説明

半導体集積回路及び受信信号処理方法

【課題】小さい回路規模でドップラー周波数を精度よく求めることが可能な半導体集積回路を提供する。
【解決手段】入力選択部14は、逆フーリエ変換部15に、パイロット信号のみ入力するか、データ信号の伝送路応答値及びパイロット信号を入力するか選択し、逆フーリエ変換部15は、それぞれを逆フーリエ変換し、主波位置の特定に用いるための第1のインパルス応答及び第2のインパルス応答を算出する。位相差補正部20は、主波位置を特定した第1のインパルス応答を用いて、主波位置とフーリエ変換窓位置との間の遅延量をもとに、シンボル間におけるパイロット信号の周波数の違いに起因した第1のインパルス応答の位相差を補正し、位相偏差算出部21及びドップラー周波数算出部22は、位相差を補正した第1のインパルス応答を用いてドップラー周波数を算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体集積回路及び受信信号処理方法に関する。
【背景技術】
【0002】
地上デジタル放送では、移動受信の際に搬送波周波数が偏移するドップラーシフトの影響を考慮した復調処理が行われている。
地上デジタル放送規格ISDB−T(Integrated Services Digital Broadcasting-Terrestrial)のOFDM(Orthogonal Frequency Division Multiplexing)フレームには、一定間隔でパイロット信号であるSP(Scattered Pilot)信号が挿入されている。従来、フーリエ変換後の受信信号から抽出されたパイロット信号を用いて、移動受信によって搬送波周波数に加わる周波数(ドップラー周波数)を推定する手法が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004−274722号公報
【特許文献2】特開2005−286636号公報
【非特許文献】
【0004】
【非特許文献1】実川、外2名、“OFDMに適した高精度ドップラ周波数推定法”、電子情報通信学会総合大会、2004年、B−5−77、P.564
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、従来の半導体集積回路では、小さい回路規模でパイロット信号からドップラー周波数を精度よく求めることはできないという問題があった。
上記の点を鑑みて、本発明は、小さい回路規模でドップラー周波数を精度よく求めることが可能な半導体集積回路及び受信信号処理方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、以下のような半導体集積回路が提供される。
この半導体集積回路は、フーリエ変換後の受信信号のうち、パイロット信号のみが入力された場合、当該パイロット信号を逆フーリエ変換して第1のインパルス応答を算出し、前記受信信号のうちのデータ信号から求められる伝送路応答値及び前記パイロット信号が入力された場合、当該伝送路応答値及び当該パイロット信号を逆フーリエ変換して第2のインパルス応答を算出する逆フーリエ変換部と、前記逆フーリエ変換部に対し、前記パイロット信号のみを入力するか、前記伝送路応答値及び前記パイロット信号を入力するか選択する入力選択部と、前記第2のインパルス応答をもとに、所定の長さ以上のマルチパスが発生しているか否かを判定するマルチパス判定部と、前記所定の長さ以上の前記マルチパスの発生が検出された場合、前記第1のインパルス応答の最大値の位置と、前記第2のインパルス応答の最大値の位置とを比較することで、前記第1のインパルス応答における主波位置を特定する主波位置特定部と、前記主波位置を特定した前記第1のインパルス応答を用いて、前記主波位置とフーリエ変換窓位置との間の遅延量をもとに、シンボル間における前記パイロット信号の周波数の違いに起因した前記第1のインパルス応答の位相差を補正する位相差補正部と、前記位相差補正部により補正された前記第1のインパルス応答と、異なるシンボルにおける前記第1のインパルス応答との間の位相回転量を算出する位相偏差算出部と、前記位相回転量をもとに、ドップラー周波数を算出するドップラー周波数算出部と、を有する。
【発明の効果】
【0007】
開示の半導体集積回路及び受信信号処理方法によれば、小さい回路規模でドップラー周波数を精度よく求めることが可能となる。
【図面の簡単な説明】
【0008】
【図1】本実施の形態の半導体集積回路の主要部の構成を示す図である。
【図2】地上デジタル放送におけるOFDMフレームの構成を示す図である。
【図3】OFDMフレームの切り替えの様子を示す図である。
【図4】インパルス応答の一例を示す図である。
【図5】異なるシンボル間のインパルス応答の位相差の一例を示す図である。
【図6】算出される位相回転量の例を示す図である。
【図7】主波位置を特定する様子を示す図である。
【図8】主波位置が特定できない場合を示す例である。
【図9】本実施の形態の半導体集積回路の比較例を示す図である。
【図10】本実施の形態の半導体集積回路による受信信号処理方法を示すフローチャートである。
【図11】OFDM受信システムの主要部の概略の構成を示す図である。
【発明を実施するための形態】
【0009】
以下、本発明の半導体集積回路及び受信信号処理方法の一観点である実施の形態を、図面を参照して説明する。
図1は、本実施の形態の半導体集積回路の主要部の構成を示す図である。
【0010】
半導体集積回路10、たとえば、地上デジタル放送用のOFDM信号の復調用LSI(Large Scale Integrated circuit)である。
半導体集積回路10は、パイロット信号記憶部11、サブキャリア群記憶部12、伝送路応答値生成部13、入力選択部14、逆フーリエ変換部15、インパルス応答保持部16,17、インパルス応答遅延部18、最大値位置検出部19を有している。また、半導体集積回路10は、位相差補正部20、位相偏差算出部21、ドップラー周波数算出部22、マルチパス判定部23、主波位置特定部24、先行波検出部25を有している。
【0011】
以下、各部の詳細とその動作を説明する。
パイロット信号記憶部11は、フーリエ変換(たとえば、FFT(Fast Fourier Transform))後の受信信号に含まれるサブキャリア群のうち、パイロット信号を保持する。
【0012】
図2は、地上デジタル放送におけるOFDMフレームの構成を示す図である。
横軸はサブキャリア番号であり、周波数方向を表している。また、縦軸はシンボル番号であり、時間方向を表している。図中で、黒丸はパイロット信号であるSP信号Ds、白丸はデータ信号Daである。
【0013】
地上デジタル放送で用いられているパイロット信号であるSP信号Dsは、周波数方向に、12キャリアごとに挿入されており、時間方向に、4シンボルごとに挿入されている。
【0014】
サブキャリア群記憶部12は、フーリエ変換後の受信信号に含まれるパイロット信号及びデータ信号を含むサブキャリア群を保持する。サブキャリア群記憶部12は、各シンボルの全てのサブキャリアを保持してもよいし、一部のセグメントのサブキャリアを保持するようにしてもよい。
【0015】
伝送路応答値生成部13は、サブキャリア群のうち、データ信号を仮判定して、送信信号点の仮判定値を求めた後、受信したデータ信号を、仮判定値で割ることによって、伝送路の影響を示す伝送路応答値を生成する。仮判定は、たとえば、QPSK(Quadrature Phase Shift Keying)や、16QAM(Quadrature Amplitude Modulation)、64QAMなどの変調方式に応じて、データ信号を硬判定することで仮判定値を生成する。
【0016】
入力選択部14は、逆フーリエ変換部15に対し、パイロット信号記憶部11に保持されたパイロット信号のみを入力するか、データ信号から求められる伝送路応答値及びパイロット信号を入力するか選択する。入力選択部14は、たとえば、シンボル番号を検出し、OFDMのフレームの切り替わりを検出する。そして、入力選択部14は、フレームごとに、パイロット信号のみを逆フーリエ変換部15に入力するか、データ信号から求められる伝送路応答値及びパイロット信号を逆フーリエ変換部15に入力するか切り替える。
【0017】
図3は、OFDMフレームの切り替えの様子を示す図である。
横軸は時間である。
OFDMフレームfs1,fs2,fp1,fp2は、1フレームあたり、シンボル番号0〜203の204個のシンボルを有している。
【0018】
たとえば、入力選択部14は、OFDMフレームfs1,fs2のデータ信号から求められる伝送路応答値及びパイロット信号を逆フーリエ変換部15に入力し、逆フーリエ変換(たとえば、IFFT(Inverse FFT))を行わせる。また、入力選択部14は、OFDMフレームfp1,fp2のパイロット信号のみを逆フーリエ変換部15に入力し、逆フーリエ変換を行わせる。
【0019】
逆フーリエ変換部15は、入力選択部14よりパイロット信号のみが入力された場合、そのパイロット信号を逆フーリエ変換することでインパルス応答を算出し、インパルス応答をインパルス応答保持部16に保持する。また、逆フーリエ変換部15は、入力選択部14より伝送路応答値及びパイロット信号が入力された場合、これらの信号に対して逆フーリエ変換を行いインパルス応答を算出し、インパルス応答保持部17に保持する。
【0020】
図4は、インパルス応答の一例を示す図である。
図4(A)は、n−2番目のシンボルにおけるインパルス応答の例を示し、図4(B)は、n番目のシンボルにおけるインパルス応答の例を示している。図4において、横軸は時間、縦軸は電力である。
【0021】
ここで得られるインパルス応答は、伝送路のマルチパス応答を示すことから、遅延プロファイルと呼ばれている。
移動受信が行われている場合、フェージングによる影響で位相回転が生じ、異なるシンボル間で得られたインパルス応答は、異なる値となる。このときの位相回転量は、搬送波が受けるドップラー周波数と比例する。そのため、ドップラー周波数は、一定期間におけるシンボル間のインパルス応答の位相回転量から算出することが可能である。
【0022】
図5は、異なるシンボル間のインパルス応答の位相差の一例を示す図である。
ここでは、n−2番目のシンボルのインパルス応答の最大値In-2と、n番目のシンボルのインパルス応答の最大値Inの間の位相差を示している。ΔΘは、フェージングによる位相回転量を示している。さらに、図2に示したようにシンボルごとにSP信号の周波数がシフトされている場合には、SP信号の周波数の違いによる位相差ΔΦが加わる。したがって、インパルス応答の最大値In-2と、インパルス応答の最大値Inの間の位相差は、ΔΘ+ΔΦとなる。位相差ΔΦは、OFDMシンボルを切り出すフーリエ変換窓の位置によって変化する。
【0023】
インパルス応答保持部16は、たとえば、メモリであり、逆フーリエ変換部15にパイロット信号が入力されることによって算出されるインパルス応答を保持し、インパルス応答遅延部18に出力する。また、インパルス応答保持部16は、そのインパルス応答を最大値位置検出部19に送り、最大値位置検出部19によって検出されたインパルス応答の最大値の位置を入力し、インパルス応答の最大値を位相偏差算出部21に出力する。
【0024】
インパルス応答保持部17は、たとえば、メモリであり、逆フーリエ変換部15にデータ信号から求められる伝送路応答値及びパイロット信号が入力されることによって算出されるインパルス応答を保持し、最大値位置検出部19に出力する。
【0025】
インパルス応答遅延部18は、たとえば、メモリであり、インパルス応答保持部16から出力されたインパルス応答を保持し遅延させる。また、インパルス応答遅延部18は、入力したインパルス応答の最大値の位置を最大値位置検出部19から取得し、保持する。
【0026】
最大値位置検出部19は、インパルス応答保持部16で保持されたインパルス応答の最大値(最大電力)の位置を検出し、インパルス応答保持部16及びインパルス応答遅延部18に出力する。電力が最大の位置にあるものが、C/N比(Carrier to Noise Ratio)が最も良い主波の可能性が高い。また、最大値位置検出部19は、インパルス応答保持部17で保持されたインパルス応答の最大値の位置を検出し、インパルス応答の情報とともにマルチパス判定部23に出力する。
【0027】
位相差補正部20は、インパルス応答遅延部18から出力されたインパルス応答に対して、図5で示したようなシンボル間のSP信号の周波数の違いによる位相差ΔΦを補正する。位相差ΔΦは、OFDMシンボルを切り出すフーリエ変換窓の位置と主波または先行波の位置との間の遅延量に応じた値となる。
【0028】
位相差補正部20は、遅延量に応じた位相差ΔΦを算出するか、予めテーブルとして保持しておき、たとえば、入力される主波または先行波の位置から遅延量を算出する。そして、位相差補正部20は、遅延量に応じた位相差ΔΦの逆位相(e-ΔΦ)を、主波または先行波のインパルス応答に乗算する。これによって、シンボル間のSP信号の周波数の違いによる位相差ΔΦが、キャンセルされる。
【0029】
位相偏差算出部21は、たとえば、インパルス応答保持部16に保持された現在のシンボルのインパルス応答の主波または先行波と、位相差補正部20により補正された以前のシンボルのインパルス応答の主波または先行波から、位相回転量ΔΘを算出する。
【0030】
図6は、算出される位相回転量の例を示す図である。
ここでは、図5で示したn−2番目のシンボルのインパルス応答の最大値(主波)In-2と、n番目のシンボルのインパルス応答の最大値(主波)Inの位相差を求める様子を示している。
【0031】
位相差補正部20により、SP信号のシンボル間の周波数の違いによる位相差ΔΦがキャンセルされているので、位相偏差算出部21では、フェージングによる位相回転量ΔΘのみが算出される。位相偏差算出部21は、位相回転量ΔΘを、最大値In-2と最大値Inの位相を求めてその差分を算出することにより算出するか、内積演算を用いて算出する。
【0032】
位相偏差算出部21で得られた位相回転量ΔΘは、ドップラー周波数fdと比例関係にある。そのため、ドップラー周波数算出部22は、位相回転量ΔΘに、所定の値を乗じることでドップラー周波数fdを算出する。
【0033】
マルチパス判定部23は、データ信号を含むサブキャリア群によるインパルス応答と、その最大値の位置(主波位置)とから、所定の長さ以上のマルチパスが発生しているか否かを判定する。具体的には、マルチパス判定部23は、先行波(遅延波)と主波がどれだけ離れているか検出することによって、マルチパスの長さを判定する。そして、マルチパス判定部23は、折り返りが発生する可能性のある長さ以上(たとえば、地上デジタル放送規格ISDB−TのOFDMフレームを受信する場合は1/24シンボル長以上)のマルチパスがあるか否かを判定する。マルチパス判定部23は、判定結果を主波位置特定部24に出力する。
【0034】
また、マルチパス判定部23は、所定の長さ以上のマルチパスを検出した場合、最大値位置検出部19で検出されたデータ信号を含むサブキャリア群によるインパルス応答の最大値の位置を、主波位置特定部24に送る。マルチパス判定部23は、そのインパルス応答データ自体を主波位置特定部24に送るようにしてもよい。また、マルチパス判定部23は、所定の長さ以上のマルチパスを検出しない場合には、主波位置特定部24の機能を無効にするようにしてもよい。
【0035】
図2に示したように、地上デジタル放送規格ISDB−TのOFDMフレームでは、SP信号は、各シンボル中に12個間隔で挿入されている。そのため、1/24シンボル長以上のマルチパスが存在すると、パイロット信号のみから求めたインパルス応答に、折り返りが発生する可能性がある(詳細は後述する)。この折り返りを考慮して主波位置を特定しないと、位相差補正部20は、位相差ΔΦを得るための正しい遅延量が求められない。そのため、位相偏差算出部21は、正確な位相回転量ΔΘを算出できなくなり、ドップラー周波数算出部22は、正確なドップラー周波数fdを算出することができない。
【0036】
これに対し、データ信号を含めたサブキャリア群から求めたインパルス応答は、1/2シンボル長以内の遅延量のマルチパスであれば、信号の折り返りが発生しない。そのため、主波位置特定部24は、データ信号を含めたサブキャリア群によるインパルス応答を用いて、パイロット信号によるインパルス応答の主波位置を特定する。
【0037】
なお、データ信号を含めたサブキャリア群から求めたインパルス応答は、折り返りは発生しないが、伝送路応答値を仮判定値により求めているため、このインパルス応答からドップラー周波数を推定することは望ましくない。高速移動時の高フェージング環境や、13seg方式における64QAMの場合、仮判定値の信頼性が低下し、伝送路応答値が大きく劣化するためである。そのため、本実施の形態の半導体集積回路10では、ドップラー周波数の推定のために、パイロット信号によるインパルス応答を用いる。
【0038】
主波位置特定部24は、所定の長さ以上のマルチパスが検出された旨の判定結果を受信した場合、最大値位置検出部19で検出された各インパルス応答の最大値の位置をもとに、パイロット信号によるインパルス応答の主波位置を特定する。
【0039】
主波位置特定部24は、主波位置の特定を、図3で示したようなOFDMフレームの切り替わり部分で行う。具体的には、主波位置特定部24は、たとえば、OFDMフレームfs1,fs2の最後のシンボルから得られたインパルス応答と、OFDMフレームfp1,fp2の最初のシンボルから得られたインパルス応答を用いて主波位置を特定する。
【0040】
図7は、主波位置を特定する様子を示す図である。
図7(A)は、データ信号を含めたサブキャリア群から求めたインパルス応答を示している。縦軸は電力で、横軸はX(時間)である。横軸は実際には、IFFTポイントで表わされる。
【0041】
図7(A)では、先行波、主波、遅延波がそれぞれ、位置A1x,A2x,A3xに現われている。主波位置特定部24は、まず、時間軸(横軸X)を、パイロット信号のみから求められたインパルス応答の時間軸(横軸Y)と合わせるための変換を行い、図7(B)の上図のように最大電力を示す主波の位置A2yを得る。これにより、パイロット信号のみから求められたインパルス応答との比較が可能になる。
【0042】
たとえば、1seg、Mode3のOFDM規格が用いられる場合、変換式は以下のようになる。なお、以下の式では、一例として、データ信号を含めたサブキャリア群から求められるインパルス応答のIFFTのポイント数を256、パイロット信号のみから求められるインパルス応答のIFFTのポイント数を64としている。
【0043】
Ay=(Ax−256/2)×3−64/2
ここで、Ax−256/2は、主波のFFT窓位置からのずれ(ポイント数)を表している。FFTシフトしているので、FFT窓位置は、256/2にあるとしている。
【0044】
また、13seg、Mode3のOFDM規格が用いられる場合、変換式は以下のようになる。なお、以下の式では、一例として、データ信号を含めたサブキャリア群から求めたインパルス応答のIFFTのポイント数を256、パイロット信号のみから求めたインパルス応答のIFFTのポイント数も256としている。
【0045】
Ay=(Ax−256/2)×12−256/2
図7(B)の下図の例では、パイロット信号のみから求められるインパルス応答の一例を示している。位置B1,B2,B3にそれぞれインパルス応答が表れており、位置B1にあるインパルス応答は、位置B4のインパルス応答が折り返ったものであり、位置B2のインパルス応答は、位置B5のインパルス応答が折り返ったものである。
【0046】
主波位置特定部24は、図7(B)の上図の位置A2yとほぼ等しい位置に、パイロット信号によるインパルス応答の最大値が存在した場合、その最大値の位置を主波位置として特定する。具体的には、主波位置特定部24は、図7(B)のように、位置Ayから所定の範囲(±α)内に、パイロット信号のみから求めたインパルス応答の最大値があるか否かを検出する。αは、たとえば、IFFTポイントで、10ポイント以下程度とする。図7(B)の例では、位置B1にある最大値を示すインパルス応答が、上記の範囲内に存在する。したがって、主波位置特定部24は、位置B1に存在するインパルス応答を主波として特定する。これによって、折り返った主波を特定することができる。
【0047】
主波位置特定部24は、主波位置が特定できた場合には、特定した主波の位置を位相差補正部20に通知する。
主波位置が特定できた場合、位相差補正部20は、フーリエ変換窓位置と、特定された主波の位置B2の折り返り元の位置B4間の遅延量d1に応じて、位相差ΔΦを求める。そして、位相差補正部20は、位相差ΔΦの逆位相(e-ΔΦ)を、インパルス応答の主波の値に乗算する。これによって、シンボル間のSP信号の周波数の違いによる位相差ΔΦが、正しくキャンセルされる。
【0048】
その後、位相偏差算出部21は、インパルス応答保持部16から現在のシンボルのインパルス応答の最大値と、位相差補正部20により補正された以前のシンボルのインパルス応答の最大値とから、位相回転量ΔΘを算出する。そして、ドップラー周波数算出部22は、位相回転量ΔΘをもとに、ドップラー周波数fdを算出する。
【0049】
ところで、主波位置特定部24は、以下のような場合、主波位置を特定できない。
図8は、主波位置が特定できない場合を示す例である。
図8の上図は、図7(B)の上図と同様に、データ信号を含めたサブキャリア群から求めたインパルス応答の最大値の、時間軸を変換後の位置A2yを示している。
【0050】
図8の下図では、折り返った主波である位置B1のインパルス応答よりも、折り返った遅延波である位置B2のインパルス応答の方が、電力が大きくなっている。本実施の形態の主波位置特定部24は、前述したように、異なるフレーム間のインパルス応答の最大値を比較して主波位置を特定するため、このような現象が発生する場合がある。
【0051】
つまり、フレーム間で時間が経過すると、図8のように主波と遅延波の電力の大きさが逆転する場合が生じる。この場合、主波位置特定部24は、主波位置を特定できない。
たとえば、図3で示したような流れで、OFDMフレームfs1,fs2,fp1,fp2を処理する場合、ドップラー周波数の更新は、パイロット信号のみを逆フーリエ変換するOFDMフレームfp1,fp2の最後のシンボルで行われる。そのため、たとえば、OFDMフレームfs1,fp1間の切り替わり部分で主波位置が特定できないと、次のOFDMフレームfs2,fp2間の切り替わり部分で主波位置の特定が成功しても、最小でも4フレーム期間、ドップラー周波数の更新ができなくなってしまう。
【0052】
そこで、本実施の形態の半導体集積回路10では、主波位置特定部24にて主波位置が特定できない場合には、先行波を用いてドップラー周波数を算出する。
まず、主波位置特定部24は、主波位置が特定できなかった場合には、その旨を、位相差補正部20、位相偏差算出部21及び先行波検出部25に通知する。
【0053】
先行波検出部25は、インパルス応答保持部16に保持されたインパルス応答または、インパルス応答遅延部18に格納されたインパルス応答から、フーリエ変換窓位置近傍に存在する先行波を検出する。たとえば、先行波検出部25は、一定電力以上の大きさのインパルス応答で、最もフーリエ変換窓位置に近いインパルス応答を先行波として検出する。そして、先行波検出部25は、先行波の位置を、インパルス応答保持部16、インパルス応答遅延部18、位相差補正部20に通知する。
【0054】
たとえば、図8に示したようなインパルス応答において、先行波の位置B3が特定された場合、位相差補正部20は、フーリエ変換窓位置と、特定された先行波の位置B3の間の遅延量d2に応じて、位相差ΔΦを求める。そして、位相差補正部20は、位相差ΔΦの逆位相(e-ΔΦ)を、インパルス応答の先行波の値に乗算する。これによって、シンボル間のSP信号の周波数の違いによる位相差ΔΦが、正しくキャンセルされる。
【0055】
また、位相偏差算出部21は、インパルス応答保持部16から現在のシンボルのインパルス応答の先行波と、位相差補正部20により補正された以前のシンボルのインパルス応答の先行波とから、位相回転量ΔΘを算出する。そして、ドップラー周波数算出部22は、位相回転量ΔΘをもとに、ドップラー周波数fdを算出する。
【0056】
このように、半導体集積回路10は、データ信号とパイロット信号を含むサブキャリア群を用いて信号の折り返りの影響を受けないインパルス応答を算出し、その最大値の位置をもとに、正しい主波位置を特定している。これにより、インパルス応答の折り返りが生じる可能性のある所定長さ以上のマルチパスが発生した場合でも、正確にドップラー周波数を求めることができる。
【0057】
また、半導体集積回路10では、主波位置の特定ができなかった場合でも、先行波を用いてドップラー周波数を算出できるようにしたので、図3で示したようなOFDMフレームfs1,fs2,fp1,fp2では、ドップラー周波数の更新を2フレーム間隔で更新できる。
(比較例)
図9は、本実施の形態の半導体集積回路の比較例を示す図である。
【0058】
図9では、特願2009−118550号にて本願の発明者等により提案された半導体集積回路の構成を示している。
図1で示した半導体集積回路10と同様の構成要素については同一符号を付している。
【0059】
比較例の半導体集積回路10aでは、パイロット信号のみを逆フーリエ変換する逆フーリエ変換部15aと、データ信号から求められた伝送路応答値とパイロット信号を逆フーリエ変換する逆フーリエ変換部15bとを設けている。これにより、パイロット信号のみによる逆フーリエ変換と、伝送路応答値及びパイロット信号による逆フーリエ変換とが並行して行われる。また、最大値位置検出部19a,19bについても、2つ設けられている。
【0060】
このような半導体集積回路10aでは、フレームごとにドップラー周波数を更新できるが、回路規模が大きい。
これに対して、図1で示した本実施の形態の半導体集積回路10では、入力選択部14を設け、逆フーリエ変換部15にパイロット信号のみを入力するか、データ信号から求められた伝送路応答値とパイロット信号を入力するか選択している。これにより、逆フーリエ変換部15を1つとすることができ、回路規模を約1/2程度と、大幅に縮小することができる。
【0061】
以下、上述の本実施の形態の半導体集積回路10による受信信号処理の流れを、フローチャートによりまとめる。
図10は、本実施の形態の半導体集積回路による受信信号処理方法を示すフローチャートである。
【0062】
入力選択部14は、フーリエ変換後の受信信号のうち、パイロット信号のみを逆フーリエ変換部15に入力するか、受信信号のうちのデータ信号から求められる伝送路応答値及びパイロット信号を逆フーリエ変換部15に入力するか選択する(ステップS1)。
【0063】
逆フーリエ変換部15は、パイロット信号のみ、またはデータ信号から求められる伝送路応答値及びパイロット信号を逆フーリエ変換して、それぞれのインパルス応答を算出する(ステップS2)。最大値位置検出部19は、パイロット信号のみによるインパルス応答の最大値の位置を検出する(ステップS3)。そして、インパルス応答遅延部18は、インパルス応答保持部16から出力されたインパルス応答を保持し遅延させる(ステップS4)。
【0064】
また、最大値位置検出部19は、データ信号から求められる伝送路応答値及びパイロット信号によるインパルス応答の最大値の位置(主波位置)を検出する(ステップS5)。そして、マルチパス判定部23は、データ信号から求められる伝送路応答値及びパイロット信号によるインパルス応答から、所定の長さ以上のマルチパスが発生しているか否かを判定する(ステップS6,S7)。所定の長さ以上のマルチパスがある場合、主波位置特定部24は、伝送路応答値及びパイロット信号によるインパルス応答の最大値の位置と、パイロット信号のみによるインパルス応答の最大値の位置を比較する。これにより、主波位置特定部24は、パイロット信号のみによるインパルス応答における主波位置を特定する(ステップS8,S9)。
【0065】
主波位置が特定できなかった場合、先行波検出部25は、パイロット信号のみによるインパルス応答の先行波の位置を、位相差補正部20に設定する(ステップS10)。
所定の長さ以上のマルチパスがないか、主波位置を特定したか、または先行波位置を設定した場合、位相差補正部20による位相差補正処理が行われる(ステップS11)。
【0066】
所定の長さ以上のマルチパスがない場合、位相差補正部20は、インパルス応答遅延部18から出力されたインパルス応答の最大値の位置(主波位置)と、フーリエ変換窓位置との間の遅延量を求める。
【0067】
一方、所定の長さ以上のマルチパスがある場合、位相差補正部20は、主波位置特定部24が特定した折り返った主波位置の、折り返り元の主波位置とフーリエ変換窓位置との間の遅延量を求める。
【0068】
また、主波位置の特定ができなかった場合には、位相差補正部20は、先行波検出部25で検出された先行波の位置と、フーリエ変換窓位置との間の遅延量を求める。
そして、位相差補正部20は、主波位置または先行波の位置とフーリエ変換窓位置との間の遅延量に応じて、位相差ΔΦを求め、位相差ΔΦの逆位相(e-ΔΦ)を、インパルス応答の主波または先行波の値に乗算する。これによって、シンボル間のSP信号の周波数の違いによる位相差ΔΦが、キャンセルされる。
【0069】
その後、位相偏差算出部21は、現在のシンボルのインパルス応答の主波または先行波と、位相差補正部20により補正された以前のシンボルのインパルス応答の主波または先行波から、位相回転量ΔΘを算出する(ステップS12)。そして、ドップラー周波数算出部22は、位相回転量ΔΘをもとに、ドップラー周波数fdを算出する(ステップS13)。
【0070】
このように、本実施の形態の受信信号処理方法では、データ信号とパイロット信号を含むサブキャリア群を用いて信号の折り返りの影響を受けないインパルス応答を算出し、その最大値の位置をもとに、正しい主波位置を特定している。これにより、折り返りが生じる可能性のあるマルチパスが発生した場合でも、正確にドップラー周波数を求めることができる。
【0071】
また、入力選択部14により、パイロット信号のみによりインパルス応答を算出するか、データ信号から求められる伝送路応答値及びパイロット信号によりインパルス応答を算出するか選択することで、逆フーリエ変換部15を1つとすることができる。これにより、回路規模が大幅に縮小される。
【0072】
また、主波位置の特定ができなかった場合でも、位相差補正部20は、先行波を用いて位相差ΔΦの補正を行うので、ドップラー周波数の更新が長期間できなくなることを防止することができる。
【0073】
以上のような半導体集積回路10及び受信信号処理方法は、たとえば、以下のようなOFDM受信システムに適用される。
図11は、OFDM受信システムの主要部の概略の構成を示す図である。
【0074】
OFDM受信システム30は、チューナ31と、直交復調部32と、フーリエ変換部33と、シンボル番号生成部34と、ドップラー周波数推定部35と、伝送路等化部36と、デマッピング部37と、誤り訂正部38を有している。また、OFDM受信システム30は、MPEG−2(Moving Picture Experts Group phase 2)デコーダ(またはH.264デコーダ)39と、出力部40を有している。
【0075】
チューナ31は、選局したRF(Radio Frequency)信号を、アンテナ31aを介して受信する。
直交復調部32は、受信した変調波を直交復調する。
【0076】
フーリエ変換部33は、直交復調した受信信号に対してフーリエ変換(たとえば、FFT)を行い、周波数領域の信号に変換する。
シンボル番号生成部34は、たとえば、フーリエ変換後のサブキャリア群に含まれるTMCC(Transmission and Multiplexing Configuration Control)信号を用いてシンボル番号を生成する。
【0077】
TMCCは、受信信号の各シンボルデータの特定の位置(規格で定められている)に含まれている。なお、TMCCの伝送には差動変調が用いられているため、シンボル番号生成部34は、差動変調されたTMCCを復調した後、シンボル番号を生成し、ドップラー周波数推定部35の、前述した入力選択部14に入力する。
【0078】
ドップラー周波数推定部35は、図1で示した各構成を含み、フーリエ変換された受信信号から、ドップラー周波数を算出する。
伝送路等化部36は、ドップラー周波数推定部35により算出されたドップラー周波数に応じて、フーリエ変換された受信信号を等化する。これにより、伝送路による外乱を除去した送信信号が再現される。具体的には、受信信号を等化する際、伝送路等化部36は、パイロット信号から、伝送路推定値を求めるが、このとき用いるフィルタの係数を、ドップラー周波数に応じて変更する。ドップラー周波数は受信機の移動速度と比例するために、ドップラー周波数に応じてフィルタの係数を変更することで、移動速度に応じた伝送路推定値を求めることができ、送信信号が精度よく再現できる。
【0079】
デマッピング部37は、外乱が除去された送信信号の信号点位置を割り出し、送信信号のビットパターンを導き出す。
誤り訂正部38は、デマッピング部37の出力に対して、たとえば、リードソロモン符号や畳み込み符号を用いて、データの誤りを訂正する。
【0080】
MPEG−2デコーダ39は、誤り訂正部38から出力された、MPEG−2形式で符号化されたデータを復号する。
出力部40は、たとえば、ディスプレイやスピーカであり、復号された映像データや音声データを出力する。
【0081】
上記のようなOFDM受信システム30において、たとえば、直交復調部32から誤り訂正部38までの各構成が、半導体集積回路50として提供される。なお、半導体集積回路50は、MPEG−2デコーダ39を含んでいてもよい。
【0082】
このようなOFDM受信システム30は、たとえば、地上デジタル放送受信装置や、地上デジタル放送が視聴可能な携帯端末などに適用可能である。前述したように、本実施の形態の半導体集積回路は、小さな回路規模で、精度よくドップラー周波数を算出することができるので、携帯端末において適用するのに特に有用である。
【0083】
以上、実施の形態に基づき、本発明の半導体集積回路及び受信信号処理方法の一観点について説明してきたが、これらは一例にすぎず、上記の記載に限定されるものではない。
【符号の説明】
【0084】
10 半導体集積回路
11 パイロット信号記憶部
12 サブキャリア群記憶部
13 伝送路応答値生成部
14 入力選択部
15 逆フーリエ変換部
16,17 インパルス応答保持部
18 インパルス応答遅延部
19 最大値位置検出部
20 位相差補正部
21 位相偏差算出部
22 ドップラー周波数算出部
23 マルチパス判定部
24 主波位置特定部
25 先行波検出部

【特許請求の範囲】
【請求項1】
フーリエ変換後の受信信号のうち、パイロット信号のみが入力された場合、当該パイロット信号を逆フーリエ変換して第1のインパルス応答を算出し、前記受信信号のうちのデータ信号から求められる伝送路応答値及び前記パイロット信号が入力された場合、当該伝送路応答値及び当該パイロット信号を逆フーリエ変換して第2のインパルス応答を算出する逆フーリエ変換部と、
前記逆フーリエ変換部に対し、前記パイロット信号のみを入力するか、前記伝送路応答値及び前記パイロット信号を入力するか選択する入力選択部と、
前記第2のインパルス応答をもとに、所定の長さ以上のマルチパスが発生しているか否かを判定するマルチパス判定部と、
前記所定の長さ以上の前記マルチパスの発生が検出された場合、前記第1のインパルス応答の最大値の位置と、前記第2のインパルス応答の最大値の位置とを比較することで、前記第1のインパルス応答における主波位置を特定する主波位置特定部と、
前記主波位置を特定した前記第1のインパルス応答を用いて、前記主波位置とフーリエ変換窓位置との間の遅延量をもとに、シンボル間における前記パイロット信号の周波数の違いに起因した前記第1のインパルス応答の位相差を補正する位相差補正部と、
前記位相差補正部により補正された前記第1のインパルス応答と、異なるシンボルにおける前記第1のインパルス応答との間の位相回転量を算出する位相偏差算出部と、
前記位相回転量をもとに、ドップラー周波数を算出するドップラー周波数算出部と、
を有することを特徴とする半導体集積回路。
【請求項2】
前記第1のインパルス応答をもとに、先行波を検出する先行波検出部を有し、
前記主波位置特定部にて、前記主波位置の特定ができない場合、前記位相差補正部は、前記先行波の位置と、前記フーリエ変換窓位置との間の遅延量をもとに、シンボル間における前記パイロット信号の周波数の違いに起因した前記第1のインパルス応答の位相差を補正することを特徴とする請求項1記載の半導体集積回路。
【請求項3】
前記入力選択部は、シンボル番号を検出し、OFDMのフレームごとに、前記パイロット信号のみを入力するか、前記伝送路応答値及び前記パイロット信号を入力するか切り替えることを特徴とする請求項1記載の半導体集積回路。
【請求項4】
入力選択部が、フーリエ変換後の受信信号のうち、パイロット信号のみを逆フーリエ変換部に入力するか、前記受信信号のうちのデータ信号から求められる伝送路応答値及び前記パイロット信号を前記逆フーリエ変換部に入力するか選択し、
前記逆フーリエ変換部は、前記パイロット信号のみが入力された場合、当該パイロット信号を逆フーリエ変換して第1のインパルス応答を算出し、前記伝送路応答値及び前記パイロット信号が入力された場合、当該伝送路応答値及び当該パイロット信号を逆フーリエ変換して第2のインパルス応答を算出し、
マルチパス判定部が、前記第2のインパルス応答をもとに、所定の長さ以上のマルチパスが発生しているか否かを判定し、
主波位置特定部が、前記所定の長さ以上の前記マルチパスの発生が検出された場合、前記第1のインパルス応答の最大値の位置と、前記第2のインパルス応答の最大値の位置とを比較することで、前記第1のインパルス応答における主波位置を特定し、
位相差補正部が、前記主波位置を特定した前記第1のインパルス応答を用いて、前記主波位置とフーリエ変換窓位置との間の遅延量をもとに、シンボル間における前記パイロット信号の周波数の違いに起因した前記第1のインパルス応答の位相差を補正し、
位相偏差算出部が、前記位相差補正部により補正された前記第1のインパルス応答と、異なるシンボルにおける前記第1のインパルス応答との間の位相回転量を算出し、
ドップラー周波数算出部が、前記位相回転量をもとにドップラー周波数を算出することを特徴とする受信信号処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−288178(P2010−288178A)
【公開日】平成22年12月24日(2010.12.24)
【国際特許分類】
【出願番号】特願2009−141933(P2009−141933)
【出願日】平成21年6月15日(2009.6.15)
【出願人】(000005223)富士通株式会社 (25,993)
【出願人】(308014341)富士通セミコンダクター株式会社 (2,507)
【Fターム(参考)】