説明

内燃機関の燃焼室構造

【課題】ノッキングの発生を抑制しつつ正タンブル流を強化することができる内燃機関の燃焼室構造を提供する。
【解決手段】内燃機関の燃焼室構造は、燃焼室(40)に吸気行程において正タンブル流が形成される内燃機関(5)のシリンダヘッドの燃焼室に露出した部分に、吸気側斜面(41)および排気側斜面(42)を有し、吸気側斜面には吸気開口部(43)が形成され、排気側斜面には排気開口部(44)が形成され、排気開口部は吸気行程において排気バルブ(60)によって閉口されており、吸気通路には吸気バルブ(50)用のバルブシート(70)が配置され、燃焼室を吸気側斜面および排気側斜面に垂直な面で切断した断面において、バルブシートの内周面のうちバルブシートの中心軸(71)より上方の部分は、排気側斜面をバルブシートの方向に仮想的に延長させた延長面(100)と接触する位置または延長面より上方に位置している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の燃焼室構造、特に燃焼室において正タンブル流が形成される内燃機関の燃焼室構造に関する。
【背景技術】
【0002】
従来、燃焼室において、吸気開口部側から排気開口部側を経てピストン側に導かれる正タンブル流が形成される内燃機関が知られている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平8−144767号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
燃焼効率向上の観点から、燃焼室に形成される正タンブル流の強度は強いことが好ましい。正タンブル流を強化する手法として、例えば吸気通路における吸気の流速を上昇させる手法が考えられる。しかしながら、吸気通路における吸気の流速を上昇させた場合、吸気の温度が上昇するおそれがある。その結果、ノッキングが発生するおそれがある。
【0005】
本発明は、ノッキングの発生を抑制しつつ正タンブル流を強化することができる内燃機関の燃焼室構造を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係る内燃機関の燃焼室構造は、吸気通路および排気通路を有するシリンダヘッドの下方に形成された燃焼室に吸気行程において正タンブル流が形成される内燃機関の前記シリンダヘッドの前記燃焼室に露出した部分に、前記燃焼室の中央側から前記燃焼室の内周面側に向けて斜め下方に傾斜した吸気側斜面および排気側斜面を有し、前記吸気側斜面には前記吸気通路の開口端である吸気開口部が形成され、前記排気側斜面には前記排気通路の開口端である排気開口部が形成され、前記排気開口部は前記吸気行程において排気バルブによって閉口されており、前記吸気通路には吸気バルブ用のバルブシートが配置され、前記燃焼室を前記吸気側斜面および前記排気側斜面に垂直な面で切断した断面において、前記バルブシートの内周面のうち前記バルブシートの中心軸より上方の部分は、前記排気側斜面を前記バルブシートの方向に仮想的に延長させた延長面と接触する位置または前記延長面より上方に位置している。
【0007】
本発明に係る燃焼室構造によれば、燃焼室を吸気側斜面および排気側斜面に垂直な面で切断した断面において、バルブシートの内周面のうちバルブシートの中心軸より上方の部分は、排気側斜面をバルブシートの方向に仮想的に延長させた延長面と接触する位置または延長面より上方に位置している。この構成を備えていない燃焼室構造(以下、比較例に係る燃焼室構造と称する)の場合、吸気は、バルブシートを通過後にその一部が剥離して排気側斜面付近で淀んでしまい、正タンブル流にならない。これに対して本発明に係る燃焼室構造によれば、上記構成を備えることで、バルブシート通過後の吸気を排気側斜面および排気バルブの燃焼室側の面に沿うように流動させて正タンブル流にすることができる。したがって、本発明に係る燃焼室構造によれば、吸気通路における吸気の流速を上昇させることなく比較例に係る燃焼室構造に比較して正タンブル流になる吸気の流量を増大させることができる。それにより、吸気通路における吸気の流速を上昇させることなく正タンブル流の強度を上昇させることができる。その結果、ノッキングの発生を抑制しつつ正タンブル流の強度を上昇させることができる。
【0008】
上記構成において、前記吸気側斜面の前記排気側斜面の側にある端部は、前記排気側斜面の前記吸気側斜面の側にある端部よりも上方に位置していてもよい。この構成によれば、吸気側斜面の排気側斜面の側にある端部が排気側斜面の吸気側斜面の側にある端部よりも上方に位置していない場合に比較してバルブシートを上方側に配置することが容易にできる。それにより、バルブシートの内周面のうちバルブシートの中心軸より上方の部分が排気側斜面をバルブシートの方向に仮想的に延長させた延長面と接触する位置または延長面より上方に位置するように、バルブシートを吸気通路に配置することが容易にできる。それにより、ノッキングの発生を抑制しつつ正タンブル流を強化することが容易にできる。
【0009】
上記構成は、前記バルブシートが前記吸気通路の前記吸気開口部よりも吸気の流動方向上流側に配置されていることで、前記吸気開口部と前記バルブシートとの間にスペースが形成されている構成であってもよい。仮に吸気開口部とバルブシートとの間にスペースが形成されていない場合、燃焼室で形成された正タンブル流が吸気側斜面に沿って流動したときに、バルブシート内に流入して吸気通路を逆流する現象が生じるおそれがある。この現象は吸気バルブを遅閉じにしたときに顕著に生じるおそれがある。このような逆流現象が生じた場合、正タンブル流が減衰してしまう。これに対して上記構成によれば、吸気開口部とバルブシートとの間にスペースが形成されていることから、燃焼室で形成された正タンブル流が吸気側斜面に沿って流動したときに、バルブシート内に流入して吸気通路を逆流することを抑制することができる。その結果、正タンブル流の減衰を抑制することができる。
【発明の効果】
【0010】
本発明によれば、ノッキングの発生を抑制しつつ正タンブル流を強化することができる内燃機関の燃焼室構造を提供することができる。
【図面の簡単な説明】
【0011】
【図1】図1は、実施例1に係る内燃機関を示す断面図である。
【図2】図2(a)は、実施例1に係る燃焼室を拡大図示した断面図である。図2(b)は、実施例1に係る燃焼室の上部の中心付近を拡大図示した断面図である。
【図3】図3(a)は、比較例1に係る内燃機関の燃焼室を拡大図示した断面図である。図3(b)は、比較例1に係る燃焼室の上部の中心付近を拡大図示した断面図である。
【図4】図4は、比較例1に係る燃焼室における吸気の流動態様を模式的に示す断面図である。
【図5】図5は、実施例1に係る燃焼室における吸気の流動態様を模式的に示す断面図である。
【図6】図6は、実施例2に係る内燃機関を示す断面図である。
【図7】図7(a)は、比較例1に係る内燃機関の燃焼室における吸気の流動態様を模式的に示す断面図である。図7(b)は、実施例2に係る燃焼室における吸気の流動態様を模式的に示す断面図である。
【発明を実施するための形態】
【0012】
以下、本発明を実施するための形態を説明する。
【実施例1】
【0013】
本発明の実施例1に係る内燃機関5の燃焼室40の構造について説明する。図1は、本実施例に係る内燃機関5を示す断面図である。内燃機関5は、シリンダブロック10と、シリンダブロック10の上方に配置されたシリンダヘッド20と、シリンダブロック10内に配置されたピストン30と、を備えている。シリンダブロック10とシリンダヘッド20とピストン30とによって囲まれた空間として、燃焼室40が形成されている。なお、本実施例において上方および下方は、必ずしも重力方向における上方および下方と一致している必要はない。例えば、本実施例における上方および下方は水平方向であってもよい。
【0014】
シリンダヘッド20は、吸気を燃焼室40に導くための吸気通路21と、排気を燃焼室40から排出するための排気通路22と、を有している。吸気通路21には、吸気通路21を開閉するための吸気バルブ50が配置されている。排気通路22には、排気通路22を開閉するための排気バルブ60が配置されている。吸気バルブ50は、傘部51およびステム52を有している。傘部51は、ステム52の燃焼室40側の先端に配置されている。排気バルブ60は、傘部61およびステム62を有している。傘部61は、ステム62の燃焼室40側の先端に配置されている。
【0015】
吸気通路21には、吸気バルブ50用のバルブシート70が配置されている。バルブシート70は、傘部51が着座または離座するためのリング形状のシートである。本実施例においてバルブシート70の中心軸71と吸気バルブ50の傘部51の中心軸とは一致している。傘部51がバルブシート70に着座することで、吸気通路21は閉になる。傘部51がバルブシート80から離座することで、吸気通路21は開になる。
【0016】
排気通路22には、排気バルブ60用のバルブシート80が配置されている。バルブシート80は、排気バルブ60の傘部61が着座または離座するためのリング形状のシートである。本実施例においてバルブシート80の中心軸81と排気バルブ60の傘部61の中心軸とは一致している。傘部61がバルブシート80に着座することで、排気通路22は閉になる。傘部61がバルブシート80から離座することで、排気通路22は開になる。
【0017】
内燃機関5の燃焼室40には、吸気行程において正タンブル流が形成される。燃焼室40に正タンブル流が形成されるための内燃機関5の構成は、特に限定されるものではない。例えば、内燃機関5は、吸気通路21の吸気の流動方向上流側に燃焼室40に流入する吸気の流動方向を制御する気流制御弁を備えた構造を有することができる。気流制御弁によって、吸気の主流がバルブシート70の中心軸71よりも上方側を通過するように吸気の流動方向が制御されることで、吸気行程において燃焼室40に正タンブル流を形成することができる。すなわち本実施例に係る内燃機関5は、吸気通路21および排気通路22を有するシリンダヘッド20の下方に形成された燃焼室40に吸気行程において正タンブル流が形成される内燃機関である。
【0018】
本実施例に係る内燃機関5は、シリンダヘッド20における熱の移動量がシリンダブロック10における熱の移動量に対して少なくなるようにシリンダヘッド20が断熱化された構造を有している。このシリンダヘッド20が断熱化された構造は、特に限定されるものではないが、一例として、内燃機関5はシリンダヘッド20を燃焼室40から断熱する構造を有することができる。この構造として、例えばシリンダヘッド20の燃焼室40に露出した部分に断熱部材を配置する構造を用いることができる。断熱部材としては、例えば、シリンダヘッド20を構成する材料である金属よりも熱伝導率の小さい部材を用いることができる。この場合、断熱部材によって燃焼室40からシリンダヘッド20への熱伝導を抑制することができる。それにより、シリンダヘッド20における熱の移動量をシリンダブロック10における熱の移動量に対して少なくすることができる。その結果、冷却媒体によるシリンダヘッド20の冷却量(冷却媒体の仕事量)を低く抑えることができることから、シリンダヘッド20における冷却損失を低く抑えることができる。
【0019】
あるいは内燃機関5は、上述したようなシリンダヘッド20の燃焼室40からの断熱構造に代えてまたはシリンダヘッド20の燃焼室40からの断熱構造とともに、シリンダヘッド20をシリンダブロック10から断熱する構造を有していてもよい。この構造として、例えばシリンダヘッド20のシリンダブロック10側の界面に断熱部材を配置する構造を用いることができる。この場合、シリンダブロック10からシリンダヘッド20への熱伝導が抑制されることで、シリンダヘッド20における熱の移動量をシリンダブロック10における熱の移動量に対して少なくすることができる。この場合においてもシリンダヘッド20における冷却損失を低減させることができる。
【0020】
あるいは内燃機関5は、上記断熱部材を用いた構造に代えてまたは上記断熱部材を用いた構造とともに、シリンダヘッド20を冷却する冷却媒体の冷却能力をシリンダブロック10を冷却する冷却媒体の冷却能力よりも小さくする構造を備えることもできる。このような構造の一例として、例えば内燃機関5は、冷却媒体が冷却媒体用ポンプとシリンダヘッド20との間を循環する第1の冷却媒体循環通路と、冷却媒体が冷却媒体用ポンプとシリンダブロック10との間を循環する第2の冷却媒体循環通路と、を備えるとともに、第1の冷却媒体循環通路に流量調整弁を備える構造を有することができる。この場合、流量調整弁が第1の冷却媒体循環通路の流量を第2の冷却媒体循環通路の流量よりも少なくすることで、冷却媒体とシリンダヘッド20との間の熱の移動量は冷却媒体とシリンダブロック10との間の熱の移動量よりも小さくなる。すなわち、シリンダヘッド20と冷却媒体との間の断熱性がシリンダブロック10と冷却媒体との間の断熱性よりも高くなる。この構成においても、シリンダヘッド20における冷却損失を抑制することができる。
【0021】
上記のように内燃機関5がシリンダヘッド20が断熱化された構造を有する場合、シリンダヘッド20における冷却損失の低減によって内燃機関5の燃費向上を図ることができる。またシリンダブロック10が冷却媒体によって冷却されることで、ノッキングの発生を抑制することもできる。さらにシリンダヘッド20における冷却損失を低減させた分、冷却媒体によるシリンダブロック10の冷却能力を強化することもできる。この場合、ノッキングの発生をより抑制することができる。
【0022】
図2(a)は、本実施例に係る燃焼室40を拡大図示した断面図である。なお、図2(a)において吸気バルブ50の図示は省略されている。シリンダヘッド20は、シリンダヘッド20の燃焼室40に露出した部分に、燃焼室40の中央側から燃焼室40の内周面側に向けて斜め下方に傾斜した吸気側斜面41および排気側斜面42を有している。図2(a)において吸気側斜面41および排気側斜面42の面方向(面に平行な方向)は、紙面に垂直な方向である。すなわち、図2(a)は、吸気側斜面41および排気側斜面42に垂直な面で燃焼室40を切断した断面を図示している。
【0023】
吸気側斜面41には、吸気通路21の開口端である吸気開口部43が形成されている。排気側斜面42には、排気通路22の開口端である排気開口部44が形成されている。本実施例においてバルブシート70は、吸気通路21の吸気の流動方向下流側の端部に配置されている。またバルブシート80は、排気通路22の排気の流動方向上流側の端部に配置されている。
【0024】
排気開口部44は、吸気行程において、排気バルブ60によって閉口される。具体的には排気開口部44は、吸気行程において、排気バルブ60の傘部61がバルブシート80に着座することで閉口される。一方、吸気行程において吸気バルブ50は吸気開口部43を開口しておく。
【0025】
燃焼室40を吸気側斜面41および排気側斜面42に垂直な面で切断した断面(すなわち図2(a)の断面図)において、バルブシート70の内周面(中心軸71に対向する面)のうち中心軸71より上方の部分は、排気側斜面42をバルブシート70の方向に仮想的に延長させた仮想面である延長面100と接触する位置または延長面100より上方に位置している。図2(a)においては、バルブシート70の内周面のうち中心軸71より上方の部分は、延長面100と接触している。
【0026】
図2(b)は、燃焼室40の上部の中心付近を拡大図示した断面図である。図2(b)において排気バルブ60および吸気バルブ50の図示は省略されている。吸気側斜面41の排気側斜面42の側にある端部45は、排気側斜面42の吸気側斜面41の側にある端部46よりも上方に位置している。なお、本実施例において端部45は、吸気側斜面41の端部のうち最も上方に位置する端部でもある。また端部46は、排気側斜面42の端部のうち最も上方に位置する端部でもある。
【0027】
燃焼室40の端部45および端部46がこのような構成を有することで、端部45が端部46よりも上方に位置していない場合に比較して、バルブシート70を上方側に配置することが容易にできる。それにより、バルブシート70の内周面のうち中心軸71より上方の部分が延長面100と接触する位置または延長面100より上方に位置するように、バルブシート70を吸気通路21に配置することが容易にできる。
【0028】
続いて本実施例に係る燃焼室40の構造の作用効果を、比較例1に係る内燃機関200の燃焼室210の構造と比較しつつ説明する。図3(a)は、比較例1に係る内燃機関200の燃焼室210を拡大図示した断面図である。図3(a)において吸気バルブ50の図示は省略されている。図3(b)は、比較例1に係る燃焼室210の上部の中心付近を拡大図示した断面図である。図3(b)において排気バルブ60および吸気バルブ50の図示は省略されている。
【0029】
比較例1に係る燃焼室210は、吸気側斜面41の排気側斜面42側の端部45と、排気側斜面42の吸気側斜面41側の端部46と、が同じ高さに位置している点において、本実施例に係る燃焼室40と異なっている。その結果、燃焼室210は、燃焼室210を吸気側斜面41および排気側斜面42に垂直な面で切断した断面において、バルブシート70の内周面のうちバルブシート70の中心軸71より上方の部分は延長面100と接触する位置または延長面100より上方に位置していない。具体的には、バルブシート70の内周面のうち中心軸71より上方の部分は、延長面100よりも下方に位置している(図3(b))。
【0030】
図4は、比較例1に係る燃焼室210における吸気の流動態様を模式的に示す断面図である。図4において吸気は、矢印で図示されている。燃焼室210において、吸気通路21から燃焼室210に流入する吸気は、バルブシート70を通過後にその一部が吸気の主流から剥離して、排気側斜面42付近で淀んでいる。この淀んだ吸気は、正タンブル流にならない。このような燃焼室210において燃焼効率を向上させるために正タンブル流の強度を上昇させようとして、吸気通路21における吸気の流速を上昇させた場合、吸気の温度が上昇するおそれがある。具体的には、吸気通路21の径を絞る等の手法によって吸気通路21の吸気の流速を上昇させることで正タンブル流の強度を上昇できるが、この場合、吸気通路21における吸気がシリンダヘッド20から受ける受熱量が多くなる結果、吸気の温度が上昇するおそれがある。吸気の温度が上昇した場合、ノッキングが発生するおそれがある。
【0031】
図5は、本実施例に係る燃焼室40における吸気の流動態様を模式的に示す断面図である。図5において吸気は、矢印で図示されている。燃焼室40においては、前述したように、燃焼室40を吸気側斜面41および排気側斜面42に垂直な面で切断した断面において、バルブシート70の内周面のうち中心軸71より上方の部分は、延長面100と接触する位置に配置されている。それにより、バルブシート70を通過後の吸気の一部が剥離して排気側斜面42付近で淀むことが抑制されている。
【0032】
具体的には、バルブシート70通過後の吸気は、排気側斜面42および排気バルブ60の傘部61の燃焼室40側の面(以下、排気バルブ60の燃焼室40側の面と称する)に沿うように流動して正タンブル流になっている。その結果、燃焼室40の構造によれば、吸気通路21における吸気の流速を上昇させることなく、比較例1に比較して正タンブル流となる吸気の流量を増大させることができる。すなわち、本実施例に係る燃焼室40の構造によれば、吸気通路21における吸気の流速を上昇させることなく正タンブル流の強度を上昇させることができる。その結果、ノッキングの発生を抑制しつつ正タンブル流の強度を上昇させることができる。
【0033】
なお、燃焼室40を吸気側斜面41および排気側斜面42に垂直な面で切断した断面において、バルブシート70の内周面のうち中心軸71より上方の部分が、延長面100よりも上方に位置している場合においても、バルブシート70通過後の吸気を排気側斜面42および排気バルブ60の燃焼室40側の面に沿うように流動させて正タンブル流にすることができる。その結果、ノッキングの発生を抑制しつつ正タンブル流の強度を上昇させることができる。
【0034】
また、本実施例に係る燃焼室40の構造によれば、図2(b)において前述したように、吸気側斜面41の端部45は排気側斜面42の端部46よりも上方に位置している。それにより、端部45が端部46よりも上方に位置していない場合に比較してバルブシート70を上方側に配置することが容易にできる。その結果、バルブシート70の内周面のうち中心軸71より上方の部分が延長面100と接触する位置または延長面100より上方に位置するように、バルブシート70を吸気通路21に配置することが容易にできる。それにより、ノッキングの発生を抑制しつつ正タンブル流を強化することが容易にできる。
【実施例2】
【0035】
続いて本発明の実施例2に係る内燃機関5aの燃焼室40aの構造について説明する。図6は、本実施例に係る内燃機関5aを示す断面図である。図6において吸気バルブ50の図示は省略されている。燃焼室40aは、吸気側斜面41aおよび排気側斜面42aを備えている。吸気側斜面41aの端部45および排気側斜面42bの端部46は同じ高さに位置している。また、バルブシート70が吸気通路21の吸気開口部43よりも吸気の流動方向上流側に配置されていることで、吸気開口部43とバルブシート70との間にスペース47が形成されている。内燃機関5aの燃焼室40aにおけるその他の構成は、実施例1に係る内燃機関5の燃焼室40における構成と同様のため、説明を省略する。
【0036】
本実施例においても、燃焼室40aを吸気側斜面41aおよび排気側斜面42aに垂直な面で切断した断面において、バルブシート70の内周面のうち中心軸71より上方の部分は、排気側斜面42aをバルブシート70の方向に仮想的に延長させた延長面100と接触する位置に配置されている。なお、燃焼室40aを吸気側斜面41aおよび排気側斜面42aに垂直な面で切断した断面において、バルブシート70の内周面のうち中心軸71より上方の部分は延長面100よりも上方に位置していてもよい。燃焼室40aがこのような構成を有することで、実施例1に係る燃焼室40と同様に、ノッキングの発生を抑制しつつ正タンブル流を強化することができる。
【0037】
さらに燃焼室40aの構造によれば、以下に説明する作用効果を発揮することができる。図7(a)は、比較例1に係る内燃機関200の燃焼室210における吸気の流動態様を模式的に示す断面図である。図7(b)は、本実施例に係る燃焼室40aにおける吸気の流動態様を模式的に示す断面図である。図7(a)および図7(b)において、吸気は矢印で図示されている。
【0038】
比較例1に係る燃焼室210は、バルブシート70が吸気通路21の吸気開口部43よりも吸気の流動方向上流側に配置されていないため、吸気開口部43とバルブシート70との間にスペースが形成されていない。このような燃焼室210の構造では、燃焼室210で形成された正タンブル流が吸気側斜面41に沿って流動したときに、バルブシート70内に流入して吸気通路21を逆流する現象が生じるおそれがある。この現象は吸気バルブ50を遅閉じにしたときに顕著に生じるおそれがある。このような逆流現象が生じた場合、正タンブル流が減衰してしまう。
【0039】
これに対して本実施例に係る燃焼室40aの構造によれば、図7(b)に示すように、スペース47が形成されていることから、燃焼室40aで形成された正タンブル流が吸気側斜面41aに沿って流動したときにバルブシート70内に流入して吸気通路21を逆流することが抑制されている。その結果、比較例1に比較して正タンブル流の減衰が抑制されている。正タンブル流の減衰が抑制されていることで、正タンブル流の強度がより上昇している。その結果、吸気通路21における吸気の流速を上昇させることなく正タンブル流の強度をより上昇させることができることから、ノッキングの発生を抑制しつつ正タンブル流の強度をより上昇させることができる。
【0040】
なお、本実施例において吸気側斜面41aの端部45および排気側斜面42bの端部46は同じ高さに位置しているが、これに限られるものではない。吸気側斜面41aの端部45は、排気側斜面42bの端部46よりも上方に位置していてもよい。この場合においても、スペース47が形成されていれば、本実施例の作用効果を発揮することができる。
【0041】
また実施例1および実施例2において、内燃機関5はシリンダヘッド20が断熱化された構造を有しているが、これに限られるものではない。実施例1および実施例2に係る燃焼室の構造は、シリンダヘッド20が断熱化された構造を有しない内燃機関に適用することもできる。
【0042】
しかしながら内燃機関5がシリンダヘッド20が断熱化された構造を有するにもかかわらず、実施例1および実施例2に係る燃焼室構造を有さない場合、ノッキングが生じ易くなる。具体的には、このような内燃機関の場合、シリンダヘッド20が断熱化されていることでシリンダヘッド20の温度は上昇し易くなる。その結果、吸気通路21における吸気の流速を上昇させたとき、吸気の温度も上昇し易くなり、ノッキングが生じ易くなる。したがって、実施例1および実施例2に係る燃焼室の構造がシリンダヘッド20が断熱化された内燃機関5に適用されることで、吸気通路21における吸気の流速を上昇させることなく正タンブル流の強度を上昇させる作用効果をより効果的に発揮することができる。
【0043】
以上本発明の好ましい実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0044】
5 内燃機関
10 シリンダブロック
20 シリンダヘッド
21 吸気通路
22 排気通路
40 燃焼室
41 吸気側斜面
42 排気側斜面
43 吸気開口部
44 排気開口部
45 端部
46 端部
47 スペース
50 吸気バルブ
60 排気バルブ
70 バルブシート
71 中心軸
80 バルブシート
100 延長面

【特許請求の範囲】
【請求項1】
吸気通路および排気通路を有するシリンダヘッドの下方に形成された燃焼室に吸気行程において正タンブル流が形成される内燃機関の前記シリンダヘッドの前記燃焼室に露出した部分に、前記燃焼室の中央側から前記燃焼室の内周面側に向けて斜め下方に傾斜した吸気側斜面および排気側斜面を有し、
前記吸気側斜面には前記吸気通路の開口端である吸気開口部が形成され、前記排気側斜面には前記排気通路の開口端である排気開口部が形成され、前記排気開口部は前記吸気行程において排気バルブによって閉口されており、
前記吸気通路には吸気バルブ用のバルブシートが配置され、
前記燃焼室を前記吸気側斜面および前記排気側斜面に垂直な面で切断した断面において、前記バルブシートの内周面のうち前記バルブシートの中心軸より上方の部分は、前記排気側斜面を前記バルブシートの方向に仮想的に延長させた延長面と接触する位置または前記延長面より上方に位置している内燃機関の燃焼室構造。
【請求項2】
前記吸気側斜面の前記排気側斜面の側にある端部は、前記排気側斜面の前記吸気側斜面の側にある端部よりも上方に位置している請求項1記載の内燃機関の燃焼室構造。
【請求項3】
前記バルブシートが前記吸気通路の前記吸気開口部よりも吸気の流動方向上流側に配置されていることで、前記吸気開口部と前記バルブシートとの間にスペースが形成されている請求項1または2に記載の内燃機関の燃焼室構造。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate