射される光を平行光に変換するコリメータ150と、コリメータ150により平行光に変換された光の光軸上に配置された第1のミラー152と、プラズマから生じた光の第1のミラー152による反射光の光軸上に配置された第2のミラー154と、プラズマから生じた光の第2のミラー154による反射光の光軸上に配置され第2のミラー154により反射された前述の光を分光して出射する分光素子156と、分光素子156により分光されたスペクトル光の光路上に配置された第3のミラー158と、第3のミラー158により反射されたスペクトル光の光路上に配置され、入射されたスペクトル光を逐次的に光電変換し、その結果得られる時系列電気信号を前述の電気信号104として出力する受光素子160とを有する。
【0073】
分光素子156は、具体的には回折格子やプリズム等である。受光素子160は、具体的には、電荷結合素子(CCD)等がマトリクス状に多数配置された、いわゆるCCDイメージセンサ等である。ミラー152、154及び158は、プラズマから生じた光が入射されてから分光素子156により分光され受光素子160により受光されるまでの過程において光が輻輳しないよう、それぞれ入射光に対し所定の角度をなすよう配置される。
【0074】
分光素子156に到達した光は、分光素子156によりスペクトル光に分光されてミラー158を介して受光素子160に到達する。そのため、スペクトル光の各成分の受光素子160上での受光位置は、その波長により異なる。これに対し受光素子160は、各受光位置において受光した光を順次光電変換し、その時刻における受光位置と該受光位置での光の強度とを表す情報を含む電気信号104を出力する。したがって、受光素子160の出力する電気信号104は、プラズマから生じた光に含まれる各波長成分の各時刻における強度を表す情報を含むものとなる。
【0075】
〔信号処理装置110のコンピュータによる実現及びその動作〕
本実施形態の信号処理装置110の機能は、コンピュータハードウェアと、そのコンピュータハードウェアにより実行されるプログラムと、コンピュータハードウェアに格納されるデータとにより実現可能である。図4に、この信号処理装置110の機能を実現するコンピュータシステム180の構成を示す。
【0076】
このコンピュータシステム180は、図4に示すように、電気信号104の入力及び解析結果108の出力を受け持つインタフェース182を有するコンピュータ184と、コンピュータ184にそれぞれ接続されたキーボード等の入力装置198及びディスプレイ装置等の出力装置200とを有する。
【0077】
コンピュータ184は、インタフェース182に加えて、インタフェース182に接続されたバス186と、中央処理装置(CPU)188とを有する。コンピュータ184はさらに、ブートアッププログラム等を記憶する読出専用メモリ(ROM)190と、プログラム命令、システムプログラム及び作業データ等を記憶するランダムアクセスメモリ(RAM)192と、ハードディスク194と、リムーバブルメディアドライブ196とを有する。CPU188、ROM190、RAM192、ハードディスク194及びリムーバブルメディアドライブ196はいずれもバス186に接続される。ここでは示さないが、コンピュータ184はさらに、ローカルエリアネットワーク(LAN)への接続を提供するネットワークアダプタボードを有していてもよい。
【0078】
コンピュータシステム180を信号処理装置110として動作させるプログラムは、リムーバブルメディアドライブ196に挿入されるリムーバブルメディアに記憶されており、その記憶内容はハードディスク194に転送される。プログラムは図示しないネットワークを通じてコンピュータ184に送信されハードディスク194に記憶されてもよい。プログラムは実行の際にRAM192にロードされる。なお、プログラムはハードディスク194を経由することなく前述のリムーバブルメディア、または、ネットワークから、直接にRAM192にロードされてもよい。
【0079】
このプログラムは、コンピュータ184に信号処理装置110としての動作を実行させる複数の命令を含む。これら動作の実行命令に必要な基本的機能のいくつかは、コンピュータ184にインストールされコンピュータ184上で動作するオペレーティングシステム(OS)、サードパーティのプログラム、または、各種ツールキットのモジュールにより提供される。したがってこのプログラムは、必ずしも信号処理装置110の動作を実現するのに必要な機能全てを有していなくともよい。このプログラムは、命令のうち、所望の結果が得られるように制御された手法で適切な機能、ツール等を呼出すことにより、信号処理装置110の各機能を実現する命令のみを有していればよい。コンピュータ自体の動作は周知であるので、ここでは説明を繰返さない。
【0080】
〔信号処理装置110の機能的構成〕
図5に、信号処理装置110の機能的構成をブロック図形式で示す。信号処理装置110は、図5に示すように、電気信号104を受けてプラズマから生じた光の各時刻における各波長成分の強度を表す時系列データ(以下、「分光データ」という。)に変換する信号変換部220と、信号変換部220により生成された分光データを保持する分光データ記憶部222とを有する。
【0081】
信号処理装置110は、さらに、分光データ記憶部222に保持された分光データを波長方向及び時間方向にスキャンして、プラズマから生じた光の強度が急峻に立ち上がっている部分(以下、「ピーク」という。)を検出するピーク検出部224と、分光データをもとに、ピーク検出部224により検出されたピークの特徴量を抽出するピーク特徴量抽出部226と、ピーク特徴量抽出部226により抽出された各ピークの特徴量について統計処理を行って解析し、解析結果として、プラズマから生じた光の特徴を表す情報を生成するピーク特徴量解析部228とを有する。
【0082】
ピークの特徴量は、具体的にはピークの出現時刻、波長、ピークの高さすなわちピークの頂点の波長成分の強度(以下、「ピーク強度」という。)、スペクトル線幅、シフト量及びラインシェイプである。プラズマから生じた光の特徴を表す情報は、具体的には、ピークの特徴量及びピーク同士でのピークの特徴量の比、並びにそれらの平均、2乗平均、分散及び時間変動特性等である。
【0083】
信号処理装置110はさらに、プラズマから生じた光の特徴と計測対象の特徴との関係を表す較正情報を保持する較正情報記憶部230と、較正情報に基づき、ピーク特徴量解析部228による解析結果を、計測対象の特徴に関する情報(以下、「計測対象情報」という。)に変換して出力する解析結果変換部232と、解析結果変換部232により出力された計測対象情報を保持する計測対象情報記憶部234とを有する。計測対象の特徴は、例えば計測対象の質量、流量、濃度、圧力、温度及びプラズマ特性評価値等、並びにそれらの時間変動、並びに反応帯の厚さ及び反応の到達速度等である。較正情報は、プラズマから生じた光の前述した特徴と、前述した計測対象の特徴との関係を表す関数、相関曲線、または、対応表等である。
【0084】
信号処理装置110はさらに、計測対象情報の出力を命じる操作をユーザより受付けるユーザインタフェース238と、ユーザインタフェース238が受付けた操作に基づき、計測対象情報記憶部234に保持された計測対象情報を読出し出力する出力部236とを有する。
【0085】
〔動作〕
以下、本実施形態に係る計測システム100の動作例を説明する。図1に示すように、レーザ光源120が、レーザ光束を出射させる。このレーザ光束の出力は、光学素子114により集光されると物点におけるエネルギ密度が物点に存在する計測対象物質のブレイクダウン閾値以上となるよう予め調整されている。レーザ光源120により出射されたこのレーザ光束は、第1の光ファイバ112を介して図2に示す出射端面112Aから光学素子114に向けて出射される。出射端面112Aから出射されたレーザ光束は、図2に示すように、第2面132の第2領域132Bを通過し、第1面130の第2領域130B及び第2面132の第1領域132Aで反射され、第1面130の第1領域130Aを通過して点102Bに集光される。集光されたレーザ光束によって点102Bにおけるエネルギ密度が計測対象物質のブレイクダウン閾値以上になると、計測対象物質がブレイクダウンされ、プラズマ化する。なお、計測対象物質が可燃物、または、生体等の場合、点102Bにおけるレーザ光束のエネルギ密度が計測対象物質のブレイクダウン閾値以上、最小着火エネルギ未満になるようにレーザ光束の出力を調整しておけば、安全かつ的確に計測対象物質にブレイクダウンを生じさせることができる。
【0086】
このブレイクダウンの反応帯が点102Cにまで達すると、点102Cにおいてプラズマに起因する光が発生する。この光はレーザ光束と同様の経路を逆にたどりつつ、第2の光ファイバ116の入射端面116Aにおいて集光され、第2の光ファイバ116に入射される。
【0087】
入射された光は、図3に示すように、第2の光ファイバ116を介して、第2の光ファイバ116の分光測定部118側の端面より出射される。分光測定部118に入射された光は、コリメータ150により平行光に変換された後、第1のミラー152及び第2のミラー154により反射され、分光素子156に到達する。分光素子156に到達した光は、分光素子156によりスペクトル光に分光されてミラー158を介して受光素子160に到達する。受光素子160は、各受光位置において受光した光を順次光電変換し、その時刻における受光位置と該受光位置での光の強度とを表す情報に対応した電気信号104を出力する。電気信号104は、図4及び図5に示すように、信号処理装置110に与えられる。
【0088】
信号変換部220は、信号処理装置110が電気信号104を受けると、図5に示すように、電気信号104における受光位置の情報を光の波長の情報に、信号強度を光の強度の情報にそれぞれ順次変換して、分光データを生成する。信号変換部220は、この分光データを分光データ記憶部222に格納する。ピーク検出部224は、分光データ記憶部222に分光データが格納されたことに応答して、波長方向及び時間方向に該分光データをスキャンし、各時刻においてその時刻にピークが存在するか否かを判定する。ピーク検出部224は、分光データにこの判定の結果を付与して出力する。なお、LIBSにおいては、レーザ光束が出射されてブレイクダウンが生じた直後には計測対象のプラズマ特性等に対応するピークと無関係のピークが多数出現し、レーザが出射された時刻から一定の時間が経過した後になって、計測対象のプラズマ特性等に対応するピークが出現する。そのため、ピーク検出部224は、スキャンを実行する際に、前者のピークが出現する時間帯に対してはピークであるとの判定を行わないようにする。例えば、スキャンに先立ち、分光データに対し予め準備した時間方向の窓関数を用いて、前者の時間帯において強度の値が0で初期化されるようにしてもよい。
【0089】
ピーク特徴量抽出部226は、各ピークの出現時刻、波長及びピーク強度を同定する。ピーク特徴量抽出部226はさらに、各ピークの頂点周辺のデータをスキャンして、該ピークのスペクトル線幅、シフト量及びラインシェイプをピークごとに同定する。そして、これら同定した情報を、各ピークの特徴量としてピーク特徴量解析部228に与える。ピーク特徴量解析部228は、各ピークの特徴量からピーク同士でのピークの各特徴量の比等を算出する。ピーク特徴量解析部228はさらに、各特徴量及びその比について統計処理を行い、それらの平均、2乗平均、分散及び時間変動特性を算出する。ピーク特徴量解析部228は、各ピークの特徴量、各特徴量の比及びそれらについての統計処理の結果を、プラズマから生じた光の特徴を表す情報として、解析結果変換部232に与える。
【0090】
解析結果変換部232は、ピーク特徴量解析部228からプラズマから生じた光の特徴を表す情報が与えられたことに応答して、この情報を較正情報記憶部230に保持されている較正情報に基づいて計測対象情報に変換する。
【0091】
例えば、ピークの波長は、プラズマ特性評価値を表す情報に変換される。また、例えば、単一のピークのピーク強度は、そのピークの出現時刻におけるプラズマの数量、質量及び流量等、量を表す情報に変換される。ピーク強度の平均は、計測が実行された時間帯におけるプラズマの平均数量、平均質量及び平均流量等を表す情報に変換される。ピーク強度の時間変動特性は、プラズマの量の時間変動特性を表す情報に変換される。
【0092】
また、例えば、ピークのスペクトル線幅は、そのピークの出現時刻における計測位置の圧力を表す情報に変換される。スペクトル線幅の平均は、計測が実行された時間帯における計測位置の平均圧力を表す情報に変換される。スペクトル線幅の時間変動特性は、計測位置における圧力の時間変動特性を表す情報に変換される。
【0093】
また、例えば、あるプラズマから生じる光が複数の波長成分を含む性質を有するならば、それらの波長同士でのピーク強度の比、または、その平均は、そのプラズマの温度を表す情報に変換される。該ピーク強度の比の時間変動特性は、温度の時間変動特性を表す情報に変換される。
【0094】
また、例えば、計測対象が複数の成分を含むものであれば、各成分に対応する波長同士のピーク強度の比は、ピークの出現時刻における計測対象の濃度を表す情報に変換される。このピーク強度の比の平均は、計測が実行された時間帯における計測対象の平均濃度を表す情報に変換される。また、このピーク強度の比の時間変動特性は、計測対象の濃度の時間変動特性を表す情報に変換される。
【0095】
このようにして得られた各種の情報は、計測対象情報として計測対象情報記憶部234に格納される。ユーザインタフェース238がユーザより所望の計測対象情報の出力を要求する操作を受付けると、ユーザインタフェース238は、この操作に対応する命令を出力部236に与える。出力部236は、与えられた命令に従い、ユーザの要求に対応する情報を計測対象情報記憶部234から読出し、解析結果108として出力する。
【0096】
以上のように、本実施形態の計測システム100は、レーザ光束の計測対象物質への集光とプラズマから生じる光の集光との両方を光学素子114によって行う構成となっている。そのため、2つの光学系を要する従来の装置より計測が容易になり、利便性が向上する。
【0097】
また、光学素子114は反射によって集光を行う構成となっており、色収差等、屈折光学系に特有の収差が発生しない。そのため、レーザ光束をごく狭い領域に集光させ、その領域のみにブレイクダウンを生じさせることができる。したがって、空間的にも時間的にも高い分解能での計測が可能となる。加えて、従来の装置のように高出力のレーザ光源を使用しなくてもブレイクダウンを生じさせることが可能となるため、システムの小型化が可能になり可搬性が向上するだけでなく、低出力のレーザ光源を使用することによって計測の際の安全性も向上させることも可能になる。また、低出力のレーザ光源を使用することによって、タンパク質、糖、核酸など、分子構造が複雑で熱に弱い生体分子などを計測対象とした場合に、その分子構造の変化などの影響を低減させることが可能となる。
【0098】
さらに、本実施形態の計測システム100は、分光測定を逐次的に行い、その結果を時系列信号として得る構成であるため、最適なタイミングの測定結果を用いて、計測対象に関する情報を得ることができるばかりでなく、計測対象の時間変化についても情報を得ることが可能になる。
【0099】
〔第2の実施形態〕
前述の第1の実施形態では、光学素子114へのレーザ光束の出射位置がプラズマから生じる光の集光位置に並べて配置されていた。しかし、本発明はこのような実施形態には限定されない。以下に示す第2の実施形態では、レーザ光束の光軸をプラズマから生じる光の光軸と一致させている。
【0100】
図6に、本実施形態に係る計測システムの概略構成を示す。本実施形態に係る計測システム300は、図6に示すように、計測位置102に存在する物質に対しLIBSによる分光測定を行う装置であって、計測位置102に存在する物質の発光強度に応じた電気信号104を出力する光計測装置302と、電気信号を受けるように光計測装置302に接続された、第1の実施形態に係る計測システム100のものと同様の信号処理装置110とを有する。
【0101】
光計測装置302は、第1の実施形態のものとそれぞれ同一のレーザ光源120と、光学素子114とを有する。光計測装置302はさらに、一端がレーザ光源120に接続された第3の光ファイバ304と、第3の光ファイバ304の他端及び信号処理装置110に接続された分光測定部306と、分光測定部306の第3の光ファイバ304とは反対側に一端が接続され、他端が光学素子114に向けて配置された第4の光ファイバ308とを有する。すなわち本実施形態では、レーザ光源120、分光測定部306及び光学素子114が、第3の光ファイバ304及び第4の光ファイバ308を介して直列に配置された構成となっている。本実施形態において、第4の光ファイバ308の光学素子114側の端面は、例えば、図2に示す像点140の位置に配置される。なお、光学素子114は、像点140から第1面130の第2領域130Bの中心に出射された光を物点に到達させることなく、第2面132の第2領域132Bから像点140に向けて出射してしまう。そこで、レーザ光源120がTEM01モードのレーザ光束を出射するようにしておくと、該レーザ光束のエネルギが像点140の周辺に集中するため、高効率にブレイクダウンを生じさせることができる。
【0102】
図7に、分光測定部306の構成を示す。分光測定部306は、図7に示すように、第1の実施形態に係る分光測定部118のものとそれぞれ同一のコリメータ150、第1のミラー152、第2のミラー154、分光素子156、第3のミラー158及び受光素子160を有する。分光測定部306は、第1の実施形態に係る分光測定部118における第1の光ファイバ116の接続位置に相当する位置で第4の光ファイバ308と接続される。
【0103】
分光測定部306は、さらに、コリメータ150と第1のミラー152との間にプラズマから生じた光の光軸に対し所定の角度をなすよう配置され、プラズマから生じた光の入射方向からの光に対し透過特性を有するハーフミラー320を有する。分光測定部306と第3の光ファイバ304とは、第3の光ファイバ304より出射されたレーザ光束のハーフミラー320による反射光の光軸と、コリメータ150を介して第1のミラー152に向けて出射される光の光軸とが一致する配置で接続される。
【0104】
本実施形態に係る光計測装置302は、以下のように動作する。レーザ光源120がレーザ光束を出射すると、図6に示すように、レーザ光束は、第3の光ファイバ304を介して、図7に示す分光測定部306内に出射される。第3の光ファイバ304より出射されたレーザ光束は、図7に示すように、ハーフミラー320により反射され、コリメータ150を介して第4の光ファイバ308に入射される。入射されたレーザ光束は、第4の光ファイバ308の光学素子114側の端面から光学素子114に向けて出射される。出射されたレーザ光束は、光学素子114により計測位置102に集光される。これにより、計測位置102にある物質がブレイクダウンされ、プラズマ化する。計測位置102においてプラズマから光が生じると、この光はレーザ光束と同一の経路を逆にたどりつつ、第4の光ファイバ308の光学素子114側の端面において集光され、第4の光ファイバ308に入射される。
【0105】
第4の光ファイバ308に入射された光は、第4の光ファイバ308の分光測定部306側の端面より出射される。分光測定部306に入射されたこの光は、図7に示すように、コリメータ150及びハーフミラー320を透過して第1のミラー152に到達する。第1のミラー152に到達した光は、第1の実施形態に係る分光測定部118における光の経路と同様の経路をたどって分光素子156により分光され、受光素子160により電気信号104に変換されて出力される。信号処理装置110は、この出力信号104を、第1の実施形態と同様の動作で処理し解析して、解析結果108を出力する。
【0106】
以上のように、本実施形態に係る光計測装置302は、レーザ光束の光軸とプラズマから生じる光の光軸とが一致する構成となっているため、ブレイクダウンが生じるまさにその位置で、その時刻にプラズマから生じた光を測定できる。したがって、より高精度の計測が可能になる。
【0107】
〔その他変形例等〕
前述の第2の実施形態に係る分光測定部306は、レーザ光束の光軸とプラズマから生じる光の光束とをハーフミラー320によって一致させる構成となっていた。しかし、本発明は、このような実施形態に限定されない。例えば、次のようにして光軸を一致させることも可能である。すなわち、まず第3の光ファイバ304及び第4の光ファイバ308を、互いに他の出射光の光軸が一致するように分光測定部に接続しておく。そしてこの光軸上第1のミラー152の位置に、第1のミラー152に代えてハーフミラーを配置する。さらに、この光軸を横断しないよう分光素子156を配置し、第2のミラー154及び第3のミラー158の光路に対する角度を選択する。第1のミラー152に代えて配置されたハーフミラーの光軸に対する角度は、該ハーフミラーがコリメータ150からの光を第2のミラー154に向けて反射し、かつ、レーザ光束をそのまま透過する光学特性を備えるような角度とする。このような構成及び配置の分光測定部は、第2の実施形態に係る分光測定部306と同様の作用を奏する。
【0108】
前述の各実施形態では、レーザ光束は、光ファイバを介して光学素子114に出射された。しかし、レーザ光源から直接に、または、プリズム若しくはミラー等を介して光学素子114に出射されるようにしてもよい。
【0109】
前述の各実施形態では、分光測定部118及び306は、いずれもプラズマから生じる光をスペクトル分光し、その結果得られるスペクトル光を受光素子160によって電気信号に変換して出力するものであった。しかし、本発明は、このような実施形態に限定されない。計測位置102に存在しうる物質及びプラズマ等の種類が既知であるならば、または、所定のプラズマ特性を有する計測対象のみについて情報を得ることが計測の目標であるならば、分光測定部は、プラズマから生じる光のうち特定の波長成分のみを抽出して電気信号に変換するものであってもよい。
【0110】
例えば、分光されたスペクトル光のうち特定の波長成分のみが通過する位置に、受光素子160を配置するようにしてもよい。所望の波長成分が複数存在するならば、複数の受光素子を、それぞれ所望の波長成分に対応する位置に配置すればよい。
【0111】
また、例えば、光の波長に対し選択的な透過、反射、または、吸収特性を有する光学素子、または、それら光学素子からなる光学系の組合せによって、特定の波長成分のみを抽出するようにしてもよい。図8に、第2の実施形態に係る分光測定部306に代えて使用される、このような構成の分光測定部400の一例を示す。この分光測定部400には、図8に示すように、第3の光ファイバ304及び第4の光ファイバ308が、互いの光ファイバの出射光の光軸が一致するように接続される。分光測定部400は、計測対象に応じて予め選択された波長(以下、単に「選択波長」という。)の光の強度を測定するための複数系統の分光測定ユニット410A、410B、410C、…、410Nを有する。例えば、計測対象物質がガソリンと空気との混合気であれば、選択波長には、OHから生じる光、CHから生じる光、CNから生じる光及びCから生じる光の波長等がそれぞれ選択される。なお、この分光測定部400を適用する場合、レーザ光束の波長には、選択波長以外の波長が選択される。
【0112】
分光測定ユニット410Aは、第3の光ファイバ304及び第4の光ファイバ308から出射される光の光軸上にこの光軸に対し所定の角度をなすよう配置され、分光測定ユニット410Aの選択波長を有する所定帯域の光成分に対し反射特性を有し、かつレーザ光束の波長及び分光測定ユニット410A以外の選択波長を有するその他の波長帯域の光成分に対して透過特性を有するダイクロイックミラー412Aと、ダイクロイックミラー412Aにより反射される光の光軸上に配置され分光測定ユニット410Aの選択波長の光成分に対して透過特性を有するフィルタ414Aと、ダイクロイックミラー412Aにより反射される光の光軸上にフィルタ414Aを挟んでダイクロイックミラー412Aの反対側に配置された受光素子416Aとを有する。
【0113】
分光測定ユニット410B、410C、…、410Nの構成もまた、分光測定ユニット410Aのものと同様である。ただし、それらの選択波長に応じてそれらのダイクロイックミラー及びフィルタの波長特性が選択される。
【0114】
この分光測定部400は、次のように動作する。すなわち、第3の光ファイバ304からレーザ光束が分光測定部400内に出射されると、レーザ光束は、ダイクロイックミラー410Nからダイクロイックミラー412Aまでの各ダイクロイックミラーをこの順で透過して第4の光ファイバ308に入射される。逆に第4の光ファイバ308から光が入射されると、その光は、ダイクロイックミラー412A、412B、412C、…、412Nにより分光される。分光された光成分のうち選択波長近辺の波長帯域の成分は、それぞれフィルタ414A、414B、414C、…、414Nを通過して受光素子416A、416B、416C、…、416Nに到達する。受光素子416A、416B、416C、…、416Nはそれぞれ、到達した光成分を逐次的に電気信号104に変換して出力する。
【0115】
このようにして出力された電気信号104をもとに、信号処理装置110が計測対象情報108を生成するための信号処理を実行すると、選択波長の近傍以外の波長帯域についてピーク検出その他の処理を実行する必要がなくなる。処理すべき情報量が減少するため、信号処理が効率化し、高速処理が可能になる。
【0116】
なお、波長方向でのスペクトル線幅、シフト量及びラインシェイプに基づく解析の結果が計測対象情報として必要なければ、受光素子416A、416B、416C、…、416Nの出力信号は、受光位置の情報を必ずしも含まなくてよい。また、このような場合、受光素子416A、416B、416C、…、416Nとして、光電子増倍管等を適用してもよい。光電子増倍管はCCD等のイメージセンサより時間応答性が高いため、高時間分解能での計測が可能になる。
【0117】
また、前述の例に限らず、光学フィルタを利用した分光器、または、回折格子、エッシェル型回折格子、ローランド円等の回折素子、プリズム、レンズ等の屈折素子、若しくは多重反射素子等を利用した分散型分光器、または、光干渉計を利用したフーリエ変換型分光器など、いずれの方式の分光器を用いて分光計測を行ってもよい。 前述した実施形態では、いずれも1つのレーザ光源と1つの分光測定部との組により単点計測を行う構成を例示した。しかし、レーザ光束の出射位置及びプラズマから生じた光の集光位置は、光学素子114の結像面上の任意の位置から選択可能である。このような場合、レーザ光束の集光位置、または、プラズマから光が生じる位置は、光学素子114の焦点面の選択された位置に対応する位置となる。したがって、例えば、図6に示すレーザ光源120、第3の光ファイバ304、分光測定部306及び第4の光ファイバ308を予め複数用意しておき、それら複数の第4の光ファイバ308の光学素子114側の端面を決像面上に配置すれば、光学素子114の焦点面上の複数の位置においてLIBSによる計測が可能になる。さらに、複数の位置で分光測定の結果を総合することによって、計測対象の質量、流量、濃度、温度、圧力、ブラズマ特性等の平面的な分布を把握することが可能になる。
【0118】
光学素子114は、図2に示す形状のものに限らず、第1面130と第2面132との間をテーパ状に拡径したものであってもよい。また、第1面と第2面との間の媒質の側面付近に切欠きを設け、この切欠きによって不要光を遮断するようにしてもよい。また、保護膜136を、媒質と同一材料からなるものとし、この保護膜を十分な厚さを有して第1面130全面に渡って形成するようにしてもよい。この場合には、保護膜となる媒質を第1面130に対して溶着などによって接合してもよい。
【0119】
また、第2面132の第1領域132Aを、互いに異なる曲率中心、または、焦点を有する複数の部分に分割された凹面からなる面として構成してもよい。この場合には、第2面132の第1領域132Aの各部分がそれぞれ異なる焦点を結ぶので、一つの光学素子によって複数の像点を形成することができる。
【0120】
また、光学素子114に代えて、パラボラ鏡などの単面の反射光学素子を用いてもよい。
【0121】
また、前述した実施形態において光学素子114は、反射により光を集光させる光学系であったが、この光学素子114に代えて凸レンズ等の光学系を用いてもよい。ただしこの場合、種々の手法で光の波長に起因する収差を軽減させることが望ましい。
【0122】
屈折光学系を用いた場合、屈折光学系の色収差を利用してもよい。例えば、レーザ光束の波長を適宜選択することによって、屈折光学素子とレーザ光束の集光位置との距離を調整することも可能である。さらに、前述のようにレーザ光束の出射位置、または、プラズマから生じる光の集光位置を複数用意しておけば、複数の位置で分光測定の結果を総合することによって、計測対象の質量、流量、濃度、温度、圧力、ブラズマ特性等の空間的な分布を把握することが可能になる。 なお、前述の各実施形態の光計測装置において、計測対象物質の最小着火エネルギ以上のエネルギをレーザ光源が出射するようにすれば、該光計測装置によって計測対象物質に化学的反応を生じさせたり、組成変化を生じさせたりすることも可能である。計測対象物質が可燃性物質であれば、プラズマ化の後に着火という現象が生じることもある。さらに、予めLIBSによる物質の解析を行い、その解析結果をもとにレーザ光源の出力及び出射タイミングを制御するようにすれば、効率よく計測位置に存在する物質に化学反応、組成変化、または、着火を生じさせることができる。
【0123】
また、レーザ光束を複数回に亘って計測対象物質に対し照射するようにしてもよい。このようにすることにより、計測対象物質に対し段階的にエネルギを与えたり、複数回連続でブレイクダウンを生じさせたりすることができる。さらには、レーザ光束を出射するたびにレーザ光源の出力を調整するようにしておいてもよい。
【0124】
前述の各実施形態では、計測対象物質にブレイクダウンを生じさせるための光源として、Nd−YAGレーザ光源を用いたが、光源としては、ガスレーザを用いてもよい。また、種々の固体レーザ光源、レーザダイオード(LD)、または、高輝度発光ダイオード(LED)等の光源をレーザ光源に代えて用いることもできる。特に、光学素子114は、集光性能に優れるため、発光強度の低い光源であってもブレイクダウンを生じさせることが可能である。それ以外にグロー、コロナ、アーク、スパーク等の放電により光を発生させる光源、放射光源、火炎等もまた、計測対象物質にブレイクダウンを生じさせるための光源として利用可能である。
【0125】
なお、今回開示した実施形態は単なる例示であって、本発明の範囲が前述の各実施形態のみに制限されるわけではない。本発明の範囲は、明細書及び図面の記載を参酌した上で、特許請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内でのすべての変更を含むものである。
【0126】
〔産業上の利用可能性〕
前述のように、本発明は、自動車用エンジンの燃焼室等の狭い空間内、または、核反応炉内等におけるガス、液体、プラズマ、または、それらの混合物等についての精密分析に利用可能である。また、小型で可搬性に優れ簡便に計測を行うことができるため、屋外等での環境分析、または、毒ガス検知にも利用可能である。さらに、安全に計測を行うことができるため、医療分野等にも利用可能である。
【図面の簡単な説明】
【0127】
【図1】本発明の第1の実施形態に係る計測システムの概略構成図である。
【図2】前記計測システムにおける光学素子の構成を示す断面図である。
【図3】前記計測システムにおける分光測定部の構成を示す側面図である。
【図4】前記計測システムにおける信号処理装置として動作するコンピュータシステムのハードウェアブロック図である。
【図5】前記計測システムにおける信号処理装置の機能的構成を示すブロック図である。
【図6】本発明の第2の実施形態に係る計測システムの概略構成図である。
【図7】前記計測システムにおける分光測定部の構成を示す側面図である。
【図8】前記計測システムにおける分光測定部に代えて使用できる分光測定部の構成を示す側面図である。
【符号の説明】
【0128】
100、300 計測システム
102、302 計測位置
106 光計測装置
110 信号処理装置
112、116、304、308 光ファイバ
114 光学素子
118、306、400 分光測定部
120 レーザ光源
130 第1面
130A、132A 第1領域
130B、132B 第2領域
132 第2面
134、138 反射膜
136 保護膜
150 コリメータ
152、154、158 ミラー
156 分光素子
160、416A、416B、416C、…、416N 受光素子
180 コンピュータシステム
220 信号変換部
222 分光データ記憶部
224 ピーク検出部
226 ピーク特徴量抽出部
228 ピーク特徴量解析部
230 較正情報記憶部
232 解析結果変換部
234 計測対象情報記憶部
236 出力部
238 ユーザインタフェース
320 ハーフミラー
410A、410B、410C、…、410N 分光測定ユニット
412A、412B、412C、…、412N ダイクロイックミラー
414A、414B、414C、…、414N フィルタ

【特許請求の範囲】
【請求項1】
物点及び像点のいずれか一方からの光が入射されたときに、この光を他方において集光させる光学素子と、
前記光学素子の像点からこの光学素子に光を入射させ、この光学素子の物点に存在する計測対象物質のブレイクダウン閾値以上のエネルギ密度の光を該光学素子を介して該物点に集光させる光出射手段と、
前記光学素子の像点に集光された光を分光測定し、この分光測定の結果を信号として出力する分光測定手段と
を有することを特徴とする光計測装置。
【請求項2】
前記光出射手段は、前記光学素子の物点に存在する計測対象物質の最小着火エネルギ密度未満のエネルギ密度の光を該光学素子を介して該物点に集光させる
ことを特徴とする請求項1記載の光計測装置。
【請求項3】
前記分光測定手段からの分光測定の結果に基づいて、前記光出射手段の出射光を制御する制御手段を有し、
前記制御手段は、光出射手段を制御して、前記光学素子の物点に存在する計測対象物質の最小着火エネルギ密度以上の光を該光学素子を介して該物点に集光させる
ことを特徴とする請求項1記載の光計測装置。
【請求項4】
前記光出射手段は、前記光学素子の像点を通る予め定められた光軸に沿って前記光を入射させる
ことを特徴とする請求項1乃至請求項3のいずれか一に記載の光計測装置。
【請求項5】
前記光出射手段は、複数の出射位置を有し、前記光学素子の複数の物点において出射光を集光させる
ことを特徴とする請求項1乃至請求項3のいずれか一に記載の光計測装置。
【請求項6】
前記分光測定手段は、前記複数の物点に対応する複数の像点から選択した複数の集光点における光のそれぞれを分光測定し、これら各分光測定の結果をそれぞれ信号として出力する
ことを特徴とする請求項5記載の光計測装置。
【請求項7】
前記光出射手段は、予め定められた回数だけ前記光学素子に光を入射させる
ことを特徴とする請求項1乃至請求項6のいずれか一に記載の光計測装置。
【請求項8】
前記分光測定手段は、逐次的に分光測定を行い、各分光測定の結果を時系列信号として出力する
ことを特徴とする請求項1乃至請求項7のいずれか一に記載の光計測装置。
【請求項9】
前記光学素子は、物点から入射した光を反射させて像点に集光させ、像点から入射した光を反射させて物点に集光させる反射光学素子である
ことを特徴とする請求項1乃至請求項8のいずれか一に記載の光計測装置。
【請求項10】
前記反射光学素子は、物点側より順に第1面及び第2面を有して一体的に形成され、前記第1面及び前記第2面がそれぞれ第1領域と第2領域とを有し、前記第1面の第1領域が物点側に対する凹面の透過面となされ、第2面の第1領域が物点側に対する凹面反射面となされ、前記第1面の第2領域が反射面となされ、前記第2面の第2領域が透過面となされ、物点から入射した光を前記第2面の第1領域及び前記第1面の第2領域において反射して像点に集光させ、像点から入射した光を前記第1面の第2領域及び前記第2面の第1領域において反射して物点に集光させる
ことを特徴とする請求項9記載の光計測装置。
【請求項11】
前記光出射手段が前記光学素子に入射させる光は、レーザ光束である
ことを特徴とする請求項1乃至請求項10のいずれか一に記載の光計測装置。
【請求項12】
前記光出射手段が前記光学素子に入射させる光は、TEM01モードのレーザ光束である
ことを特徴とする請求項10記載の光計測装置。
【請求項13】
前記光学素子は、物点から入射した光を屈折させて像点に集光させ、像点から入射した光を屈折させて物点に集光させる屈折光学素子である
ことを特徴とする請求項1乃至請求項8のいずれか一に記載の光計測装置。
【請求項14】
前記光出射手段が前記光学素子に入射させる光は、予め定められた波長成分の光である
ことを特徴とする請求項13記載の光計測装置。
【請求項15】
請求項1乃至請求項14のいずれか一に記載の光計測装置と、
前記光計測装置の光計測装置から出力される信号に基づいて、前記計測対象物質に関する所定の情報を生成する信号処理手段と
を有することを特徴とする計測システム。
【請求項16】
前記信号処理手段は、前記分光測定手段による分光測定の結果におけるピーク検出を行い、検出したピークの所定の特徴量に基づいて、前記計測対象物質の所定の特徴に関する情報を生成する
ことを特徴とする請求項15記載の計測システム。
【請求項17】
前記情報生成手段は、検出したピークの所定の特徴量として、検出したピークの高さ、スペクトル線幅、ラインシェイプ及びシフト量の少なくとも一の特徴量に基づいて、前記計測対象物質の所定の特徴に関する情報を生成する
ことを特徴とする請求項16記載の計測システム。
【請求項18】
前記情報生成手段は、検出したピークの所定の特徴量として、検出したピークの所定の特徴に関する統計量に基づいて、前記計測対象物質の所定の特徴に関する情報を生成する
ことを特徴とする請求項16記載の計測システム。
【請求項19】
前記情報生成手段は、前記計測対象物質に関する所定の情報として、前記計測対象物質の量に関する情報を生成する
ことを特徴とする請求項15乃至請求項18のいずれか一に記載の計測システム。
【請求項20】
前記情報生成手段は、前記計測対象物質に関する所定の情報として、前記計測対象物質の濃度に関する情報を生成する
ことを特徴とする請求項15乃至請求項18のいずれか一に記載の計測システム。
【請求項21】
前記情報生成手段は、前記計測対象物質に関する所定の情報として、前記計測対象物質の温度に関する情報を生成する
ことを特徴とする請求項15乃至請求項18のいずれか一に記載の計測システム。
【請求項22】
前記情報生成手段は、前記計測対象物質に関する所定の情報として、前記計測対象物質の圧力に関する情報を生成する
ことを特徴とする請求項15乃至請求項18のいずれか一に記載の計測システム。
【請求項23】
前記情報生成手段は、前記計測対象物質に関する所定の情報として、前記計測対象物質のプラズマ特性評価値を生成する
ことを特徴とする請求項15乃至請求項18のいずれか一に記載の計測システム。
【請求項24】
請求項6記載の光計測装置と、
前記光計測装置の分光測定手段から出力される複数の集光点における光の分光測定の結果に基づいて、前記計測対象物質の位置と該計測対象物質の所定の特徴との関係に関する情報を生成する信号処理手段と
を有することを特徴とする計測システム。
【請求項25】
請求項8記載の光計測装置と、
前記光計測装置から出力される時系列信号に基づいて、時間経過と前記計測対象物質の所定の特徴との関係に関する情報を生成する信号処理手段と
を有することを特徴とする計測システム。
【請求項26】
請求項14記載の光計測装置と、
前記光計測装置において光計測装置から出力される信号及び前記光出射手段が前記光学素子に入射させる光の波長特性に基づいて、該計測対象物質に関する所定の情報を生成する信号処理手段と
を有することを特徴とする計測システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−97976(P2009−97976A)
【公開日】平成21年5月7日(2009.5.7)
【国際特許分類】
【出願番号】特願2007−269578(P2007−269578)
【出願日】平成19年10月16日(2007.10.16)
【出願人】(504293528)イマジニアリング株式会社 (51)
【Fターム(参考)】