説明

内視鏡およびその製造方法

【課題】小型かつ軽量で、高精度で信頼性の高い内視鏡を提供する。
【解決手段】 光源部22と、撮像部23と、光源部22または撮像部23を制御する制御部26と、光源部22、撮像部23、制御部26の少なくともひとつに給電するための給電部50とで構成された機能部と、この機能部を収納する外装容器130と、外装容器130の内壁130iに形成され、光源部22、撮像部23、制御部26および給電部50の少なくとも2つを相互接続する配線部とを備えた内視鏡であって、配線部60が外装容器の内面に形成された配線パターンからなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内視鏡およびその製造方法に関する。
【背景技術】
【0002】
近年、内視鏡、特にカプセル型内視鏡の開発が進められている。カプセル型内視鏡は、錠剤のように飲み込むことができるため、チューブを挿入する従来型と異なり、患者の負担を抑えながら消化器内を観察することができる。カプセル型内視鏡は、CCD(固体撮像素子)あるいはCMOSセンサなどの撮像素子と超小型レンズによる撮像機構と、無線送信機構を備え、飲み込んだ患者の消化器内部の様子を外部モニターで観察できるように構成されている(特許文献1)。このカプセル型内視鏡は、胃や腸のぜん動により体内を進み、8時間後には体外に排出される。従って患者への負担は従来に比べ低減されるものの、異物であることには違いないため、なるべく使用回数を低減すべく、高機能化により、この8時間に、必要な処理をすべて行えるように、種々の開発が進められている。特に、無線による給電システムや患部への薬液放出機構なども付加が求められるようになっている。
このような状況の中で、患者への負担を軽減するという観点から、これらの小型化・軽量化が望まれている。
【0003】
ところで、撮像素子の実装については様々な電子機器への搭載に適合するように種々の研究がなされている。これらの状況のもと、撮像素子の実装基板を、MID(Molded Interconnect Device:射出成型回路部品)に置き換え、機構部品としての機械的機能と、配線回路基板としての電気的機能との融合により、小型化に加え、機器の組み立て合理化と部品の高精度化をはかるべく、研究が進められている。
【0004】
また、本出願人は、ベアチップ実装を念頭におき、成形技術、メタライジング技術、レーザ加工技術、切断技術などの要素技術を融合した複合加工技術としてMIPTEC(Microscopic Integrated Processing Technology)を提案している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−065575号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に示されたような従来のカプセル型内視鏡では、図21に示すように、外装容器1000内に、光源1022、センサ基板1023、制御基板1020、通信基板1031をはんだボールで接続している。この場合は、それぞれの基板を治具などで固定しながら加熱し、半田ボールを溶融させ接続する。また、リペアー時には基板を固定する専用の治具を必要とする。
そして上記基板モジュールをカプセルに挿入する際には、必ずクリアランスが必要であるが、そのクリアランスにより、光軸の調整を行ったうえで基板モジュールを固定する必要がある。
また、半田ボールに代えてフレキシブル基板を用いた相互接続も用いられているが、振動や衝撃により、接続信頼性の確保が難しい。
【0007】
また、撮像素子チップがフリップチップ実装される超小型カメラモジュールの場合、撮像素子チップ実装面の平面度および平行度を極限水準まで向上させる必要がある。
【0008】
特に、内視鏡のように、体内で用いるモジュールにおいては、更なる小型化が望まれており、特に、撮像素子チップと、光学フィルタ、レンズブロックとの関係は、わずかな位置ずれや、方向ずれによって、画像および位置情報の大幅な精度低下につながるため、位置精度は極めて重要である。
【0009】
本発明は、前記実情に鑑みてなされたものであり、小型かつ軽量で、高精度で信頼性の高い内視鏡を提供することを目的とする。
【課題を解決するための手段】
【0010】
そこで本発明の内視鏡は、光源部と、撮像部と、光源部または撮像部を制御する制御部と、光源部、撮像部、制御部の少なくともひとつに給電するための給電部とで構成された機能部と、機能部を収納する外装容器と、外装容器の内壁に形成され、光源部、撮像部、制御部および給電部の少なくとも2つを相互接続する配線部とを備えた内視鏡であって、配線部が外装容器の内面に形成された配線パターンからなることを特徴とする。
【0011】
また本発明は、上記内視鏡において、外装容器が、内壁が露呈するように分割された複数の分割部で構成され、分割部は接合面で互いに当接し、気密構造体を構成することを特徴とする。
【0012】
また本発明は、上記内視鏡において、外装容器は、内壁に、光源部、撮像部、制御部および給電部の少なくとも1つを係止する係止部を有し、配線パターンが係止部まで伸張し、係止部で、機械的接続と同時に電気的接続がなされることを特徴とする。
【0013】
また本発明は、上記内視鏡において、半円筒状の外周部を有し、外装容器の一部を構成する第1の半筒部と、第1の半筒部の内壁に設けられた係止部のひとつに係止され、撮像部を構成する第1の回路基板と、第1の半筒部の内壁に設けられた係止部の他のひとつに係止され、給電部を構成する電池と、第1の回路基板および給電部を囲むように、第1の半筒部とともに、外装容器を構成する第2の半筒部とを有することを特徴とする。
【0014】
また本発明は、上記内視鏡において、外装容器は、端面が側面から連続的になだらかに突出した凸部を構成する円筒体で構成され、この撮像部は、撮像面が外装容器の円筒体の回転軸に対して垂直な面上に撮像面を持つように配置されたことを特徴とする。
【0015】
また本発明は、上記内視鏡において、撮像部を構成する第1の基板は、第1の半筒部の内壁から伸張するように、一体的に形成されたことを特徴とする。
【0016】
また本発明は、上記内視鏡において、第2の半筒部は、内壁に配線パターンを有することを特徴とする。
【0017】
また本発明は、上記内視鏡において、制御部を構成する第2の回路基板を具備し、第2の回路基板は、第1または第2の半筒部の内壁に設けられた配線パターンに電気的に接続された係止部で係止部され、配線部を介して第1の基板と電気的に接続されたことを特徴とする。
【0018】
また本発明は、上記内視鏡において、前記外装容器の内壁にアンテナ部を構成する導体パターンが配設されたことを特徴とする。
【0019】
また本発明は、上記内視鏡において、給電部は、外装容器の一端部にコネクタ接続され、着脱自在に接続されたことを特徴とする。
【0020】
また本発明は、内面に配線パターンからなる配線部を有する絶縁性の成形体からなる外装容器を形成する工程と、外装容器の内壁に形成された配線部で、光源部、撮像部、制御部および給電部の少なくとも2つが相互接続されるように、外装容器内に、光源部と、撮像部と、光源部または撮像部を制御する制御部と、光源部、撮像部、制御部の少なくともひとつに給電するための給電部とで構成された機能部を装着する工程と、外装容器を封止する工程とを含む。
【0021】
また本発明は、上記内視鏡の製造方法において、外装容器を形成する工程が、内壁が露呈するように、複数の分割部をなすように絶縁性の分割成形体を形成する工程と、成形体の内壁に配線パターンを形成し配線部を形成する工程とを含み、内壁に機能部の少なくとも一つが電気的および機械的に接続するように機能部を装着した後、分割部を構成する成形体を、接合面で互いに当接し、気密構造体を構成するように接合する工程とを含む。
【0022】
また本発明は、上記内視鏡の製造方法であって、外装容器を形成する工程が、複数の分割部をなし、その少なくとも一方が、サポートバーを介して内壁から連続的に形成された第1の回路基板を含むように絶縁性の分割成形体を形成する工程と、分割成形体の内壁に配線パターンを形成し配線部を形成する工程と、配線部の形成された第1の回路基板を、サポートバーを折り曲げ、第1の回路基板を内壁に対して垂直となるように起立せしめる工程とを含み、内壁に機能部の少なくとも一つが電気的および機械的に接続するように機能部を装着した後、分割部を構成する分割成形体を、接合面で互いに当接し、気密構造体を構成するように接合する工程とを含む。
【発明の効果】
【0023】
上記構成によれば、外装容器の内壁に直接配線パターンが形成され、外装容器が直接基板として用いられる構造であるため、小型かつ軽量化が可能となる。また組み立て作業性が良好で、接続部が少ないため、高精度の位置決めが可能であるとともに、信頼性の高い内視鏡を提供することが可能となる。
【図面の簡単な説明】
【0024】
【図1】(a)および(b)は本発明の実施の形態1のカプセル型内視鏡の概要を説明するための一部破断分解斜視図
【図2】本発明の実施の形態1のカプセル型内視鏡の外観図
【図3】本発明の実施の形態1のカプセル型内視鏡の回路基板の要部断面図
【図4】(a)および(b)は本発明の実施の形態1のカプセル型内視鏡の回路基板の実装工程を説明する要部拡大図
【図5】(a)および(b)は本発明の実施の形態1のカプセル型内視鏡の回路基板への配線パターンの形成工程を示す図、(c)は(b)のB−B断面図
【図6】(a)乃至(c)は本発明の実施の形態1のカプセル型内視鏡の回路基板への配線パターンの形成工程を示す図
【図7】本発明の実施の形態2のカプセル型内視鏡を示す一部破断分解斜視図
【図8】本発明の実施の形態2のカプセル型内視鏡を示す要部斜視図
【図9】本発明の実施の形態2のカプセル型内視鏡の光源部を示す要部拡大図
【図10】本発明の実施の形態3のカプセル型内視鏡を示す一部破断分解斜視図
【図11】本発明の実施の形態3のカプセル型内視鏡の配線部形成工程を示す図
【図12】本発明の実施の形態3のカプセル型内視鏡の製造工程図
【図13】本発明の実施の形態4のカプセル型内視鏡を示す一部破断分解斜視図
【図14】本発明の実施の形態5のカプセル型内視鏡を示す一部破断分解斜視図
【図15】本発明の実施の形態6のカプセル型内視鏡を示す一部破断分解斜視図
【図16】本発明の実施の形態7のカプセル型内視鏡を示す全体斜視図
【図17】本発明の実施の形態7のカプセル型内視鏡を示す断面図
【図18】本発明の実施の形態7のカプセル型内視鏡の組み立て状態を示す説明図
【図19】本発明のカプセル型内視鏡の撮像部の変形例を示す断面図
【図20】本発明のカプセル型内視鏡の変形例を示す一部破断斜視図
【図21】従来例のカプセル型内視鏡を示す断面図
【発明を実施するための形態】
【0025】
以下、図面を参照して、本発明の実施の形態となるカプセル型内視鏡について説明する。
【0026】
(実施の形態1)
このカプセル型内視鏡100は、図1(a)および(b)、図2に概要を説明するための一部破断分解斜視図および外観図を示すように、外装容器130の内面に直接配線パターンを形成し、外装容器を回路基板として用い、小型かつ軽量化を図るものである。
このカプセル型内視鏡100は、撮像部をはじめとする機能部間の相互接続のための配線部60が外装容器130の内壁に形成された第1の配線パターン61からなることを特徴とする。すなわち、カプセル型内視鏡100は、撮像領域を照射する光源部22としてのLED発光素子と、CCD撮像素子からなる撮像部23と、光源部または撮像部を駆動制御する制御部26と、光源部22、撮像部23、および制御部26に給電するための二次電池としてのボタン電池51と電極端子52a、52bとからなる給電部50とで構成された機能部と、機能部を収納する外装容器130と、外装容器130の内壁に形成され、光源部22、撮像部23、制御部26および給電部50の少なくとも2つを相互接続する配線部60とを備えている。図1(a)は分解斜視図、図1(b)は組み立て工程において、第1の回路基板を実装した状態を示す図である。第1の回路基板20およびこの外装容器130の内壁に形成された配線部60によって、給電部50と、給電部50以外の機能部を構成する第1の回路基板20との間が電気的に接続されている。外装容器130の内壁にはアンテナ部30を構成する配線パターンが形成されている。
【0027】
外装容器130は、内壁130iが露呈するように、分割された2つの半円筒状体からなる第1および第2の半筒部130a、130bと、透光性のアクリル樹脂で構成された前面レンズ400とで構成され、第1および第2の半筒部130a、130bおよび前面レンズ400は接合面130Sで互いに当接し、気密構造体を構成する。
【0028】
そして、図2に外観図を示すように、このカプセル型内視鏡は、端面が側面から連続的になだらかに突出した凸部を構成する円筒体で構成され、撮像部は、撮像面が外装容器130の円筒体の回転軸Oに対して垂直な面上に撮像面23Pを持つように配置される。
【0029】
また、外装容器の内、第1の半筒部130aの内壁130iは、平坦壁面130Hとこの平坦壁面130Hに垂直な垂直壁面130Vとで構成されている。そしてこの平坦壁面130Hは、光源部22と撮像部23と制御部26を搭載した第1の回路基板20を係止する係止部132としての係止溝を有している。また給電部50を構成する電極端子52a、52bもそれぞれ、内壁130iに、設けられた係止部132に係止されている。そしてこの電極端子52a、52b間にボタン電池51が搭載される。係止部132は第1の半筒部130aの内壁のひとつである平坦壁面130Hに形成された溝部で構成されている。
これら係止部132ではいずれも配線部60を構成する配線パターンが係止部132まで伸張し、係止部132で機械的接続と同時に電気的接続がなされるように構成されている(後述する)。
【0030】
また、機能部は、第1の回路基板20を構成しており、図3に断面説明図を示すように、アクリル樹脂からなり、貫通開口部Hを有する絶縁性の基板21上に、撮像領域を照射する光源部22として4個のLED発光素子チップと、CCD撮像素子チップで構成された撮像部23と、光源部または撮像部を駆動制御する制御部26としての制御回路ICとが搭載されて構成されている。
【0031】
そして、これら光源部22、撮像部23、制御部26への給電は、ボタン電池51から電極端子52a、52bを通り、垂直壁面130Vに設けられた配線パターンからなる配線部60と係止部132を経由して、第1の回路基板20を経、第1の回路基板20の配線パターン(図示せず)によって接続される。40はレンズユニットである。
【0032】
この撮像部23は貫通開口部Hを塞ぐように基板21の第1の面21A側にバンプ231Sを介してフリップチップ接続されるCCD撮像素子チップ231と、このCCD撮像素子チップ231の撮像面に対向して基板21の第2の面21B側に透光性部材232とを具備している。CCD撮像素子チップ231は、シリコン基板表面に形成された光電変換部とこれに接続された電荷転送部とで構成される。また、透光性部材232としてのIRフィルタはガラス基板で構成され、接着性樹脂を介して接合されている。またこの第1の回路基板20を構成する基板21上にも配線部60に接続するように第2の配線パターン236が形成され、CCD撮像素子チップ231への給電および第1の回路基板の第1の面21Aに搭載された制御用IC261に接続されている。制御用IC261には、CCD撮像素子チップ231の駆動制御を行うものに加え、その出力信号を電気的に補正して、カメラの解像度や色調、シェーディングなどを補正するDSP(デジタル・シグナル・プロセッサ)が搭載されている。さらには、制御用IC261のほか、通信用IC262も搭載されており、DSPなどで補正された信号を無線信号として出力する。これを体外の受信装置で受信し、ディスプレイ(図示せず)に表示するようになっている。
【0033】
またレンズユニット40は、第1の回路基板20に内蔵された電磁素子、ピエゾ抵抗素子、高分子素子(人工筋肉)等を用いたアクチュエータによりガイド軸(図示せず)をレンズユニットの支持部42が摺動することで、レンズユニットのレンズ41が光軸に沿って移動し、CCD撮像素子チップとの距離を調整できるようになっている。また43は絞りであり、絞り43もまた制御用IC261で絞り量が制御されている。
【0034】
次に、この第1の回路基板20の係止部132との接続について説明する。
この第1の回路基板20の1側面20Sには、図4(a)に示すように、溝部211とこの溝部211に沿って形成された第2の配線パターン236とが形成されている。この第1の回路基板20の1側面20Sを、図4(b)に示すように、外装容器130の第1の半筒部130aに配設された溝部からなる係止部132に当接させ、導電性の接着剤24で接合する。この係止部132には、前述したように配線部60を構成する第1の配線パターン61が伸張しており、この第1の配線パターン61と第2の配線パターン236との電気的接続が実現する。また係止部132を構成する溝部に第1の回路基板20を挿入し、接着剤で接合することで電気的接続と同時に機械的接続が実現される。また位置決めも容易となり、外装容器の内壁に確実かつ強固な接続が達成されることになる。
【0035】
なおこの第1の回路基板20の溝部211および第2の配線パターンは以下のようにして形成される。まず図5(a)に示すように、に第1の回路基板20を構成する絶縁性の基板21の端部を示すように、基板21に孔h0を形成したのち、レーザビームを照射し、照射領域の基板表面を活性化し、活性化領域236Rを形成する。そしてめっき浴に浸漬し、図5(b)および(c)に示すように、孔h0内も含むようにめっき層からなる第2の配線パターン236を形成する。そしてX−Xで示すように孔h0を含むダイシングラインに沿って、ダイシングを行う。これにより、図4(a)に示したように、端部に第2の配線パターン236で覆われた溝部を有する配線基板を得ることができる。ここで基板の第1の面および第2の面にも第2の配線パターンが形成されている。なお、図5(c)は図5(b)のB−B断面図である。
【0036】
製造に際しては、まず、貫通開口部および孔部を有する絶縁性の基板21に第2の配線パターン236を形成しダイシングして基板を用意する。
この後、撮像素子チップ231および透光性部材、制御用ICなどを搭載し、第1の回路基板20を形成する。
そして、外装容器130の第1の半筒部130aの内壁に設けられた係止部の第1の配線パターン61上に半田62をディップし、第1の回路基板20の端子形成面である側面20Sを端部および、給電部50を構成する端子部52a,52bを装着し、加熱し、半田リフローを行う。
そして、図1に示すように第1および第2の半筒部と、レンズ400とをあわせ、第1および第2の半筒部の接合面に形成されたヒータ線900に通電し加熱することで、接合面を融着する。
【0037】
以上説明してきたように、本実施の形態によれば、機能部の相互接続は外装容器130の内壁に形成された配線部60で実現されるため、配線長を最低限に抑えかつ、固定配線であるため、振動によるずれや破損も防ぐことができる。また、レンズモジュールや撮像部をはじめ部品それぞれの位置が、MIDで構成された外装容器130に対して高精度に位置決めされて実装されるため、きわめて高精度の組み立てが可能である。
【0038】
外装容器130の内壁に、第1の回路基板20と給電部50とが直接実装されるため、部品点数の低減を図ることが可能であるとともに、接着箇所が少なくマージンが不要であるだけでなく、組み立て工数の削減を図ることができる。また実装が容易でかつ小型化が実現可能である。また不要な部材を削減できるため、軽量化が可能となる。
【0039】
さらにまた外部容器130を構成するカプセルが第1の回路基板20を固定する役割を果たすため、実装工程あるいは補修時に基板を固定するための治具も不要である。
撮像部23と給電部50をはじめ、各部の相互接続が、外装容器内壁に形成された配線部60で実現され、FPC(可撓性配線基板)や金属端子などの無理な折り曲げが不要であるため、実装部の信頼性が向上する。
【0040】
また、体内で使用するものであるため、メディカルグレードの高い部材を用いることが義務付けられるが、部品点数が少なく、接着箇所も少ないため、設計が容易である。
【0041】
さらにまた第1の配線パターン61は、外装容器の分割部の開口方向に対向するように形成されているため、接続が容易であり、かつパターン形成も容易である。
【0042】
また、外装容器は、端面が側面から連続的になだらかに突出した凸部を構成する円筒体で構成されているため、体内を円滑に進むことができるだけでなく、樹脂成形で形成することができるため、容易に所望の形状を得ることができる。
また撮像部は、撮像面が外装容器を構成する円筒体の回転軸Oに対して垂直な面上に撮像面23Pを持つように配置されているため、カプセル型内視鏡の前方を効率よく撮像することができる上、光軸あわせも容易である。
【0043】
加えて、第1の半筒部に接合される第2の半筒部についても、内壁に配線パターンを形成してもよい。配線面積の増大をはかることができる。アンテナパターンとすることで外装容器内壁全体をアンテナ部30とすることができ、高感度化をはかることができる。
【0044】
また、アンテナ部30あるいは配線部60は、外装容器の内壁だけでなく、外装容器内に埋め込み配線を構成してもよい。特にアンテナ部30は外装容器内にスルーホールを介して外装容器の内壁を周回するようにコイル状に形成することも可能である。
【0045】
ここで撮像部23を構成するCCD撮像素子チップ231はCCDチップであるが、CCD撮像素子チップ231のセンサ部の周辺部に、DSP機能の回路を配置したいわゆるシステム・オン・チップ(SOC)型の固体撮像素子を用いるようにしてもよい。
これにより更なる小型化を図ることが可能となる。
【0046】
以上のように、CCD撮像素子チップが搭載される第1の回路基板(基板20)は、CCD撮像素子を構成するシリコンチップと熱膨張係数が近い樹脂を選択することで、製造工程、および使用時における、温度サイクルなどの環境変化においても、接合部への応力発生を抑制することができ、チップクラックの発生を抑制することができる。
【0047】
また、第1の回路基板20を介してアクチュエータへの給電を行うことができるため、配線長を短くすることができ、電気的損失が少なく、小型でかつ外観性に優れたカメラモジュールを提供することが可能となる。
本発明を実施することにより、固体撮像装置の小型化に有効である。
【0048】
なお、透光性部材としては、IRフィルタに限定されることなく、透光性基板にフィルタ膜あるいは反射防止膜を形成したものを用いてもよい。このように透光性基板にフィルタ機能や反射防止機能を持たせた場合には、より光学特性を向上させることが出来る。
【0049】
本実施の形態において第1の回路基板は樹脂基板で構成したが、セラミック基板を用いてもよい。セラミック基板を用いた場合、セラミックグリーンシートを積層する際に、処理回路などのチップ部品を搭載しながら、積層し、焼成することによって、チップ部品を立体配線基板内に埋め込むことができる。また、この場合は回路部が多層構造であるため、回路設計の自由度が向上し、ノイズに強い回路配置や設計変更時の回路引き回しが容易となる。
【0050】
また外装容器自体についても配線パターンを埋め込み形成し、アンテナ部を形成したりすることも可能である。あるいはリードフレーム上にチップ部品を搭載した状態で、金型内で外装容器を成形し、リードを外装容器内壁に導出するように形成することも可能である。
【0051】
また、外装容器を構成する第1および第2の半円筒部への配線パターンの形成に際しては、例えば以下のような方法をとることができる。
1)射出成形
図6(a)に示すように、射出成形により第1および第2の半円筒部130a、130bを形成する。材料としては種々の材料が使用可能であるが、PBT、PETその混合物などを適用可能である。
2)レーザ照射による活性化
図6(b)に要部拡大断面図を示すように、第1および第2の半円筒部内壁130iの配線パターン形成領域に、レーザビームを照射し、物理化学反応により、活性化領域61Rを形成する。この活性化領域61Rが銅めっき層等の核となる。
3)めっき
図6(c)に要部拡大断面図を示すように、めっきにより、活性化領域61Rに銅などのめっき層を形成し、配線パターン61を形成する。なおこの活性化領域が、めっきのための触媒として作用し、選択的に所望の膜厚を得ることができる。このときの膜厚は3〜5μm程度である。銅のほかNi、Au、Sn、Sn/Pb、Ag、Ag/Pdなども形成可能である。
4)アニール処理
形成された配線パターンをアニール処理する。
このようにして、高精度のパターン形成が可能となる。
【0052】
また、外装容器を構成する第1および第2の半円筒部への回路パターンの形成に際しては、例えば以下のような方法をとることもできる。
1)射出成形により第1および第2の半円筒部を形成したのち、表面をプラズマ処理して微細な凹凸を付与する粗面化処理を施す。
2)第1および第2の半円筒部表面全体に下地層として薄い金属膜を設ける。下地層の形成は、第1および第2の半円筒部を構成する樹脂基板の表面にスパッタリングを行うことで、実現する。また、スパッタリングのほか、触媒を付与した後に無電解めっきをおこなったり、CVDやPVDなど、任意の方法で形成することができる。また下地層の材料としては、Cu,Ni,Pd,Cr,Ag等があり、スパッタリングをおこなって形成する場合には、薄い下地層を形成する。また、下地層はめっき用触媒やめっき用触媒の化合物を第1および第2の半円筒部の内壁に形成することによっても形成することができる。
3)レーザ照射
第1および第2の半円筒部の内壁にレーザ等の電磁波を照射して電磁波を照射した部分の薄い下地層を除去する。例えば非回路部の回路部との境界領域の下地層を除去する。
4)めっき
境界領域にレーザを照射したのち、電気めっきにより、回路部の下地層上に銅などのめっき層を析出させる。
5)下地層の除去
表面に露呈する下地層をソフトエッチングにより除去し、配線パターンを形成する。
このようにして、高精度で信頼性の高い配線部60あるいはアンテナ部30を容易に形成することができる。
また、第1の回路基板への第2の配線パターンの形成は、スクリーン印刷によって行ったが、第1の回路基板についても同様に、スパッタリングおよびめっき方を用いるようにしてもよい。
【0053】
また、第1および第2の半円筒部を構成する基板として樹脂基板に代えて、セラミック基板として積層セラミック基板を用いる場合には、グリーンシートを用いて焼成と同時に行うこともできる。
【0054】
このように、レンズなどの光学部品と、外装容器および第1の回路基板上の配線パターンの位置精度が飛躍的に向上することで、画質の向上、組み立て時の光軸無調整化、などの利点を得ることができる。
【0055】
なお、この外装容器および第1の回路基板への配線パターンの形成については、上記方法に限定されることなく、金属を含むセラミック基板を用い、配線パターンを形成すべき基体表面にレーザ照射により、この金属を露呈せしめ、この金属上に選択めっきを行い、さらにアニール処理を行うことで、配線パターンを形成する方法など、適宜変更可能である。このアニール処理は、高精度のパターンを得るためには、低温加熱と高温加熱の2段階加熱処理を行うようにするのが望ましい。
【0056】
また前記実施の形態では、外装容器として射出成形によって形成した樹脂製の立体基板を用いたが、セラミック基板でもよくまた、グリーンシートを用いた積層基板を用いてもよい。ここでは例えば1000℃以下で低温焼結が可能なセラミック誘電体材料LTCC(低温温同時焼成セラミック:Low Temperature Co-fired Ceramics)からなり、厚さが10μm〜200μmのグリーンシートに、低抵抗率のAgやCu等の導電ペーストを印刷して所定のパターンを形成し、複数のグリーンシートを絶縁層として用いて、適宜一体的に積層し、焼結することにより内部導体層を備えた絶縁層(誘電体層)として製造することが出来る。これらの誘電体材料としては、例えばAl、Si、Srを主成分として、Ti、Bi、Cu、Mn、Na、Kを副成分とする材料や、Al、Si、Srを主成分としてCa、Pb、Na、Kを複成分とする材料や、Al、Mg、Si、Gdを含む材料や、Al、Si、Zr、Mgを含む材料が適用可能である。ここで、誘電率は5〜15程度の材料を用いる。なお、セラミック誘電体材料の他に、樹脂積層基板や樹脂とセラミック誘電体粉末を混合してなる複合材料を用いてなる積層基板を用いることも可能である。また、セラミック基板をHTCC(高温同時焼成セラミック:High Temperature Co-fired Ceramics)技術を用いて、誘電体材料を、Alを主体とするものとし、内部導体層として伝送線路等をタングステンやモリブデン等の高温で焼結可能な金属導体として構成しても良い。
【0057】
また、グリーンシートに限定されることなく、他のセラミックにも適用可能であり、またエポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂などの樹脂基板を用いた場合、プリプレグを用いた積層基板などにも適用可能である。
【0058】
また、前面レンズとしては、アクリル樹脂のほか、ポリカーボネート樹脂やABS等の透明樹脂も適用可能である。
【0059】
(実施の形態2)
前記実施の形態では、第1の回路基板20に給電部を除いて、機能部のすべてを実装したが、第2の回路基板、あるいはさらに複数の回路基板を追加してもよい。
次に、本発明の実施の形態2として、第2および第3の回路基板と3枚の回路基板を用いた例について説明する。
このカプセル型内視鏡101は、図7および図8に概要を説明するための一部破断分解斜視図および要部拡大図を示すように、本実施の形態でも外装容器130の内面に直接配線パターンを形成し、外装容器を回路基板として用い、小型かつ軽量化を図る点では前記実施の形態1のカプセル型内視鏡100と同様である。図8については後述するが、回路基板係止部の拡大図である。
【0060】
このカプセル型内視鏡101では、図9に光源部の要部拡大図を示すように、撮像領域を照射する光源部22としてのLED発光素子が、ベアチップの状態で外装容器を構成する第1の半筒部130aの内壁に設けられた第1の配線パターン161上に半田162を用いて搭載されている。また、CCDカメラで構成された撮像素子からなる撮像部23は、制御回路(図示しない)とともに1の回路基板120上に搭載されている。なおこの構成では、第1の半筒部130aの内壁130iに形成された凹部123にLED発光素子122がベアチップの状態で搭載され、封止樹脂124を充填することで、外装容器130にLED発光素子122が直接実装される。
【0061】
また、レンズユニット40はレンズおよびレンズフォルダ,それらを電気信号で駆動させるアクチュエータから構成され、レンズモジュール基板としての第2の回路基板140を構成する。この第2の基板はレンズフォルダをMIDで構成することで外周部にコイルを形成しアクチュエータとしてレンズを駆動させてもよい。
【0062】
さらに、通信部を構成するRFモジュール31とアンテナ部30とが第3の回路基板110上に搭載され、これら第1乃至第3の回路基板が、外装容器の内壁に設けられた係止部132で電気的接続および機械的接続を達成する。
【0063】
給電部50については前記実施の形態1と同様、ボタン電池51と電極端子52a、52bとで構成され、同様に係止部132で軽視された電極端子52a、52bによってボタン電池51を支持している。
【0064】
そして外装容器を構成する第1の半筒部130aの内壁に設けられた第1の配線パターン161によって、光源部22、レンズモジュールを構成する第2の回路基板140、撮像部を構成する第1の回路基板120が相互接続される。
【0065】
本実施の形態においても、外装容器130は、内壁130iが露呈するように、分割された2つの半円筒状体からなる第1および第2の半筒部130a、130bと、透光性の樹脂で構成された前面レンズ400とで構成され、第1および第2の半筒部130a、130bおよび前面レンズ400は接合面130Sで互いに当接し、気密構造体を構成する。
【0066】
そして、外観についても図2に示したものと同様であり、このカプセル型内視鏡は、端面が側面から連続的になだらかに突出した凸部を構成する円筒体で構成され、撮像部は、撮像面が外装容器130の円筒体の回転軸Oに対して垂直な面上に撮像面23Pを持つように配置される。
【0067】
また、第1乃至第3の回路基板を係止する係止部132としての係止溝132Vは、図7に要部拡大図を示すように、内壁の水平部すなわち平坦壁面130Hに設けられた凸部133で囲まれた領域に形成され、開口側で幅広となるように構成されている。この構成により、係止部に回路基板を装着する際、挿入が容易で、かつ確実に回路基板を係止することができる。
【0068】
本実施の形態においてもこれら係止部132ではいずれも配線部を構成する第1の配線パターン161が係止部132まで伸張し、係止部132で機械的接続と同時に電気的接続がなされるように構成されている。
【0069】
本実施の形態によれば、前記実施の形態1のカプセル型内視鏡と同様、配線部を介して、機能部が相互接続されているため、確実で信頼性が高く、小型で信頼性の高いカプセル型内視鏡を提供することが可能となる。
なお、回路基板が3枚となり、外装容器への実装作業性は低下するが、第1乃至第3の回路基板の実装および取替えは容易である。また通信部を構成する第3の回路基板110においては、アンテナ部30とRFモジュール31が同一基板上に搭載されるため、配線長の低減が可能となり、ノイズを低減することが可能となる。
【0070】
さらに回路基板の枚数を増やしてもよいが、その場合は係止部132を回路基板の数に対応するように増設する。
【0071】
(実施の形態3)
前記実施の形態1では、第1の回路基板20に給電部を除いて、機能部のすべてを実装し、外装容器130の内壁130iに形成された係止部132を介してこの第1の回路基板20を外装容器130の内壁に装着したが、本実施の形態では、この第1の回路基板20を構成する基板21を外装容器130の内壁130iに一体成形により形成したことを特徴とする。
【0072】
すなわち、本実施の形態では、図10および図11に示すように、外装容器の内壁130iに、第1の回路基板20に相当する機能部を連結部としてのサポートバー135を介して、連続的に形成された第1の回路基板部136で構成したことを特徴とするものである。この構成においても実装される部材としては前記実施の形態1の回路基板20に実装されている部材と同様である。
【0073】
他は実施の形態1と同様に形成されている。このカプセル型内視鏡は、外装容器130を構成する分割成形体として、第1および第2の半筒部130a、130bを形成する。そしてこれら第1および第2の半筒部130a、130bのうちの一方の内壁からサポートバー135を介して連続的に第1の回路基板部136を形成するように射出成形により、外装容器を成形する。そしてこの第1の回路基板部136に第2の配線パターン236を形成して配線部を構成する(図11)。この後サポートバー135を折り曲げ、第1の回路基板部136を起立せしめ、図10に示した内視鏡を得る。
【0074】
次に製造工程について詳細に説明する。
金型を用意し、外装容器130を構成する分割成形体として、第1および第2の半筒部130a、130bを形成する。このときこれら第1および第2の半筒部130a、130bのうちの一方の内壁からサポートバー135を介して連続的に第1の回路基板部136を形成する(図12(a))。
そしてこのままの状態で、スパッタリング法、めっき法を経て第1の配線パターン161およびアンテナ部30を構成するパターンを形成する(図12(b))。ここでは図示しないが、配線パターン161は、第2の配線パターン236として、第1の半筒部130aの内壁からサポートバー135上を介して第1の回路基板部136に連続形成される。
【0075】
そして、透光性部材232を装着したのち、配線部の形成された第1の回路基板部136を、サポートバーを折り曲げ、第1の回路基板部136を内壁に対して垂直となるように起立せしめる(図12(c))。このとき、第1の半筒部130aの内壁に第1の回路基板部136を係止する係止部を形成しておくようにしてもよい。
この後、サポートバーの部分に半田あるいは導電性接着剤を充填し、電気的接続および機械的接続を補う。
【0076】
続いて、撮像素子チップ123を搭載するとともに、前記実施の形態1と同様に制御IC261などを実装する。
そして、給電部を装着し、第2の半筒部および前面レンズ400とともに接合し、実施の形態1と同様にカプセル型内視鏡を得る。
【0077】
この方法によれば、第1の回路基板を外装容器と一体成形して第1の回路基板部とし、そのままの状態で配線パターンも外装容器の内壁への形成と、同時形成するため、効率よく形成することができる。また、内壁上で透光性部材を装着するため、支持用の治具が不要となる。
【0078】
(実施の形態4)
前記実施の形態1乃至3では、給電部50としてボタン電池を備えたものについて説明したが、本実施の形態では、図13に示すように、非接触給電により給電を行うように構成された磁性体パターンからなる受電側コイル53を印刷配線により形成し、図示しない外部に配設された給電側コイルを介して給電するようにしたものである。また本実施の形態では、外装容器の軸Oに沿って第1の回路基板部146が一体形成されており、この第1の回路基板部146に撮像素子チップ123が搭載され、撮像面がこの中心軸Oに平行な方向となるように形成されている。236はLED発光素子である。
【0079】
他部については前記実施の形態1乃至3と同様であり、撮像領域を照射する光源部22としてのLED発光素子と、CCD撮像素子からなる撮像部23と、光源部または撮像部を駆動制御する制御部26とを、外装容器130内に収納しており、外装容器130の内壁に配線部60が形成され、光源部22、撮像部23、制御部26および給電部50の少なくとも2つを相互接続する。この配線部60は外装容器130の内壁に形成された第1の配線パターンからなる。
【0080】
この構成によれば、この内視鏡は、ボタン電池51を不要とし、受電側コイル53のみでよいため、小型化が可能となる。
また、内視鏡の側面方向を撮像面として信頼性の高い画像出力を得ることが可能となる。
【0081】
(実施の形態5)
前記実施の形態4では、外装容器の軸Oに沿って第1の回路基板部146Sが一体形成されており、撮像面がこの中心軸Oに平行な方向となるように形成したが、本実施の形態では、図14に示すように、外装容器の軸Oに垂直な方向に第1の回路基板部146Sが一体形成されており、この第1の回路基板部146Sに撮像素子チップ231が搭載され、撮像面がこの中心軸Oに垂直な方向となるように形成されている。121はLED発光素子である。
【0082】
他部については前記実施の形態4と同様であり、撮像領域を照射する光源部22としてのLED発光素子121と、CCD撮像素子231からなる撮像部23と、光源部または撮像部を駆動制御する制御部26とを、外装容器130内に収納しており、外装容器130の内壁に配線部60が形成され、光源部22、撮像部23、制御部26および給電部50の少なくとも2つを相互接続する。この配線部60は外装容器130の内壁に形成された第1の配線パターンからなる。
【0083】
この構成によっても、第1の回路基板が外装容器に一体形成されているため、第1の回路基板を実装する工程が不要となり、位置精度が向上しより実装作業性が良好となる。
また、内視鏡の前方を撮像面として信頼性の高い画像出力を得ることが可能となる。
【0084】
(実施の形態6)
本実施の形態の内視鏡は、図15に示すように、ケーブル702を介して体外のディスプレイ(図示せず)に接続するように構成され、本体部102に形成されたソケット137を介してコネクタ接続できるものである。すなわち本体部102のソケット137に接続可能に構成されたプラグ701を有するアダプタ700を具備し、このアダプタ700の他端がケーブル702を介して体外に導出される。また、本体部102には実施の形態4と同様に非接触給電を可能とする受電コイルを具備し、対外からケーブルを介しての接触給電と、受電コイルを介しての非接触給電の両方を使用可能に構成されている。
ここでも、図示しない第1の回路基板が第1および第2の半筒部130a、130bの2分割体として形成された外装容器130内に収納されている。そして、外装容器130の内壁に配線部(図示せず)が形成され、光源部、撮像部、制御部および給電部を相互接続する。この配線部(図示せず)は外装容器130の内壁に形成された第1の配線パターン(図示せず)からなる。
給電部以外の機能部については実施の形態1と同様に形成されているため、ここでは説明を省略する。
【0085】
この構成によれば、より小型化が必要な場合には非接触給電を用いることができる。また、非接触給電が使用しにくい場合には、安全装置として使用可能である。
【0086】
(実施の形態7)
前記実施の形態1乃至6では、外装容器130を軸に対して平行に2分割して構成したが、本実施の形態では、図16および図17に示すように、外装容器は半球状の外装容器本体部630と、これにコネクタ接続される補助機能部650とで構成されたことを特徴とする。図18は、本発明の実施の形態7のカプセル型内視鏡の組み立て状態を示す説明図である。
本実施の形態では、図16に全体斜視図、図17に概要を説明するための本体部の断面図を示す。半球状の外装容器本体部630は、立体回路基板としてのセラミック基板で構成され、中間支持部630Tを円筒状体の中間位置で内壁から内方に突出するように構成され、頂面に接合される透光性樹脂で構成された蓋部630Fとで構成されている。この外装容器本体部630の内壁には中間支持部630Tの第1の面TAには撮像素子チップ231、第2の面TBにはIRフィルタ232が搭載され、さらに外側に、レンズユニット40が搭載されている。レンズユニット40はレンズ41と、絞り43とを具備している。この外装容器本体部630は、絶縁層と配線層とを有する積層セラミックで構成され、中心の開口部Hに向けて突出する中間支持部630Tを有している。外装容器本体部内壁に形成された配線部636を介して機能部が相互接続されるとともに固定されることで、撮像部と外装容器本体部との位置合わせおよび固定が可能になっている。前面にはこの外装容器本体部630に直接LED発光素子からなる光源部22が搭載されている。補助機能部650は外装容器本体部630との間でコネクタ接続されており、給電部と通信部とが搭載されている。137はコネクタ配線を示す。
【0087】
本実施の形態では、図16に示すように、外装容器本体部を構成する立体回路基板の内壁に直接、配線部を有し、CCD撮像素子チップ231などが実装されている。この外装容器本体部630は図17に断面図を示すように、実装基板を構成しており、中央に開口部Hを有する中間支持部630Tを有する筒状体で構成され、前面に透光性のアクリル樹脂からなる前面蓋部630F1を装着している。そして、開口部Hを塞ぐように中間支持部630Tの第1の面TAに配置されたCCD撮像素子チップ231と、開口部Hを塞ぐように中間支持部630Tの第2の面TBに配置されたIRフィルタ232とが相対向するように配置される。また、処理回路などのチップ部品はセラミック積層基板で構成され外装容器本体部630を構成する立体回路基板内に埋め込まれていてもよい。
【0088】
この中間支持部630T上にも配線部に接続するように第2の配線パターン236が形成され、CCD撮像素子チップ231への給電および第1の面TAに搭載された制御用IC261に接続されている。制御用IC261には、CCD撮像素子チップ231の駆動制御を行うものに加え、その出力信号を電気的に補正して、カメラの解像度や色調、シェーディングなどを補正するDSP(デジタル・シグナル・プロセッサ)が搭載されている。さらには、制御用IC261のほか、通信用IC262もこの中間支持部の第1の面TA搭載されており、DSPなどで補正された信号を無線信号として出力する。これを体外の受信装置で受信し、ディスプレイ(図示せず)に表示するようになっている。
【0089】
つまり、中間支持部630Tが、実施の形態1における第1の回路基板の役割を有しており、この第1および第2の面からそれぞれCCD撮像素子チップ231およびIRフィルタ232の実装がなされている。
【0090】
組み立てに際しては、まず外装容器本体部630をグリーンシートの積層により形成する。そして、中間支持部630Tの第1の面TA側からCCD撮像素子チップ231、制御用IC261、通信用IC262などを実装する。この後中間支持部630Tの第2の面TB側からIRフィルタ232、レンズユニット40を実装する。そして、最後に蓋部630Fを接合する。この接合は、前記実施の形態1と同様、融着により気密的に接合されるようにする。この蓋部は透光性のアクリル樹脂で構成され前面レンズを構成する。
そして補助機能部650を図16に示すように、コネクタ接続することで、ケーブル式の内視鏡が構成される。
【0091】
この補助機能部650に代え、図18に示すように、背面蓋部630F2に、ボタン電池651を装着したものを、電極端子652を介して、外装容器本体部630にコネクタ接続するとともに、融着により接合面を気密的に接合し、カプセル型内視鏡とすることもできる。
【0092】
また、この補助機能部650に代え、非接触給電用のコイルと、アンテナ部および通信用ICを備えた通信部をコネクタ接続すれば、カプセル型内視鏡としても使用可能である。
【0093】
また本実施の形態においても、レンズユニット40は、前記実施の形態1と同様、第1の樹脂基板に内蔵された電磁素子,ピエゾ抵抗素子,高分子素子(人工筋肉)等(図示せず)を用いたアクチュエータによりガイド軸をレンズユニットの支持部が摺動することで、レンズユニットのレンズが光軸に沿って移動し、CCD撮像素子チップ231との距離を調整できるようになっている。
【0094】
なお、撮像部についても、適宜変更可能であり、たとえば図19に変形例を示すように、第1の回路基板20の一方の側にCCD撮像素子チップ231を配置するような構成をとるようにしてもよい。ここでは支持部42Sが第1の回路基板20上に設置され、この支持部42Sに対し、レンズユニット40が(図示しないアクチュエータにより)移動可能に設置されている。
【0095】
本実施の形態によれば、前記実施の形態1のカプセル型内視鏡に比べさらに小型化が可能であり、かつ実装基板を構成する立体回路基板そのものが外装容器を構成しているため、実装精度も高く、位置ずれを抑制することができるだけでなく、きわめて軽量でかつ小型化をはかることができる。
本実施の形態においても、外装容器全体をメディカルグレードの高い被覆剤で被覆して用いるのが望ましい。
【0096】
前記実施の形態では、素子チップを外装容器の内壁に実装する場合について説明したが、素子チップに代えて電子部品パッケージであってもよい。
また、ここでは接着部材を半田としたが、半田に限定されることなく、銀ペーストなどの導電性接着剤、あるいは絶縁性接着剤にも適用可能であることはいうまでもない。
【0097】
また、本実施の形態においては、アンテナ部は、筒状の外装容器本体部に多層配線を用いて形成してもよい。
【0098】
さらにまた、図20に示すように、外装容器130を構成する第1および第2の半筒部130a、130bの、内壁130iを周回するようにアンテナ部30を構成する配線パターンを連続形成してもよい。この場合は第1および第2の半筒部130a、130bの接合面においてアンテナ部30の形成位置を含むように、凹部32t、凸部32vを形成しておく。これにより第1および第2の半筒部130a、130bが接合面130Sで互いに当接した場合に、これら凹部32t、凸部32vに沿って形成されたアンテナ部30のパターンが係合し、確実に接合され、アンテナが形成される。このアンテナは外装容器の内壁面全体に形成するのが望ましい。また、実施の形態1乃至6でも形成されているミアンダパターンからなるアンテナ部30と相互接続してもよいし、別のアンテナとして用いてもよい。
この構成は、前記実施の形態1乃至6のいずれにも適用可能であることはいうまでもない。
【0099】
なお、外装容機器の内壁に形成される第1の配線パターンは、外装容器の分割部の開口方向に対向するように構成することで、配線パターンの形成が容易でパターン精度の高精度化をはかることができる。
【0100】
また、外装容器は、端面が側面から連続的になだらかに突出した凸部を構成する円筒体で構成され、撮像部は、撮像面が外装容器の円筒体の回転軸に対して垂直な面上に撮像面を持つように配置することで、内視鏡の前面を照射することができる。
【0101】
また、外装容器は、端面が側面から連続的になだらかに突出した凸部を構成する円筒体で構成され、撮像部は、撮像面が外装容器の円筒体の回転軸に対して平行な面上に撮像面を持つように配置されることで、内視鏡側面の撮像が容易となる。
【0102】
また、外装容器内壁に、素子搭載部を具備し、この素子搭載部にベアチップを搭載することで、より軽量勝つ実装作業性の良好な内視鏡を得ることができる。
【0103】
また、撮像部の搭載された第1の基板に、光源部を搭載することで、部品点数の削減を図ることができる。
【0104】
また、外装容器の内壁にアンテナ部を構成する導体パターンを配設することで、アンテナ面積を増大し通信機能の高感度化をはかることができる。
【0105】
また、給電部として、二次電池を用い、係止部に係止され、外装容器の内壁に電気的接続および機械的接続がなされるようにすることで、実装作業性の高い内視鏡を得ることができる。
【0106】
また、給電部は、外装容器の内壁に形成された配線パターンからなるコイルもしくは別途用意されたコイル、もしくは誘電体であり、電磁誘導や電磁場の共鳴を利用し、非接触給電部を構成するようにしてもよい。この場合図20に示したアンテナ部30に相当するような配線パターンを内壁の各所に形成し、コイルやアンテナ部として用いるようにしてもよい。これにより、小型でかつ外部からの制御が容易な内視鏡を得ることができる。
【0107】
また、第1の回路基板が、中央に開口部を有する中間支持部を有する筒状体であり、中間支持部の第1の面に形成された撮像素子搭載領域と、中間支持部の第2の面に形成された透光性部材搭載領域とを具備し、開口部に対応する位置にレンズユニットを支持する支持部を具備することで、外装容器を2分割構造とすることなく、筒状体で構成し、この外装容器に直接素子を搭載することで、大幅な軽量化と小型化を図ることができる。
【0108】
また、外装容器は、樹脂成形体で構成されてもよい。これにより、成型が容易で形状の自由度を高めることができる。
【0109】
また、外装容器は、セラミック成形体で構成されてもよい。これにより、平坦性が高く、安定した形状で信頼性を高めることができる。またメディカルグレードも高い。
【符号の説明】
【0110】
20 第1の回路基板
21 基板
22 光源部
23 撮像部
26 制御部
30 アンテナ
31 RFモジュール
40 レンズユニット
42S 支持部
50 給電部
51 ボタン電池
52a、52b 電極端子
60 配線部
61、161 第1の配線パターン
100、101 カプセル型内視鏡
102 本体部
130 外装容器
130a 第1の半筒部
130b 第2の半筒部
130i 内壁
130S 接合面
136 第1の回路基板部
137 ソケット
H 開口部
TA 第1の面
TB 第2の面
231 CCD撮像素子チップ
232 IRフィルタ
236 第2の配線パターン
261 制御用IC
262 通信用IC
400 前面レンズ
630 外装容器本体部
630T 中間支持部
630F1 前面蓋部
650 補助機能部
630F2 背面蓋部
651 ボタン電池
652 電極端子
700 アダプタ
701 プラグ
702 ケーブル
900 ヒータ線

【特許請求の範囲】
【請求項1】
光源部と、
撮像部と、
前記光源部または前記撮像部を制御する制御部と、
前記光源部、前記撮像部、前記制御部の少なくともひとつに給電するための給電部とで構成された機能部と、
前記機能部を収納する外装容器と、
前記光源部、前記撮像部、前記制御部および前記給電部の少なくとも2つを相互接続する配線部と
を備えた内視鏡であって、
前記配線部が前記外装容器の内面に形成された配線パターンからなる内視鏡。
【請求項2】
請求項1に記載の内視鏡であって、
前記外装容器は、前記内壁が露呈するように、分割された複数の分割部で構成され、
前記分割部は接合面で互いに当接し、気密構造体を構成する内視鏡。
【請求項3】
請求項1または2に記載の内視鏡であって、
前記外装容器は、前記内壁に、前記光源部、前記撮像部、前記制御部および前記給電部の少なくとも1つを係止する係止部を有し、
前記配線パターンが前記係止部まで伸張し、前記係止部で、機械的接続と同時に電気的接続がなされる内視鏡。
【請求項4】
請求項1乃至3のいずれかに記載の内視鏡であって、
半円筒状の外周部を有し、前記外装容器の一部を構成する第1の半筒部と、
前記第1の半筒部の内壁に設けられた前記係止部のひとつに係止され、前記撮像部を構成する第1の回路基板と、
前記第1の半筒部の内壁に設けられた前記係止部の他のひとつに係止され、前記給電部を構成する電池と、
前記第1の回路基板および前記給電部を囲むように、前記第1の半筒部とともに、前記外装容器を構成する第2の半筒部とを有する内視鏡。
【請求項5】
請求項4に記載の内視鏡であって、
前記撮像部を構成する前記第1の基板は、前記第1の半筒部の内壁から伸張するように、一体的に形成された内視鏡。
【請求項6】
請求項4または5に記載の内視鏡であって、
前記第2の半筒部は、内壁に配線パターンを有する内視鏡。
【請求項7】
請求項4乃至6のいずれかに記載の内視鏡であって、
前記制御部を構成する第2の回路基板を具備し、
前記第2の回路基板は、前記第1または第2の半筒部の内壁に設けられた配線パターンに電気的に接続された係止部で係止部され、前記配線部を介して前記第1の基板と電気的に接続された内視鏡。
【請求項8】
請求項1乃至7のいずれかに記載の内視鏡であって、
前記外装容器の内壁にアンテナ部を構成する導体パターンが配設された内視鏡。
【請求項9】
請求項1に記載の内視鏡であって、
前記給電部は、前記外装容器の一端部にコネクタ接続され、着脱自在に接続された内視鏡。
【請求項10】
請求項1乃至9のいずれかに記載の内視鏡の製造方法であって、
内面に配線パターンからなる配線部を有する絶縁性の成形体からなる外装容器を形成する工程と、
前記配線部で、前記光源部、前記撮像部、前記制御部および前記給電部の少なくとも2つが相互接続されるように、
前記外装容器内に、
光源部と、
撮像部と、
前記光源部または前記撮像部を制御する制御部と、
前記光源部、前記撮像部、前記制御部の少なくともひとつに給電するための給電部とで構成された機能部を装着する工程と、
前記外装容器を封止する工程とを含む内視鏡の製造方法。
【請求項11】
請求項10に記載の内視鏡の製造方法であって、
前記外装容器を形成する工程が、
前記内壁が露呈するように、複数の分割部をなすように絶縁性の分割成形体を形成する工程と、
前記成形体の内壁に配線パターンを形成し配線部を形成する工程とを含み、
前記内壁に前記機能部の少なくとも一つが電気的および機械的に接続するように機能部を装着した後、
前記分割部を構成する前記成形体を、接合面で互いに当接し、気密構造体を構成するように接合する工程とを含む内視鏡の製造方法。
【請求項12】
請求項10に記載の内視鏡の製造方法であって、
前記外装容器を形成する工程が、
複数の分割部をなし、その少なくとも一方が、サポートバーを介して内壁から連続的に形成された第1の回路基板を含むように絶縁性の分割成形体を形成する工程と、
前記分割成形体の内壁に配線パターンを形成し配線部を形成する工程と、
前記配線部の形成された前記第1の回路基板を、前記サポートバーを折り曲げ、前記第1の回路基板を前記内壁に対して垂直となるように起立せしめる工程と、
を含み、
前記内壁に前記機能部の少なくとも一つが電気的および機械的に接続するように機能部を装着した後、
前記分割部を構成する前記分割成形体を、接合面で互いに当接し、気密構造体を構成するように接合する工程とを含む内視鏡の製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2011−240053(P2011−240053A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2010−116705(P2010−116705)
【出願日】平成22年5月20日(2010.5.20)
【出願人】(000005832)パナソニック電工株式会社 (17,916)
【Fターム(参考)】