説明

単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにPET装置

【課題】 従来より大きい発光量と優れた蛍光減衰特性を有する単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにPET装置の提供を目的とする。
【解決手段】 本発明による単結晶シンチレータ材料の製造方法は、Pbと、Li、Na、K、Rb、Csから選ばれる1種以上と、Wおよび/またはMoと、Bおよび酸素を含有する溶媒にCe化合物およびLu化合物を混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陽電子放出核種断層撮像装置用単結晶シンチレータ材料およびその製造方法に関する。
【背景技術】
【0002】
近年、医療分野において、陽電子放出核種断層撮像装置(Positron Emission Tomography:以下、「PET」と称する。)による診断が広く行われるようになり、更に性能の高いPET装置を実現するため、優れたシンチレータ材料の探索が進められている。
【0003】
PETのシンチレータ材料はγ線を検出することが必要であり、これまで、BGO(ビスマス ゲルマニウム オキサイド)や、LSO(ルテチウム シリコン オキサイド)、GSO(ガドリニウム シリコン オキサイド)、LYSO(ルテチウム イットリウム シリコン オキサイド)などの単結晶シンチレータ材料がPETに適用されている。シンチレータ材料の特性は、発光量(蛍光出力)、蛍光減衰時間、エネルギー分解能などによって評価されるが、上記の単結晶材料は、PETに適用するのに必要な特性に優れている。これらの単結晶を作製する方法としては、チョクラルスキー法やブリッジマン法などの融液成長法が、商業的に広く用いられている。
【0004】
PETを普及させるためには、診断のスループットを向上させることが必要である。そのためには、これまでのシンチレータ材料よりも更に発光量が大きく蛍光減衰時間の短い単結晶シンチレータ材料の開発が必須である。
【0005】
特許文献1には、Ce(セリウム)を賦活したGSOの例が記載されている。一方、特許文献2や特許文献3には、セリウム賦活ホウ酸ルテチウム系材料が開示されている。セリウム賦活ホウ酸ルテチウムは、大きい発光量と短い蛍光減衰時間を兼ね備えていることから、優れたシンチレータ材料となることが期待される。特許文献3は、セリウム賦活ホウ酸ルテチウム系材料についてPETへの適用も提案しているが、これらの文献に開示されているセリウム賦活ホウ酸ルテチウム系材料は、粉末に過ぎない。このように、特許文献2および特許文献3に記載されている方法では、PETに使用可能な大きさを有するセリウム賦活ホウ酸ルテチウムの単結晶を形成できなかった。
【0006】
ホウ酸ルテチウムは、大きな体積変化を伴う相転移点(約1350℃)が融点(1650℃)より低い温度領域に存在する。このため、出発原料を高温に加熱して溶融または溶解させることが必要な従来の単結晶育成方法を用いると、溶融物の冷却時において、相転移点を通過する際に体積膨張が生じるため、結晶が崩壊してしまうという問題があった。特許文献4には、ホウ酸ルテチウム系材料にSc、Ga、Inのいずれかの元素を添加することにより、結晶材料の相転移を抑制することによってシンチレータ用単結晶材料を製造する方法が開示されている。しかしながら、特許文献4に記載されている方法で形成されたホウ酸ルテチウム系の単結晶には、添加元素による密度の低下や、発光量減少などの特性劣化が生じてしまう。
【0007】
これらの課題を解決するため、出願人は、PCT/JP2008/1717号(2008年7月1日出願)において、ホウ酸鉛系の溶媒を用いたフラックス法により作成した、セリウム賦活ホウ酸ルテチウムの単結晶を開示している。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2003−300795号公報
【特許文献2】特開2005−298678号公報
【特許文献3】特開2006−52372号公報
【特許文献4】特開2007−224214号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
PCT/JP2008/1717号に開示の方法によれば、Scなどの元素を添加することなく、カルサイト型結晶構造を有しているセリウム賦活ホウ酸ルテチウム単結晶材料を簡便な方法で得ることができる。しかしながら、この方法によれば、生成したセリウム賦活ホウ酸ルテチウム単結晶内に極微量の溶媒成分が混入して本来の特性が発揮できなくなってしまう可能性があった。そのため発明者らは、ホウ酸鉛系の溶媒でセリウム賦活ホウ酸ルテチウム単結晶を生成する際にセリウム賦活ホウ酸ルテチウム単結晶内に混入する溶媒成分の量を低減することを課題として研究を行った。
【0010】
そこで本発明は、従来より大きい発光量と優れた蛍光減衰特性を有する単結晶シンチレータ材料およびその製造方法、放射線検出器、並びにPET装置の提供を目的とする。
【課題を解決するための手段】
【0011】
本発明による単結晶シンチレータ材料の製造方法は、Pbと、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、Ce化合物およびLu化合物を前記溶媒と混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。
【0012】
好ましい実施形態において、前記溶媒を用意する工程および前記化合物を溶融させる工程は、前記溶媒を形成する化合物と、Ce化合物と、Lu化合物とを混合し、800℃以上1350℃以下の温度に加熱する工程である。
前記溶媒を用意する工程は、ホウ酸系材料と鉛系材料と非鉛系材料とを混合して溶媒を構成しているが、溶媒用の材料全てを同時に混合してもよいし、一部の材料を後で継ぎ足してもよい。
好ましい実施形態において、前記Ceの組成比率xが0.001≦x≦0.03を満足する。
好ましい実施形態において、前記単結晶を析出成長させる工程は、TSSG法により行う。
好ましい実施形態において、前記単結晶を析出成長させる工程において、溶融した前記化合物の温度が750℃以上1350℃未満の温度まで0.001℃/時間以上5℃/時間以下の降温速度で冷却する。
好ましい実施形態において、前記析出成長させる工程は、80時間以上の時間をかけて行う。
【0013】
本発明の単結晶シンチレータ材料は、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶部を有し、前記単結晶部のPbの含有量が質量比率で100ppm以下である。すなわち、この単結晶部の単位質量100%において、Pb含有量が質量比率で100ppm以下に抑えられている。
【0014】
好ましい実施形態において、前記単結晶部はカルサイト型結晶構造を有している。
好ましい実施形態において、厚さ0.5mmに鏡面加工された前記単結晶部の波長280nmにおける透過率は、20%以上である。
【0015】
本発明の放射線検出器は、本発明に係る単結晶シンチレータ材料と、前記単結晶シンチレータ材料からの発光を検出する検出器を備える。
【0016】
本発明のPET装置は、リング状に配列された複数の放射線検出器を備え、被検体からのγ線を検出するPET装置であって、前記複数の放射線検出器の各々は、本発明に係る放射線検出器である。
【発明の効果】
【0017】
本発明によれば、着色するような不純物の混入が見られず従来よりも大きい発光量を有する、無色透明の単結晶シンチレータ材料を得ることができる。
【図面の簡単な説明】
【0018】
【図1】本発明による単結晶および比較例の透過率を示すグラフである。
【図2】本発明で用いた結晶育成装置を示す図である。
【図3】本発明の実施例1における結晶育成のヒートパターンを示すグラフである。
【図4】本発明の実施例1で作製された結晶体を示す写真である。
【図5】137Cs線源からのγ線励起によって実施例の結晶体を発光させた、γ線励起発光スペクトルを示す。
【図6】比較例で用いた結晶育成装置を示す図である。
【図7】本発明の比較例1における結晶育成のヒートパターンを示すグラフである。
【図8】本発明の実施例2における結晶育成のヒートパターンを示すグラフである。
【図9】本発明の実施例2〜4におけるCuKα線により励起されたX線励起発光量のホウ酸鉛溶媒比率依存性を示すグラフである。
【図10】シンチレータアレイの構成例を示す斜視図である。
【図11】本発明の放射線検出器の構成例を示す断面図である。
【図12】本発明のPET装置の一例を示す断面図である。
【発明を実施するための形態】
【0019】
本発明による単結晶シンチレータ材料の製造方法は、Pbと、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、Ce化合物およびLu化合物を前記溶媒と混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、溶融した前記化合物を冷却することにより、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程とを含む。より詳しくは、溶融した前記化合物を冷却し、セリウム賦活ホウ酸ルテチウムの高温バテライト相からカルサイト相への相転移点よりも低い温度で前記単結晶を析出成長させることが望ましい。
【0020】
本発明の製造方法に用いる溶媒はPbを含み、かつLi、Na、K、Rb、Csからなる群から選ばれる1種以上のアルカリ金属と、Wおよび/またはMoと、Bおよび酸素とを含有し、かつ溶媒中に含有されるPb量はPbO換算で35mol%以下であることを特徴とする。
溶媒中にPbを含有させると欠陥の少ない単結晶が生成しやすくなるため、Pbを含ませることが好ましい。
【0021】
また、生成する単結晶材料中に0.1mass%程度混入すると単結晶材料の着色を引き起こしてしまう。その結果、本来の特性が発揮できなくなってしまう可能性がある。また溶媒中のPb量がPbO換算で35mol%を超えると、生成する単結晶材料へX線などの放射線を照射した場合に、経時的に発光量が低下してしまう。PbO換算で70mol%のPbを含むホウ酸鉛系溶媒より生成した単結晶材料は、CuKα線源からのX線を照射すると、1分経過後に発光量が10%低下してしまうという結果が得られている。したがって、着色や性能の低下を引き起こさないために、溶媒中のPb量は50重量%以下とする必要がある。Pbを含む溶媒は粘度が高くなり易いため、溶媒の粘度および溶解度の温度依存性を調整するためにアルカリ金属を含むことが好ましい。また、溶媒の融点を下げるため、アルカリ金属を2種以上含むことが望ましく、Li、Naが好適に使用できる。上述のアルカリ金属およびその化合物は、互いに性質が非常に似通っていることが知られており、K、Rb、Csを用いても、Li、Naを用いた場合の効果と同様の効果が期待できる。
【0022】
さらに、本発明の製造方法に用いる溶媒は、アルカリ金属との間で低融点の化合物を形成する元素として、Wおよび/またはMoを含有する。溶媒の密度を大きくすることによって、生成する単結晶材料の密度に近づけるという観点から、より原子量の大きな元素とアルカリ金属との間で低融点化合物を形成することが望ましい。このため、MoよりもWが好適に採用される。ただし、Moも、Wと同属の重元素であり、その性質もWに類似しているため、Wとともに、あるいは、Wに代えてMoを使用しても、同様の効果が期待できる。
溶媒に含まれるBは、生成する単結晶の成分として必須の元素である。このBは、アルカリ金属とホウ酸化合物を形成し、鉛とホウ酸鉛を形成して、溶媒の成分ともなる。
上記溶媒にCe化合物およびLu化合物などの、単結晶成分となる原料を溶融させた後、徐冷して単結晶を析出させる。
【0023】
本発明の製造方法によれば、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する無色透明の単結晶部を有する単結晶シンチレータ材料を得ることができる。本発明における単結晶部の析出・結晶成長後における典型的な形状は、概略的に平板状であるが、他の形状に加工することを排除しない。
【0024】
なお、典型的には、本発明の単結晶シンチレータ材料の全体が上記の「単結晶部」によって構成されるが、「単結晶部」以外の部分、例えば一部多結晶化した部分が単結晶シンチレータ材料に含まれていてもよいし、保護被膜などが単結晶シンチレータ材料に付着していてもよい。
希土類を賦活したホウ酸ルテチウムはX線などの放射線を吸光して紫外線または可視光線を発するシンチレーション特性を示す。特に、Ceで賦活されたホウ酸ルテチウムは、発光量が大きく、蛍光減衰時間が短いという点で非常に優れたシンチレータ材料として機能することが可能である。
【0025】
上記の組成式における組成比率xは、CeがLuサイトに置換する割合を示している。この組成比率xが0.0001未満であると、発光元素であるCeが少ないため十分な発光量が得られない。また、組成比率xが0.05を超えると、透過率が低下してしまい、やはり発光量が減少する。
【0026】
本発明の好ましい実施形態における単結晶シンチレータ材料は、Ceが単結晶全体にほぼ均一にドーピングされており、単結晶内のすべての領域において上記組成範囲を満足する。これにより、単結晶全体を所望のCe置換量とすることができ、単結晶全体として優れた蛍光減衰特性を発揮させることができる。
【0027】
ホウ酸ルテチウム単結晶は、1350℃付近に存在する相転移点より低い温度ではカルサイト構造をとり、相転移点よりも高い温度ではバテライト構造をとる。後述するように、本発明では、1350℃以下の温度でホウ酸ルテチウム系材料の溶媒への溶解および冷却を行うことにより単結晶を析出成長させるため、冷却過程における相転移に起因する大きな体積変化が生じない。その結果、カルサイト型構造のホウ酸ルテチウム単結晶を大きく成長させることが可能になる。
【0028】
このようにして作製される本発明の単結晶シンチレータ材料は、可視光に対する高い透過率を示す。例えば厚さ2mm以下の単結晶では、発光波長のピークにおける透過率が50%以上に達すると考えられる。発光波長のピーク値は、単結晶の組成にもよるが、上記組成範囲におけるセリウム賦活ホウ酸ルテチウム単結晶の発光波長のピークは350nm〜450nmの範囲に存在する。
【0029】
また、本発明の単結晶シンチレータ材料の透過率は、260nm〜300nmの短波長領域において十分に高いという特徴を有する。図1は、本発明による単結晶シンチレータ材料(実施例1)の透過率(太線)と、PCT/JP2008/1717号に開示された方法によって作製された単結晶シンチレータ材料(比較例1)の透過率を示すグラフである。
【0030】
図1からわかるように、本発明の単結晶シンチレータ材料の透過率は、波長340nm付近で極小値を取るが、波長340nm近傍以外の波長領域では相対的に高い値を実現している。また、本発明の単結晶シンチレータ材料では、260nm〜300nmの短波長領域における透過率が、波長340nmの透過率と同等以上となっている。
一方、PCT/JP2008/1717号に開示されている方法によって作製された単結晶シンチレータ材料の透過率は、350nm以下の短波長領域において、波長が短くなるに従って単調に低下している。比較例における、このような透過率の低下は、この単結晶シンチレータ材料に比較的多量のPbが含まれていることに起因している。
【0031】
このように単結晶シンチレータ材料の透過率は、その組成式が(CeLu1−x)BOで表され、かつ、Ceの組成比率xが0.0001≦x≦0.05を満足する場合であっても、Pbの含有量によって大きく変化する場合がある。
【0032】
本発明によれば、鉛含有量を質量比率で100ppm以下に低減することができるため、260nm〜300nmの波長領域の略中央値である波長280nmにおいて、20%以上の透過率(好ましくは30%以上)を実現できる。
【0033】
なお、本明細書では、サンプルに入射する光の強度を100とした場合における出射光(サンプルから出射される光)の強度比率を「透過率」と定義する。具体的には、次のようにして測定する。
【0034】
測定サンプルとしては、単結晶シンチレータ材料を(001)面に対して平行に切り出した後、その表面を鏡面研磨によって平坦化し、表面粗さが0.005μm以下、厚さ0.5mmに調整されたものを用いる。一般的には、透過率の大きさはサンプル内部における吸収のみならず、サンプルの表面における反射によっても影響される。しかし、サンプルの表面粗さを上記程度に調整することにより、各サンプルにおける反射の影響を同程度とみなすことができる。従って、上記のように調整されたサンプルを測定される透過率により、サンプルのもつ吸収特性を十分に高い精度で比較することが可能である。透過率の測定には、紫外可視分光光度計を用いる。
【0035】
次に、本発明の単結晶シンチレータ材料の製造方法をさらに詳細に説明する。
前述の通り、ホウ酸ルテチウム単結晶は、1350℃付近に存在する相転移点よりも高い温度ではバテライト構造をとり、相転移点よりも低い温度ではカルサイト構造をとる。従来の単結晶製造方法では、原材料を高温に溶融することが必要であるため、溶融物の冷却によって析出した結晶体の温度が冷却過程で、この相転移点を通過することが避けられなかった。そのため、析出した結晶体の体積が相転移によって大きく変化し、結晶体が崩壊してしまうという問題があり、融点よりも低い相転移点を有するホウ酸ルテチウムの単結晶の作製は極めて困難であった。
【0036】
前述の、PCT/JP2008/1717号に開示される、ホウ酸鉛を溶媒とするフラックス法は、この問題を解決し、従来は困難であったセリウム賦活ホウ酸ルテチウムの単結晶を簡便に生成できる、非常に優れた方法であった。しかしながら、この方法によって作成したセリウム賦活ホウ酸ルテチウムの単結晶は、僅かながら黄色に着色されていた。発明者らの分析によれば、この単結晶には溶媒の成分である鉛が極微量に混入している可能性があり、それによって着色されていると推定される。また、鉛の混入は生成する単結晶の発光量に影響があると考えられる。
【0037】
そこで、本発明者らは、フラックス法で用いる溶媒について更なる研究を重ねた結果、Pbと、Liなどのアルカリ金属と、このアルカリ金属と低融点化合物を形成する金属としてWおよび/またはMoと、Bおよび酸素とを含有する溶媒を主溶媒として用い、ホウ酸ルテチウム系材料を相転移点より低い温度で溶媒に溶解した後、この溶解物を徐冷することにより、セリウム賦活ホウ酸ルテチウム系材料の単結晶を析出させることが可能であることを見出した。本発明によれば、PCT/JP2008/1717号に開示される、ホウ酸鉛を溶媒とするフラックス法によって作製された単結晶シンチレータ材料とは異なり、鉛の含有量が質量比率で100ppm以下の、無色透明の単結晶シンチレータ材料を得ることができる。
【0038】
以下、本発明の単結晶シンチレータ材料の製造方法を具体的に説明する。
[出発原料(ホウ酸ルテチウム系材料および溶媒)]
出発原料としては、Pbの化合物と、Li、Na、K、Rb、Csから選ばれるアルカリ金属の化合物、Wおよび/またはMoの化合物、ホウ素化合物、Ce化合物、Lu化合物などを所要の割合で混合したものを用いる。
【0039】
Pbの化合物としては、一酸化鉛、四三酸化鉛、フッ化鉛などを用いることができるが、その中でも取扱の容易さの点で一酸化鉛が好ましい。アルカリ金属の化合物としては、LiCO、NaHCO、KOHやCsOなど炭酸塩、炭酸水素塩、水酸化物や酸化物を用いることができるが、取り扱いの容易さから炭酸塩が好ましい。アルカリ金属の化合物として、NaClやKBr、LiF、CsIなどのアルカリのハロゲン化物を用いることもできる。アルカリのハロゲン化物は単独で用いても良いし、アルカリの炭酸塩などと混合して用いても良い。溶媒となる化合物の融点を下げるために、2種類以上のアルカリ金属を含めることが望ましい。
【0040】
Wおよび/またはMoの化合物としては、WOやMoOを用いることができる。またホウ素化合物としては、B、HBOなどを用いることができる。
Ce化合物としては、CeO、Ce(OH)、Ceなどが挙げられ、その中でも高純度の量産品が流通しており手に入りやすいという点でCeO、Ceが好ましい。Lu化合物としては、Luが好適に用いられる。
【0041】
これらの出発原料を以下の割合で調整する。まず、ホウ素とWおよび/またはMoを、mol比で10:90〜80:20となるように配合して溶媒とする。より大きな結晶を析出させるという観点から、ホウ素とWおよび/またはMoの配合比は30:70〜60:40となるように配合するのが好ましい。アルカリ金属の配合比は、Wおよび/またはMoとホウ素の合計1molに対し、0.5mol〜2molとなるように配合するのが好ましい。さらに、Pbとホウ素をモル比が1:0.2〜1:1.6となるように配合したホウ酸鉛系組成物を、前記溶媒に対して10〜50重量%の割合で添加する。
【0042】
溶媒には、融点や粘度を調整する目的で、BaCO、SrCO、CaCOなどの、アルカリ土類金属の化合物から選ばれる少なくとも1種(以下、「BaCOなど」と称する場合がある。)を含有させてもよい。BaCOなどを溶媒に含有させる場合には、アルカリ金属1molに対してBaCOなどが0.1mol以下となるように配合することが好ましい。
【0043】
この溶媒に、Pbとアルカリ金属の合計量1molに対してLuを0.002〜0.3mol、CeをLu1molに対して0.0001〜0.5molとなるような比率で各化合物を混合する。より好ましくは、この溶媒に、Pbとアルカリ金属の合計量1molに対してLuを0.02〜0.3mol、CeをLu1molに対して0.0001〜0.5molとなるような比率で各化合物を混合する。これらの混合物を加熱していくと、上記溶媒のための化合物が溶融し、Lu化合物およびCe化合物が、溶融した溶媒に溶解する。出発原料として、あらかじめ個別に調整されたホウ酸鉛、NaWO、Li等を用いて上記比率になるように配合しても良い。
【0044】
[結晶育成の温度制御]
(1)、昇温・温度保持
上記出発原料を50℃/時間〜500℃/時間の昇温速度で800℃以上、ホウ酸ルテチウムの相転移点である1350℃以下の温度に昇温させ、そのまま1時間〜12時間温度保持して全体を溶融させる。ホウ酸ルテチウムの融点は1650℃であるが、それより低い上記範囲の温度で溶融した溶媒に溶解するので、冷却工程で結晶の相転移点を通過せずに、カルサイト構造の単結晶を析出させることができる。
【0045】
昇温・温度保持工程は、保持温度よりも高い温度までいったん昇温させた後、上記温度範囲で保持してもよい。また、比較的高い昇温速度から比較的低い昇温速度へと、いくつかの段階に分けて昇温させてもよい。
結晶成長を目的とした保持・冷却(徐冷)が1350℃(相転移温度)以下であれば、一度1350℃以上に温度を上げた後、1350℃未満の温度で保持してもよい。
【0046】
Ce化合物およびLu化合物を前記溶媒と混合して1350℃超でホウ酸ルテチウムの沸点以下の温度に昇温すると、500℃以上1350℃以下の温度を通過する際に前記化合物は液相となった溶媒に全て融ける。例えば、いったん1400℃に昇温したとしても、溶融工程自体は昇温の途中で為されることになる。
【0047】
(2)、冷却
続いて、上記溶融溶解物を、上記保持温度(800℃以上1350℃以下)から、750℃以上1350℃未満の上記保持温度より低い温度まで(前記温度範囲を以下第1徐冷温度領域と称する)、好ましくは0.001℃/時間以上5℃/時間以下で徐冷することが好ましく、0.003℃/時間以上2℃/時間以下で徐冷することがより好ましい。最初の冷却段階をこのような低い速度でゆっくりと徐冷することにより、析出する結晶を大きく成長させることができる。途中結晶を大きく成長させる為に800℃以上1350℃未満の温度範囲内で30分以上温度を保持してもよい。また、結晶をより大きく成長させるという観点から、第1徐冷温度領域では、比較的低い冷却速度から比較的高い冷却速度へと、いくつかの段階に分けて徐冷することが望ましい。
【0048】
第1徐冷温度領域での徐冷の後、さらに、溶融溶解物の温度が500℃以上800℃以下の温度に達するまで(前記温度範囲を以下第2徐冷温度領域と称する)、0.01℃/時間以上、30℃/時間以下、好ましくは0.1℃/時間以上、20℃/時間以下の降温速度で徐冷してもよい。上記徐冷終了後(第1徐冷温度領域での徐冷終了後、または、第1徐冷温度領域での徐冷+第2徐冷温度領域での徐冷終了後)は、50℃/時間〜300℃/時間の比較的高い降温速度で冷却を行っても良い。
【0049】
このような温度制御は、上記溶融溶解物全体を同一温度に制御することに限定されるものではなく、溶融溶解物全体のうち少なくとも結晶を析出させる部分のみ上記温度に制御されていればよい。成長する結晶の大きさを制御する等の目的で、溶融溶解物の温度を部分的に異なる温度で制御してもよい。例えば、結晶を成長させる部分は上記温度範囲に制御し、結晶を析出させたくないその他の部分はそれよりも高い温度に制御することで、大きな結晶を形成することができる。また後述のTSSG法等種子材料等を用いる方法においても、坩堝内の溶融溶解物全体ではなく当該種子材料等のみを温度制御するようにしてもよい。
【0050】
坩堝中の単結晶や坩堝から取り出した単結晶には、固化した溶媒が付着しているため、塩酸、酢酸、硝酸またはこれらの水溶液などに単結晶を浸漬することにより、溶媒からセリウム賦活ホウ酸ルテチウム単結晶を分離して取り出すことができる。この分離を行う前に500℃以上700℃以下の温度に再加熱することにより、溶融した溶媒を流し出しても良い。また、単結晶を析出成長させるための冷却途中において、上記混合物の温度を500℃以上700℃以下の温度(例えば550℃)で数時間(例えば5時間)保持した後取り出し、溶融している溶媒を流しだしてもよい。
【0051】
[結晶成長法]
具体的な結晶成長法としては、フラックス法(徐冷法,温度差法)、ブリッジマン法、TSSG(Top Seeded Solution Growth)法などが挙げられる。TSSG法によれば、大きな結晶を育成することができ、さらに育成した結晶と溶液との分離が容易になる。以下、TSSG法による結晶育成の具体例について図2を参照して説明する。
【0052】
図2にTSSG法による結晶育成装置を示す。図2の装置はヒータ2によって温度制御可能な電気炉3を有しており、電気炉3内の坩堝台4´上に原料溶液7を入れた白金製の坩堝1を設置している。このような構成の装置において、坩堝1に調整された原料を入れ、ヒータ2を加熱することで原料を溶解する。引上げ軸5の先端に取り付けられた種子材料6を原料溶液7に接触させ、そのまま保持、あるいは引上げながら結晶を育成する。種子材料6としては、育成しようとする結晶と同一種の結晶を用いるのが一般的でありかつ望ましいが、原料溶液7に溶解しにくい異種の結晶や、白金等も種子材料6としてよく用いられる。
【0053】
また、大型の結晶を育成するためには、坩堝を大型化する必要がある。一方で、大型の坩堝を用いる場合、溶液中に意図しない温度分布や濃度分布が生じやすくなる可能性がある。このような環境下では、品質の良い結晶を再現よく育成することは困難である。このような問題を解決し、常に育成に適した溶液を維持するためには、溶液を撹拌しながら結晶育成を行うことが好ましい。
【0054】
上記製造方法により得られるセリウム賦活ホウ酸ルテチウム単結晶は、発光波長ピークにおける透過率が40%以上、無色透明の六角板状単結晶であり着色するような不純物の混入が認められず、カルサイト構造を有している。X線励起での発光は、ピーク波長が365nm〜410nm、同一体積のBGOに対して約350%以上の高い発光量を有している。また、137Cs線源からのγ線励起発光による蛍光減衰時間は25nsec以下と、BGOの300nsecに対して非常に速い特性を有している。
【0055】
本発明による他の単結晶シンチレータ材料の製造方法は、Pbと、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、
Ce化合物およびLu化合物を前記溶媒と混合し、組成式(CeLu1−x)BOで表されて0.0001≦x≦0.05を満足する単結晶が、高温バテライト相からカルサイト相への著しい体積変化を伴う相転移を冷却の過程で生じない温度で加熱して前記化合物を溶融させる工程と、
溶融した前記化合物を冷却することにより、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程と、を含む。
【0056】
相転移点が1350℃にあることは先に述べたが、溶融した化合物及び溶媒に雰囲気から印加される圧力を常圧から変えると、相転移の温度が1350℃からシフトする。また、溶融した化合物及び溶媒に電場を印加しても、相転移の温度が1350℃からシフトする。これらの場合には、析出成長させるときの温度はシフトした相転移点以下にする。
【実施例】
【0057】
(実施例1)
本実施例では、図2に示す装置を用いてTSSG法により結晶体を成長させた。直径75mm、深さ75mmの白金坩堝を用意し、NaCO:174.21g、LiCO:122.44g、WO:508.09g、PbO:193.86g、BaCO:1.94g、B:107.57g、Lu:40.53g、CeO:0.106gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝1を、その周囲に配置されたヒータ2により温度制御して、図3に示すヒートパターンで結晶を育成した。図3の縦軸は温度、横軸は時間である。保持過程の途中或いは冷却過程の途中は記載を省略している。
【0058】
本実施例では、図3からわかるように、150℃/Hrで1150℃まで昇温させた。1150℃で24時間保持した後、25℃/Hrで1021℃まで降温させた。2時間保持した後、坩堝と同じタイミングで、坩堝と回転方向が反対になるように30rpmで回転させた引上げ軸5の先端に取り付けた種子材料6(幅5mm、厚さ1mmのホウ酸ルテチウム結晶)を、坩堝上部から降下して溶液表面に接触させた。その状態でさらに2時間保持し、ついで0.05℃/Hrで1000℃まで降温させた後、引上げ軸5を上昇させて白金板を溶液表面から離した後、200℃/Hrで降温を続けた。種子材料の先端には目的とするセリウム賦活ホウ酸ルテチウム単結晶が成長した。冷却後、成長結晶を水及び酢酸によって洗浄して付着している溶媒を除去し、結晶体を取り出した。
【0059】
図4は、得られた結晶体を示す写真である。図4では、結晶の大きさを示すためのグリッドと一緒に結晶を斜め上から撮影した。方眼紙のグリッドの間隔(マス目の大きさ)は1mmである。引上げ軸の先端に支持された種子材料には、結晶体が成長した。結晶体の右下の部分は透明になっており、グリッドの一部が透けて見える。
【0060】
得られた結晶体についてX線回折装置による測定を行った結果、結晶体がLuBOのカルサイト構造を有していることを確認した。バテライト構造等の他の相は含まれていなかった。また、得られた結晶体の希土類全体に対するCe濃度を電子線マイクロアナライザ(EPMA)により測定したところ、0.1at%以上であることを確認した。すなわち、組成式(CeLu1−x)BOにおけるCeの組成比率xは、0.001以上であり、0.0001≦x≦0.05の関係を満足していた。またPbの含有量をICP発光分光分析で測定したところ、質量比率で100ppm以下であった。
【0061】
図5は、得られた結晶から透明部分のみを切り出し、2mm角×厚み0.7mmの矩形に加工した試料に、BaSO製の反射材を形成し、137Cs線源からのγ線励起によって発光させた、γ線励起発光スペクトルを示すグラフである。このグラフは、結晶体の発光出力を光電子増倍管(PMT)で検出し、マルチチャンネルアナライザで計測した波高分布である。横軸のChannelは、発光の強さを表し、数字が大きいほど、発光が強いことを示す。各Channelに対応するカウント数(Count)を縦軸に示す。図5からわかるように、γ線励起により発光ピークが確認できており、PET用シンチレータ材料として好適に用いることができることが示された。
【0062】
(比較例1)
本比較例では、図6に示す装置を用いてTSSG法により結晶体を成長させた。直径50mm、深さ47mmの白金製の坩堝1を用意し、PbO:130g、B:18g、Lu:10g、BaCO:1.0g、CeO:0.1gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝1を、その周囲に配置されたヒータ2により温度制御して、図7に示すヒートパターンで結晶を育成した。図7の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。
【0063】
本比較例では、図7からわかるように、まず50℃/Hrで500℃まで昇温させ、次に87.5℃/Hrで850℃まで昇温させたあと、更に150℃/Hrで1150℃まで昇温した。1150℃で8時間保持した後、30rpmで回転させた引上げ軸5の先端に取り付けた種子材料6(幅5mm、厚さ0.5mmの白金板)を、坩堝上部から降下して溶液表面に接触させた。その状態でさらに6時間保持した後1℃/Hrで940℃まで降温させた後、引上げ軸5を上昇させて白金板を溶液表面から離した後、200℃/Hrで降温を続けた。
【0064】
溶液に接触させていた白金板の先端には、組成式(CeLu1−x)BOで表される結晶体が成長した。冷却後、白金板と成長結晶を塩酸によって洗浄して付着している溶媒を除去し、結晶体を取り出した。
【0065】
得られた結晶体についてX線回折装置による測定を行った結果、結晶体がLuBOのカルサイト構造を有していることを確認した。また、得られた結晶体の希土類全体に対するCe濃度を電子線マイクロアナライザ(EPMA)により測定したところ、すべての領域で0.05at%以上であることを確認した。すなわち、組成式(CeLu1−x)BOにおけるCeの組成比率xは、0.0005であり、0.0001≦x≦0.05の関係を満足していた。またPbの含有量をICP発光分光分析で測定したところ、質量比率で400ppmであった。
【0066】
更に、CuKα線源からのX線励起によって比較例の結晶体を発光させたところ、発光のピーク波長は365nmであった。また、図1には、実施例1と同様の方法で透過率を測定した結果が示されている。波長280nmの透過率は0%であり、短波長側で透過率が低下していることが確認された。条件を変えて作製しても、透過率は5%未満と低い値であった。
【0067】
以降に説明する実施例は、ホウ酸鉛溶媒Aと非鉛系溶媒Bを所定比率で混合し、フラックス法(徐冷法)により成長させた結晶を用いて、CuKα線源からのX線励起による発光量のホウ酸鉛溶媒A比率依存性を調べたものである。
ここで、ホウ酸鉛溶媒Aは、PbO換算で70.8mol%のPbと、B2O3換算で28.4mol%のホウ素と、BaO換算で0.8mol%のBaからなる。非鉛系溶媒Bは、NaO換算で25.0mol%のNaと、LiO換算で25.0mol%のLiと、WO換算で33.3mol%のWと、B換算で16.7mol%のホウ素からなる。
【0068】
(実施例2)
本実施例は、ホウ酸鉛溶媒Aを10重量%と、非鉛系溶媒Bを90重量%を混合したものである。直径44mm、深さ47mmの白金坩堝を用意し、NaCO:17.82g、LiCO:12.42g、WO:51.96g、PbO:8.81g、B:9.53g、Lu:3.62g、CeO:0.009gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝を、その周囲に配置されたヒータにより温度制御して、図8に示すヒートパターンで結晶を育成した。図8の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。本実施例では、図8からわかるように、まず100℃/Hrで400℃まで昇温させ、次に50℃/Hrで600℃まで昇温させたあと、更に25℃/Hrで700℃まで昇温し、300℃/Hrで1300℃まで昇温した。その後1300℃で保持せず2℃/Hrで900℃まで降温させ、その後は43.8℃/Hrで降温を続けた。
【0069】
1300℃付近の温度で溶融溶解した混合物からは、冷却により組成式(CeLu1−x)BOで表される結晶体が成長した。
冷却後、坩堝内の固化物を水および酢酸水溶液で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出した。実施例1と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CeLu1−x)BOにおけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で100ppm以下であった。
【0070】
(実施例3)
本実施例は、ホウ酸鉛溶媒Aを20重量%と、非鉛系溶媒Bを80重量%を混合したものである。直径44mm、深さ47mmの白金坩堝を用意し、NaCO:15.84g、LiCO:11.04g、WO:46.19g、PbO:17.62g、B:9.78g、Lu:3.69g、CeO:0.010gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝を、その周囲に配置されたヒータにより温度制御して、図8に示すヒートパターンで結晶を育成した。図8の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。本実施例では、図8からわかるように、まず100℃/Hrで400℃まで昇温させ、次に50℃/Hrで600℃まで昇温させたあと、更に25℃/Hrで700℃まで昇温し、300℃/Hrで1300℃まで昇温した。その後1300℃で保持せず2℃/Hrで900℃まで降温させ、その後は43.8℃/Hrで降温を続けた。
【0071】
1300℃付近の温度で溶融溶解した混合物からは、冷却により組成式(CeLu1−x)BOで表される結晶体が成長した。
冷却後、坩堝内の固化物を水および酢酸水溶液で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出した。実施例1と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CeLu1−x)BOにおけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で100ppm以下であった。
【0072】
(実施例4)
本参考例は、ホウ酸鉛溶媒Aを50重量%と、非鉛系溶媒Bを50重量%を混合したものである。直径44mm、深さ47mmの白金坩堝を用意し、NaCO:9.90g、LiCO:6.90g、WO:28.87g、PbO:44.06g、B:10.52g、Lu:3.90g、CeO:0.010gを秤量した。その後、乳鉢にて混合し、上記坩堝内に充填した。この坩堝を、その周囲に配置されたヒータにより温度制御して、図8に示すヒートパターンで結晶を育成した。図8の縦軸は温度、横軸は時間である。冷却過程の途中は記載を省略している。本実施例では、図8からわかるように、まず100℃/Hrで400℃まで昇温させ、次に50℃/Hrで600℃まで昇温させたあと、更に25℃/Hrで700℃まで昇温し、300℃/Hrで1300℃まで昇温した。その後1300℃で保持せず2℃/Hrで900℃まで降温させ、その後は43.8℃/Hrで降温を続けた。
【0073】
1300℃付近の温度で溶融溶解した混合物からは、冷却により組成式(CeLu1−x)BOで表される結晶体が成長した。
冷却後、坩堝内の固化物を水および酢酸水溶液で洗浄することで溶媒成分を除去し、坩堝内に残った結晶体を取り出した。実施例1と同様の測定を行ったところ、この結晶はカルサイト構造を有していた。バテライト構造等の他の相は含まれていなかった。この結晶の組成式(CeLu1−x)BOにおけるCeの組成比率xは、0.001であり、Pbの含有量は質量比率で100ppm以下であった。
【0074】
図9は、実施例2、実施例3および実施例4で育成した結晶の、CuKα線源からのX線励起による発光量のホウ酸鉛溶媒A比率依存性を示すグラフである。
図9を見るとわかるように、ホウ酸鉛溶媒A比率が50重量%である実施例4と比べて、ホウ酸鉛溶媒A比率が20重量%である実施例3の方が高い発光量を示している。また、ホウ酸鉛溶媒A比率が20重量%である実施例3と比べて、ホウ酸鉛溶媒A比率が10重量%である実施例2の方が高い発光量を示している。
このことから、ホウ酸鉛溶媒Aの比率が少ないほど、すなわち非鉛系溶媒Bの比率が多いほど、育成結晶中へ発光量を低下させる溶媒成分が混入しにくく、高い発光量が得られやすいことを示している。
【0075】
図10は、本発明によるシンチレータアレイの構成例を示す斜視図である。この図に示される構成例において、複数本の棒形状のシンチレータ結晶11は、反射材を介してグリッド状(碁盤の目状)に配置されている。各シンチレータ結晶11は、本発明の単結晶シンチレータ材料である。
隣接するシンチレータ結晶11の間(ギャップ)は反射材12で埋められており、シンチレータアレイの外周部にも反射材12が配置されている。反射材12は、γ線を透過するが、シンチレータ結晶11から発せられる光の波長において高い反射率を有する材料から形成されている。
【0076】
このシンチレータアレイでは、外周面のうち、5つの面が反射材12で覆われているが、1面のみが反射材12で覆われておらず、露出している。より詳細には、シンチレータ結晶11の一端面は反射材12に覆われておらず、この端面から光を外部に放出することができる。
【0077】
図11は、本発明による放射線検出器の構成例を示す断面図である。この放射線検出器は、本発明による単結晶シンチレータ材料と、単結晶シンチレータ材料からの発光を検出する公知の検出器とを備えている。図示される放射線検出器では、図10に示すシンチレータ結晶11のアレイと、光電子増倍管13とを備えている。具体的には、シンチレータ結晶11の端面と光電子増倍管13の受光側の面が光学的に結合されるように、光学グリス14を介して、シンチレータアレイと光電子増倍管13とが接合されている。シンチレータ結晶11は、γ線15が入射する側で、反射材12に被覆されている。
【0078】
図12は、本発明によるPET装置の構成例を示す図である。リングを為すように、複数の放射線検出器が配列されている。各放射線検出器は、図11に示す構成を有している。
リングの内周には、反射材で被覆されたシンチレータ結晶11が並べられている。リングの外周には、光電子増倍管13が並べられている。リングの中心付近には、被検者16が待機する。被検者16には、陽電子を放出する放射性同位元素で標識された薬剤が投与されている。
γ線15は、被検者16の患部で陽電子消滅によって一対生成され、2つの方向に放出される。γ線15は、シンチレータ結晶11によって光に変換される。その光は光電子増倍管13で増幅され、光電子倍増管13が出力する電気信号によって検出される。
【産業上の利用可能性】
【0079】
本発明の製造方法により得られたセリウム賦活ホウ酸ルテチウム単結晶シンチレータ材料は、従来のシンチレータ用単結晶材料よりも発光量が大きく、優れたシンチレータ特性を有しているため、PET装置を好適に用いられ得る。
【符号の説明】
【0080】
1 坩堝
2 ヒータ
3 電気炉
4 坩堝台
4´ 坩堝台
5 引上げ軸
6 種子材料
7 原料溶液
11 シンチレータ結晶
12 反射材
13 光電子増倍管(PMT)
14 光学グリス
15 γ線
16 被検者


【特許請求の範囲】
【請求項1】
Pbと、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、
Ce化合物およびLu化合物を前記溶媒と混合し、800℃以上1350℃以下の温度に加熱して前記化合物を溶融させる工程と、
溶融した前記化合物を冷却することにより、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程と、
を含む単結晶シンチレータ材料の製造方法。
【請求項2】
前記溶媒を用意する工程および前記化合物を溶融させる工程は、前記溶媒を形成する化合物と、Ce化合物と、Lu化合物とを混合し、800℃以上1350℃以下の温度に加熱する工程である、請求項1に記載の単結晶シンチレータ材料の製造方法。
【請求項3】
Pbと、Li、Na、K、Rb、Csからなる群から選ばれる少なくとも1種と、Wおよび/またはMoと、Bおよび酸素とを含有する溶媒を用意する工程と、
Ce化合物およびLu化合物を前記溶媒と混合し、加熱して前記化合物を溶融させる工程と、
溶融した前記化合物を冷却することにより、組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶を析出成長させる工程と、
を含み、
前記単結晶の析出成長は、高温バテライト相からカルサイト相への相転移の温度よりも低い温度で実行する、単結晶シンチレータ材料の製造方法。
【請求項4】
前記単結晶を析出成長させる工程は、TSSG法により行う、請求項1に記載の単結晶シンチレータ材料の製造方法。
【請求項5】
前記単結晶を析出成長させる工程において、溶融した前記化合物の温度が750℃以上1350℃未満の温度まで0.001℃/時間以上5℃/時間以下の降温速度で冷却する、請求項1に記載の単結晶シンチレータ材料の製造方法。
【請求項6】
前記析出成長させる工程は、80時間以上の時間をかけて行う、請求項5に記載の単結晶シンチレータ材料の製造方法。
【請求項7】
組成式(CeLu1−x)BOで表され、Ceの組成比率xが0.0001≦x≦0.05を満足する単結晶部を有し、前記単結晶部のPbの含有量が質量比率で100ppm以下である単結晶シンチレータ材料。
【請求項8】
前記単結晶部はカルサイト型結晶構造を有している請求項7に記載の単結晶シンチレータ材料。
【請求項9】
厚さ0.5mmに鏡面加工された前記単結晶部の波長280nmにおける透過率は、20%以上である請求項7に記載の単結晶シンチレータ材料。
【請求項10】
請求項7から9のいずれかに記載の単結晶シンチレータ材料と、
前記単結晶シンチレータ材料からの発光を検出する検出器とを備える放射線検出器。
【請求項11】
リング状に配列された複数の放射線検出器を備え、被検体からのγ線を検出するPET装置であって、
前記複数の放射線検出器の各々は、請求項10に記載の放射線検出器である、PET装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図4】
image rotate


【公開番号】特開2011−202118(P2011−202118A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2010−73020(P2010−73020)
【出願日】平成22年3月26日(2010.3.26)
【出願人】(000005083)日立金属株式会社 (2,051)
【Fターム(参考)】