説明

分離膜の改質方法、及び分離膜の改質装置

【課題】酢酸セルロースで形成された分離膜の細孔を拡径し得る分離膜の改質方法を提供する。
【解決手段】酢酸セルロースで形成された分離膜をアルカリ水溶液に接触させることにより、該分離膜の細孔を拡径することを特徴とする分離膜の改質方法で、斯かる分離膜の改質方法によれば、酢酸セルロースのアセチル基のエステル結合がアルカリ水溶液により加水分解されるため、酢酸セルロースで形成された分離膜の細孔を拡径することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分離膜の細孔を拡径する分離膜の改質方法、及び分離膜の改質装置に関する。
【背景技術】
【0002】
従来より、海水の淡水化や廃水の浄化処理において、原水からイオン、懸濁物質等の不純物を分離する分離膜(例えば、逆浸透膜(RO膜)、ナノ濾過膜(NF膜)、限外濾過膜(UF膜)、精密濾過膜(MF膜)等)が用いられている。
【0003】
しかるに、斯かる分離膜は、使用に伴い不純物の目詰まり、薬品による洗浄等により分離機能や強度が低下してしまうため、定期的に交換が必要となってしまい、廃棄物が大量に生じてしまうという問題を有している。
【0004】
斯かる観点から、例えば、フィルター構造体からなる支持層の上に脱塩機能を有するスキン層を形成してなる分離膜を酸化剤(例えば、塩素、次亜塩素酸、オゾン、第4級アンモニア塩等)で酸化処理することにより、該分離膜のスキン層を除去する逆浸透膜の改質方法が提案されている(例えば、特許文献1)。
斯かる逆浸透膜の改質方法によりスキン層が除去された逆浸透膜(RO膜)は、例えば、ナノ濾過膜(NF膜)、限外濾過膜(UF膜)、精密濾過膜(MF膜)等として再利用されており、廃棄物量の低減化が図られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−34723号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、斯かる分離膜の改質方法は、ポリアミド製の分離膜に対するものであるが、本発明者らが、酢酸セルロースで形成された分離膜への斯かる方法の適用を試みたところ、斯かる方法では、酢酸セルロースで形成された分離膜を拡径するのに長時間を要し、実用性に乏しいという問題があることがわかった。また、斯かる分離膜の改質方法は、たとえこの分離膜を拡径することができたとしても、この拡径された分離膜が酸化により劣化され、この分離膜の強度が低下し、この分離膜の寿命が短くなってしまうという問題も有している。
【0007】
本発明は、上記問題点に鑑み、酢酸セルロースで形成された分離膜を短時間で拡径しつつ、該拡径された分離膜を劣化の少ないものにし得る分離膜の改質方法、及び分離膜の改質装置を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明は、酢酸セルロースで形成された分離膜をアルカリ水溶液に接触させることにより、該分離膜の細孔を拡径することを特徴とする分離膜の改質方法にある。
【0009】
斯かる分離膜の改質方法によれば、酢酸セルロースのアセチル基のエステル結合がアルカリ水溶液により加水分解されるため、酢酸セルロースで形成された分離膜の細孔を拡径することができる。また、斯かる分離膜の改質方法によれば、酸化と異なり加水分解は分離膜にほとんどダメージを与えないため、分離膜が劣化され難い。
【0010】
また、本発明は、酢酸セルロースで形成された分離膜がアルカリ水溶液に接触されることにより、該分離膜の細孔が拡径されるように構成されてなることを特徴とする分離膜の改質装置にある。
【発明の効果】
【0011】
以上のように、本発明によれば、酢酸セルロースで形成された分離膜の劣化を抑制しつつ短時間でこの分離膜の細孔を拡径し得る。
【図面の簡単な説明】
【0012】
【図1】一実施形態に係る分離膜の改質方法で用いる海水淡水化用逆浸透膜(RO膜)が備えられてなる淡水生成装置、及び一実施形態に係る分離膜の改質方法で作製した中水生成用逆浸透膜が備えられてなる中水生成装置の概略ブロック図。
【発明を実施するための形態】
【0013】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
【0014】
本実施形態の分離膜の改質方法は、酢酸セルロースで形成された分離膜をアルカリ水溶液に接触させることにより、該分離膜の細孔を拡径する。
尚、本明細書において、「分離膜の改質」とは、分離膜の細孔の拡径を意味する。分離膜をアルカリ水溶液に接触させることにより該分離膜の細孔が拡径されたことは、分離膜をアルカリ水溶液に接触させることにより分離膜のNaCl阻止率が低下したことで確認することができる。分離膜のNaCl阻止率は、NaCl溶液(原水)を分離膜にて濾過して膜透過水を得て、原水及び膜透過水のNaCl濃度を測定し、次式で算出した値である。尚、NaCl濃度と電気伝導度は直線関係にあることから、NaCl濃度を測定する代わりに、電気伝導度を測定して、NaCl阻止率を算出してもよい。
NaCl阻止率(%)=(1−Cp/Cf)×100
Cf;原水のNaCl濃度、Cp;膜透過水のNaCl濃度
【0015】
具体的には、本実施形態の分離膜の改質方法は、海水を膜分離により淡水化して飲み水等の淡水を得るのに用いられたことにより分離機能が低下した海水淡水化用逆浸透膜(RO膜)や所定期間(例えば、数年間)使用された海水淡水化用逆浸透膜(RO膜)の細孔を拡径する。そして、本実施形態の分離膜の改質方法は、該海水淡水化用逆浸透膜(RO膜)の細孔を拡径することにより、下水を活性汚泥処理槽及び固液分離装置で浄化処理することにより得られた下水処理水を膜分離して中水を得るための中水生成用逆浸透膜(RO膜)を得る。
尚、中水生成用逆浸透膜(RO膜)は、海水淡水化用逆浸透膜(RO膜)と比して、純度の高い透過水を得ることは求められていない一方で、所定量の透過水をより少ない動力で得ることが求められていることから、中水生成用逆浸透膜(RO膜)としては、海水淡水化用逆浸透膜(RO膜)よりも低動力で濾過可能なものが通常用いられている。したがって、海水淡水化用逆浸透膜(RO膜)の細孔を拡径したものは、中水生成用逆浸透膜(RO膜)として好適に用いることができる。
【0016】
ここで、前記海水淡水化用逆浸透膜(RO膜)が備えられてなる淡水生成装置、及び前記中水生成用逆浸透膜(RO膜)が備えられてなる中水生成装置について図1を参照しつつ説明する。
【0017】
前記淡水生成装置1は、図1に示すように、限外濾過膜(UF膜)または精密濾過膜(MF膜)を有し且つ海水Aを濾過処理して透過水及び濃縮水Bを得る淡水生成用除濁用膜ユニット11と、逆浸透膜(RO膜)を有し且つ該淡水生成用除濁用膜ユニット11を透過した透過水を濾過処理して透過水及び濃縮水Bを得る淡水生成用第1RO膜ユニット12と、逆浸透膜(RO膜)を有し且つ該淡水生成用第1RO膜ユニット12を透過した透過水を濾過処理して透過水及び濃縮水Bを得る淡水生成用第2RO膜ユニット13とを備えてなる。
また、前記淡水生成装置1は、海水Aを淡水生成用除濁用膜ユニット11に、淡水生成用除濁用膜ユニット11を透過した透過水を淡水生成用第1RO膜ユニット12に、淡水生成用第1RO膜ユニット12を透過した透過水を淡水生成用第2RO膜ユニット13に移送するように構成されてなる。また、前記淡水生成装置1は、淡水生成用の各膜ユニットで生成された濃縮水Bを濃縮水貯留槽(図示せず)に移送するように構成されてなる。さらに、前記淡水生成装置1は、前記淡水生成用第2RO膜ユニット13を透過した透過水を淡水Cとして回収するように構成されてなる。
【0018】
前記海水Aは、塩を含む水であり、例えば、塩濃度が1.0〜8.0質量%程度の水であり、より具体的には、塩濃度が2.5〜6.0質量%程度の水である。
本明細書において、海水Aは、海に存在する水にのみならず、塩濃度が1.0質量%以上の水であれば、湖(塩湖、汽水湖)の水、沼水、池水等の陸に存在する水も含む。
【0019】
前記中水生成装置2は、図1に示すように、限外濾過膜(UF膜)または精密濾過膜(MF膜)を有し且つ前記下水処理水Dを濾過処理して透過水及び濃縮水Eを得る中水生成用除濁用膜ユニット21と、逆浸透膜(RO膜)を有し且つ該中水生成用除濁用膜ユニット21を透過した透過水を濾過処理して透過水及び濃縮水Eを得る中水生成用RO膜ユニット22とを備えてなる。
また、前記中水生成装置2は、前記下水処理水Dを中水生成用除濁用膜ユニット21に、中水生成用除濁用膜ユニット21を透過した透過水を中水生成用RO膜ユニット22に移送するように構成されてなる。また、前記中水生成装置2は、中水生成用の各膜ユニットで生成された濃縮水Eを濃縮水貯留槽(図示せず)に移送するように構成されてなる。さらに、前記中水生成装置2は、前記中水生成用RO膜ユニット22を透過した透過水を中水Fとして回収するように構成されてなる。
【0020】
本実施形態の分離膜の改質方法は、海水Aを膜分離により淡水化して飲み水等の淡水Cを得るのに用いられたことにより分離機能が低下した淡水生成用第1RO膜ユニット12の逆浸透膜(RO膜)をアルカリ溶液に接触させることにより、該逆浸透膜(RO膜)の細孔を拡径する。そして、本実施形態の分離膜の改質方法は、該逆浸透膜(RO膜)の細孔を拡径することにより、中水生成用RO膜ユニット22の逆浸透膜(RO膜)を得る。
【0021】
前記淡水生成用第1RO膜ユニット12の逆浸透膜は、酢酸セルロースで形成されたものである。前記酢酸セルロースに於いて、グルコース単位に含まれるアセチル基の数は、特に限定されるものではないが、例えば、1〜3が例示され、酸化度がおおよそ61%である三酢酸セルロースが好ましい。
また、前記淡水生成用第1RO膜ユニット12の逆浸透膜(RO膜)は、例えば直径数十μmm〜数mmの中空糸状に形成されたいわゆる中空糸膜と呼ばれるタイプのものである。
【0022】
前記アルカリ水溶液は、pHが10〜13、好ましくは11〜13、より好ましくは12〜13である。
前記アルカリ水溶液としては、例えば、水酸化ナトリウム水溶液、水酸化カルシウム水溶液、アンモニア水溶液等が挙げられる。
【0023】
本実施形態の分離膜の改質方法は、淡水生成用第1RO膜ユニット12の供給水の供給口からアルカリ水溶液を流入させ、非透過で分離膜表面にアルカリ溶液を接触させることにより、淡水生成用第1RO膜ユニット12の逆浸透膜(RO膜)の細孔を拡径する。尚、淡水生成用第1RO膜ユニットへのアルカリ水溶液の供給は、淡水生成用第1RO膜ユニットの濃縮水出口から行うことも可能である。
【0024】
本実施形態の分離膜の改質方法は、pHが11〜13であるアルカリ水溶液を用い、且つ前記接触により淡水生成用第1RO膜ユニット12の逆浸透膜(RO膜)の細孔を拡径する態様に於いては、アルカリ接触時間を、好ましくは20〜100時間、より好ましくは20〜50時間とする。
【0025】
本実施形態の分離膜の改質方法は、上記の如く構成されてなり、本実施形態の分離膜の改質装置は、酢酸セルロースで形成された分離膜がアルカリ水溶液に接触されることにより、該分離膜の細孔が拡径されるように構成されてなる。
【0026】
尚、本実施形態の分離膜の改質方法、及び分離膜の改質装置は、上記構成を有するものであるが、本発明の分離膜の改質方法、及び分離膜の改質装置は、上記構成に限定されず、適宜設計変更可能である。
【0027】
例えば、本実施形態の分離膜の改質方法は、逆浸透膜(RO膜)の細孔を拡径するが、限外濾過膜(UF膜)、精密濾過膜(MF膜)等の分離膜の細孔を拡径してもよい。尚、逆浸透膜は、ナノ濾過膜(NF膜)を含む。
【0028】
また、本実施形態の分離膜の改質方法では、いわゆる中空糸膜と呼ばれるタイプのものの細孔を拡径するが、本発明の分離膜の改質方法では、該中空糸膜よりも径の太い数cm程度の太さを有するいわゆるチューブラー膜と呼ばれるタイプのものや、使用時に内部にメッシュなどの支持材が配された状態でロール状に巻回されて用いられる封筒状のいわゆるスパイラル膜と呼ばれるものなど公知の分離膜の細孔を拡径してもよい。
【0029】
さらに、本実施形態の分離膜の改質方法では、海水Aを膜分離により淡水化して飲み水等の淡水Cを得るのに用いられたことにより分離機能が低下した分離膜(具体的には淡水生成用第1RO膜ユニット12の逆浸透膜(RO膜))の細孔を拡径するが、本発明の分離膜の改質方法では、廃水の浄化処理等の種々の用途に用いられたことにより分離機能が低下した分離膜や所定期間(例えば、数年間)使用された分離膜の細孔を拡径してもよい。
【0030】
また、本実施形態の分離膜の改質方法では、前記拡径により、前記下水処理水Dを膜分離して中水Fを得るための中水生成用逆浸透膜(RO膜)(中水生成用RO膜ユニット22の逆浸透膜(RO膜))を作製するが、本発明の分離膜の改質方法では、細孔が拡径される分離膜よりも細孔の径が大きいものを用いてもよい用途であれば、他の用途で用いるものを作製してもよい。また、本発明の分離膜の改質方法では、逆浸透膜に限らず、細孔が拡径される分離膜よりも細孔の径が大きいものであれば、限外濾過膜(UF膜)、精密濾過膜(MF膜)等の分離膜を作製してもよい。尚、逆浸透膜は、ナノ濾過膜(NF膜)を含む。
【0031】
さらに、本実施形態の分離膜の改質方法は、分離膜のNaCl阻止率の変化率を、好ましくは0%より大きく且つ70%以下、より好ましくは0%より大きく且つ50%以下にする。
尚、NaCl阻止率の変化率とは、下記式によって表したものを意味する。また、NaClの代わりにNaOHを用いてもよい。
NaCl阻止率の変化率(%) = 〔(拡径前の分離膜のNaCl阻止率(%) − 拡径後の分離膜のNaCl阻止率(%))/拡径前の分離膜のNaCl阻止率(%)〕×100
【実施例】
【0032】
次に、試験1及び試験2を挙げて本発明についてさらに具体的に説明する。
【0033】
(試験1)
(例1:アルカリ水溶液)
酢酸セルロースで形成された逆浸透膜(RO膜)を有するRO膜ユニット(東洋紡績社製、商品名:ホロセップ(HB10255FI))から切り出した中空糸膜をアルカリ水溶液(pH13の水酸化ナトリウム水溶液)に浸漬し、表1の接触時間で接触させた。尚、下記表において、接触時間0hは、逆浸透膜(RO膜)にアルカリ水溶液を接触させていないことを意味する(例3での接触時間0dayも同様)。
そして、表1の接触時間でアルカリ水溶液に接触された逆浸透膜(RO膜)毎に、表1の圧力(膜間差圧)となるように圧力をかけて、RO膜ユニットの供給水の供給口から純水を、クロスフローろ過で濃縮水の流量が1L/minとなるように供給し、透過水の量が25mLとなるまでの時間(透過時間)を測定した。結果を表1に示す。
【0034】
【表1】

【0035】
(例2:酸性水溶液)
アルカリ水溶液の代わりに酸性水溶液(5%硫酸の水溶液)を用いたこと、及び接触時間を表2のようにしたこと以外は、例1と同様な方法で逆浸透膜(RO膜)に酸性水溶液を接触させ、そして例1と同様な方法で純水の透過時間を測定した。結果を表2に示す。
【0036】
【表2】

【0037】
(例3:高温水)
アルカリ水溶液の代わりに水道水を用い、且つこの水道水を90℃に保った状態で分離膜を90℃の水道水(高温水)に接触させたこと、及び接触時間を表3のようにしたこと以外は、例1と同様な方法で逆浸透膜(RO膜)に高温水を接触させ、そして例1と同様な方法で純水の透過時間を測定した。結果を表3に示す。
【0038】
【表3】

【0039】
(例4:酸化剤含有水溶液)
アルカリ水溶液の代わりに酸化剤含有水溶液(200ppm次亜塩素酸の水溶液)を用いたこと、及び接触時間を表4のようにしたこと以外は、例1と同様な方法で逆浸透膜(RO膜)に酸化剤含有水溶液を接触させ、そして例1と同様な方法で純水の透過時間を測定した。結果を表4に示す。
【0040】
【表4】

【0041】
表1〜4に示すように、アルカリ水溶液を用いた場合では、高温水、酸性水溶液、酸化剤含有水溶液を用いた場合に比べ、酢酸セルロースで形成された逆浸透膜(RO膜)の透過時間を短くすることができたこと、即ち、逆浸透膜(RO膜)を拡径することができたことが示された。
また、アルカリ水溶液を用いた場合では、3時間以降も拡径は進行していると思われるが、物質としての強度が低下し、圧力により中空糸としての形状が保てなくなり、流路が閉塞していると思われる。
【0042】
(試験2)
三酢酸セルロースで形成された逆浸透膜(RO膜)を有するRO膜ユニット(東洋紡績 社製、商品名:ホロセップ(HB10255FI))から切り出した中空糸膜を180本用いて、小型RO膜モジュールを作成した。小型RO膜モジュールの供給水の供給口からアルカリ水溶液(pH:12.7、電気伝導度:5mS/cmのNaOH水溶液)を流入させ、非透過で逆浸透膜(RO膜)にアルカリ水溶液を接触時間48時間で接触させた。
そして、改質後の逆浸透膜(RO膜)に表1の圧力(膜間差圧)となるように圧力をかけて、RO膜ユニットの供給水の供給口から純水を、クロスフローろ過で濃縮水の流量が1L/minとなるように供給して、10分間に得られた透過水の量(純水Flux)を測定した。
また、改質前及び改質後の逆浸透膜(RO膜)に表1の圧力(膜間差圧)となるように圧力をかけて、RO膜ユニットの供給水の供給口からNaCl水溶液(NaCl濃度:6質量%)を、クロスフローろ過で濃縮水の流量が1L/minとなるように供給して、10分間に得られた透過水の量(NaCl−Flux)を測定した。尚、供給水としてのNaCl水溶液の電気伝導度(NaCl電気伝導度)、透過水の電気伝導度も測定した。
また、同様に、改質後の逆浸透膜(RO膜)と同様に改質前の逆浸透膜(RO膜)についても同様な測定を行った。
そして、斯かる試験を合計3回繰り返した。結果を表5に示す。
尚、ここで、NaOH−Flux増減率とは、改質時間0hの逆浸透膜(RO膜)のNaOH−Fluxに対する、改質後の逆浸透膜(RO膜)のNaOH−Fluxの比を示す。他の表においても同様である。
【0043】
【表5】

【0044】
表5に示すように、改質前の逆浸透膜(RO膜)と、5mS/cmのアルカリ水溶液(pH12.7)で48時間改質を行った逆浸透膜(RO膜)とに関して、純水flux、NaCl阻止率を求めた。改質前のものに比べ改質後では、純水fluxは1.0〜1.5倍(平均1.3倍)に増加、NaCl阻止率の変化率は19.7〜54.5%(平均37.1%)となった。
改質前のものに比べ改質後では、純水Fluxが上昇し、NaCl阻止率が低下していることから、改質により逆浸透膜(RO膜)の拡径が進行していることがわかる。
【0045】
(試験3)
NaCl水溶液の代わりにNaOH水溶液(pH:12.7、電気伝導度:5mS/cm)を用いたこと、改質時間を表6のようにしたこと以外は、試験2でNaCl水溶液に関して行った試験と同様な試験を行った。
そして、斯かる試験を合計3回繰り返した。結果を表6に示す。
【0046】
【表6】

【0047】
表6に示すように、改質時間が長いほど、改質が進むことが示された。
【符号の説明】
【0048】
1:淡水生成装置、2:中水生成装置、11:淡水生成用除濁用膜ユニット、12:淡水生成用第1RO膜ユニット、13:淡水生成用第2RO膜ユニット、21:中水生成用除濁用膜ユニット、22:中水生成用RO膜ユニット、A:海水、B:濃縮水、C:淡水、D:下水処理水、E:濃縮水、F:中水

【特許請求の範囲】
【請求項1】
酢酸セルロースで形成された分離膜をアルカリ水溶液に接触させることにより、該分離膜の細孔を拡径することを特徴とする分離膜の改質方法。
【請求項2】
酢酸セルロースで形成された分離膜がアルカリ水溶液に接触されることにより、該分離膜の細孔が拡径されるように構成されてなることを特徴とする分離膜の改質装置。

【図1】
image rotate


【公開番号】特開2011−173077(P2011−173077A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2010−39877(P2010−39877)
【出願日】平成22年2月25日(2010.2.25)
【出願人】(000192590)株式会社神鋼環境ソリューション (534)
【Fターム(参考)】