説明

反応容器プレート

【課題】多量の試料を扱うことができ、反応容器プレートの外部からの異物の浸入や、外部への環境汚染を防ぐことができる反応容器プレート及びその反応容器プレートを用いた反応処理方法を提供する。
【解決手段】封止された反応容器5と、反応容器5に接続された反応容器流路13,15,17と、反応容器流路13,15,17及び反応容器5に液体を送液するための送液機構とを備えている。送液機構は、反応容器5の配列領域、ドレイン空間29,31及び容器35,37,39とは異なる位置に設けられたシリンジ51と、シリンジ51と流路52aを介して接続されてシリンジ51の吸引・吐出動作に応じて液体の吸引・吐出を行なう液体貯留部52とで構成されている。液体貯留部52はシリンジ51の吸入動作によって液体をその内部に吸入して貯留し、またシリンジ51の吐出動作によって内部に貯留した液体を吐出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は生物学的分析、生化学的分析、又は化学分析一般の分野において、医療や化学の現場において各種の解析や分析を行なうのに適する反応容器プレートに関するものである。
【背景技術】
【0002】
生化学的分析や通常の化学分析に使用する小型の反応装置としては、マイクロマルチチャンバ装置が使用されている。そのような装置としては、例えば平板状の基板表面に複数のウエルを形成したマイクロタイタープレートなどのマイクロウエル反応容器プレートが用いられている(例えば特許文献1を参照。)。
また、微量の液体を定量的に扱うことができる微量液体秤取構造として、第1流路及び第2流路と、上記第1流路の流路壁に開口する第3流路と、第2流路の流路壁に開口して第3流路の一端と第2流路を連結し第3流路よりも相対的に毛管引力が働きにくい性質の第4流路とを有する構造を備えたものがある(例えば特許文献2,3を参照。)。その微量液体秤取構造によれば、第1流路に導入された液体が第3流路内に引き込まれた後、第1流路に残存する上記液体を取り除き、第3流路の容積に応じた体積の液体を第2流路に秤取することができる。
【0003】
ところが、上記のような従来のマイクロウエル反応容器プレートは、使用時には反応容器プレートの上面は大気に開放された状態となっているため、サンプルに外部からの異物が浸入したり、反応生成物が外部の環境を汚染したりすることがありうる。
特許文献2,3に開示された微量液体秤取構造では、第1流路の両端及び第2流路の両端に液体導入用のポートが形成されているが、それらのポートは大気に開放されているため、これらのポートを介して反応生成物が外部の環境を汚染することもありうる。
【特許文献1】特開2005−177749号公報
【特許文献2】特開2004−163104号公報
【特許文献3】特開2005−114430号公報
【特許文献4】特許第3452717号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記の問題を解決するために、送液機構も反応容器プレート自体に組み込んで密閉系を構成することが考えられる。その場合の送液機構としてシリンダとそのシリンダ内を摺動するプランジャからなるシリンジが考えられる。そしてその構成としては、反応容器プレートの内部に反応容器に繋がるシリンダとしての空間を設け、そのシリンダ内に先端が差し込まれたプランジャを反応容器プレートの主平面方向に対して垂直方向に駆動することで液体の吸引と吐出を行なうようにすることが最も簡単な構成と言える。
【0005】
そのような構成をとった場合、扱う試料の量を増加させるにはシリンジの送液量を増加させる必要があるが、シリンジの送液量を増加させるにはシリンダの容積を大きくする必要があり、そのためにはシリンダのプランジャ摺動方向の長さを長くするか又はシリンダ断面の内径を大きくする必要がある。シリンダのプランジャ摺動方向の長さを長くすると反応容器プレートの高さが高くなってしまい、反応容器プレート自体が大きくなってしまう。また、シリンジのシリンダ断面の内径を大きくするとシリンダ内部での送液漏れを防止するためにプランジャを駆動するための機構の移動精度を向上させる必要があり、反応容器プレートを扱う装置のコストが増大してしまう。
【0006】
そこで本発明は、上記の問題に鑑み、反応容器プレートを扱う装置のコストの増大化及び反応容器プレートのサイズの拡大化を抑制しながら扱う試料の量を増加させることができ、かつ反応容器プレートの外部からの異物の浸入や、外部への環境汚染を防ぐことができる反応容器プレート及びその反応容器プレートを用いた反応処理方法を提供することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明にかかる反応容器プレートは、外部とは遮断された反応容器と、反応容器に接続された反応容器流路と、反応容器流路に接続され、シリンダ及びシリンダ内を該反応容器プレートの主平面内で摺動するプランジャからなるシリンジを備えて液体を送液する送液機構と、を備えているものである。
本発明の反応容器プレートでは、反応容器が外部とは遮断され、反応容器流路を介して反応容器に接続された吐出口側のシリンダ内空間もプランジャにより封止されているので、反応容器プレートの外部から異物が浸入したり、液体が外部へ飛散して環境を汚染したりすることがない。
【0008】
送液機構は、シリンジの吸引動作によってその内部に液体を吸引して貯留し、シリンジの吐出動作によってその内部に貯留した液体を吐出する液体貯留部を備え、その液体貯留部は底面に反応容器流路との接続口をもち、貯留する流体の液面よりも高い位置にシリンジとの接続口をもっていることが好ましい。
この構成によれば、送液機構による液体吸入は、プランジャを吸引方向に駆動することによりシリンダ内に液体貯留部内の空気を吸入して液体貯留部内を減圧し、液体貯留部に送液対象の液体を吸入する。送液機構による液体吐出は、プランジャを吐出方向に駆動することによりシリンダ内の空気を液体貯留部側に押し出すことにより、液体貯留部に貯留されている液体を吐出する。すなわちこの構成では、シリンジと液体貯留部との間を移送される移動相は空気である。したがって、送液対象の液体はシリンダ内に直接吸入されることがないため、プランジャとシリンダ内壁との間の隙間に液体が侵入することがなく、それによって生じる汚染等の問題も生じない。
液体貯留部の反応用気流路との接続口が底面に設けられていることにより、送液後に流体が液体貯留部内に残留しにくくなり、コンタミネーションの発生を防止できる。また、シリンジとの接続口は貯留する流体の液面よりも高い位置に設けられているので、貯留する液体がシリンジ側に流れ込むことがなく、シリンジの汚染が防止できる。
【0009】
また、反応容器とは別途設けられた封止容器と、上記封止容器に接続された封止容器流路と、上記送液機構を上記反応容器流路又は上記封止容器流路に接続するための切替えバルブをさらに備えているようにしてもよい。
【0010】
上記封止容器の一例は、サンプル液を収容するためのサンプル容器である。そうすれば、サンプルを収容するための容器を別途準備する必要がなくなる。
その場合、サンプル容器は、尖端の鋭利な分注器具により貫通でき、かつ貫通後に分注器具を引き抜くとその貫通孔を弾性によって閉じることのできる弾性部材によって密封されているようにしてもよい。そうすることで、弾性部材を介してサンプル容器内にサンプル液を注入することができ、その後サンプル液がサンプル容器外に漏れるのを防止することができる。
さらに、サンプル容器に予めサンプル前処理液又は試薬が収容されていてもよい。そうすれば、サンプル容器にサンプル前処理液又は試薬を分注する必要がなくなる。
【0011】
上記切替えバルブの一例として、その回転中心に送液機構につながるポートを備えたロータリー式バルブを挙げることができる。
その場合にはシリンジの吸引動作で吸引された液体を貯留する空間がロータリー式バルブ上に設けられていることが好ましい。
「シリンジの吸引動作で吸引された液体を貯留する空間」とは、送液機構がシリンジのシリンダ内部に液体を吸引し、その液体をプランジャにより押し出すことで送液を行なうものである場合はシリンダを意味し、送液機構が液体貯留部を備えている場合は液体貯留部を意味する。
【0012】
上記サンプル容器とは別に、上記封止容器からなる試薬容器を1つ又は複数備えているようにしてもよい。そうすれば、試薬を収容するための容器を別途準備する必要がなくなる。
上記試薬容器はサンプル液の反応に使用される試薬を予め収容しフィルムで封止されているか、又は開閉可能なキャップを備えて試薬を注入できるようになっている。試薬容器を被って試薬を封止しているフィルムは尖端の鋭利な分注器具で貫通可能なものであるものを例として挙げることができる。
【0013】
本発明の反応容器プレートが遺伝子の分析を対象とする場合には、上記封止容器からなり遺伝子増幅反応を行なうための遺伝子増幅容器を備えていることが好ましい。そうすれば、測定対象の遺伝子を微量にしか含んでいないサンプル液でもPCR法やLAMP法など遺伝子増幅反応によって反応容器プレート上で遺伝子を増幅して分析精度を高めることができるようになる。
その場合の遺伝子増幅容器は所定の温度サイクルで温度制御するのに適した形状になっていることが好ましい。なお、反応容器を遺伝子増幅部とすることもできる。
【0014】
本発明の反応容器プレートの具体的な流路構成例として、反応容器に接続された反応容器エアー抜き流路をさらに備え、上記反応容器流路は、貼り合わされた2枚の部材の接合面に形成された溝、又は上記溝及び上記基板に形成された貫通孔からなり、かつ、上記送液機構に接続される主流路と、上記主流路から分岐した所定容量の計量流路と、一端が上記計量流路に接続され他端が上記反応容器に接続された注入流路を備え、上記主流路及び上記反応容器エアー抜き流路は密閉可能になっており、上記注入流路は上記計量流路よりも細く形成されて上記主流路及び上記計量流路に液体が導入されるときの液体導入圧力状態並びに上記主流路内の上記液体がパージされるときのパージ圧力状態では上記液体を通さず、それらよりも加圧状態で上記液体を通すものを挙げることができる。
ここで、「注入流路は計量流路よりも細く形成されている」とは、注入流路が複数の流路により構成されている場合には、注入流路を構成する複数の流路がそれぞれ計量流路よりも細く形成されていることを意味する。
【0015】
本発明にかかる反応容器プレートを用いた反応処理方法は、上記流路構成例の本発明の反応容器プレートを用いた反応処理方法であって、上記導入圧力で上記主流路及び上記計量流路に液体を充填し、上記主流路に気体を流して上記計量流路内に上記液体を残存させつつ上記主流路内の上記液体を排出し、上記主流路内を上記導入圧力よりも大きく陽圧に若しくは上記反応容器内を陰圧に又は上記陽圧及び上記陰圧の両方にすることにより上記注入流路を介して上記計量流路内の上記液体を上記反応容器に注入する。
【0016】
上記流路構成例において、上記注入流路の水滴に対する接触角は90度以上であり、上記注入流路と上記計量流路の境界の面積は1〜10000000μm2(平方マイクロメートル)である例を挙げることができる。ここで、注入流路が複数の流路により構成されている場合には、上記面積は注入流路を構成する複数の流路のそれぞれの上記計量流路との境界の面積を意味する。
【0017】
複数の上記反応容器を備え、それらの反応容器ごとに上記計量流路及び上記注入流路を備え、上記主流路に複数の上記計量流路が接続されているようにしてもよい。
【0018】
上記注入流路の上記他端は上記反応容器の内側上面に突出して形成された凸部の先端に配置されており、上記凸部は先端部が基端部に比べて細くなっている例を挙げることができる。
【0019】
上記反応容器は少なくとも呈色反応、酵素反応、蛍光や化学発光又は生物発光を生じる反応のいずれかの反応を行なうためのものとすることができる。
【0020】
本発明の反応容器プレートを、遺伝子を含んだサンプルを測定するための反応容器プレートとする場合には、予め遺伝子増幅反応を行なったサンプルをこの反応容器プレートに導入してもよく、又はこの反応容器プレートの反応容器が遺伝子増幅反応を行なうことができるように、予め遺伝子増幅試薬が収容されるか、遺伝子増幅試薬を分注するように構成することができる。
遺伝子増幅反応にはPCR法やLAMP法などを含む。DNAを増幅するPCR法に着目すれば、前処理なしで血液などのサンプルから直接PCR反応を行なわせる方法も提案されている。そこでは、遺伝子を含むサンプル中の目的とする遺伝子を増幅する核酸合成法において、遺伝子を含むサンプル中の遺伝子包含体もしくは遺伝子を含むサンプルそのものを遺伝子増幅反応液に添加して、添加後の該反応液のpHが8.5−9.5(25℃)で遺伝子を含むサンプル中の目的とする遺伝子を増幅する(特許文献4参照。)。
【0021】
上記反応容器はその底部又は上方から光学的に測定が可能なように光透過性の材質にて構成されているようにしてもよい。
上記反応容器は上記反応容器流路に導入される液体に遺伝子が含まれている場合にその遺伝子と反応するプローブを備えているようにしてもよい。
さらに、上記プローブは蛍光標識されたものでもよい。
【発明の効果】
【0022】
本発明の反応容器プレートは、反応容器、反応容器流路及び反応容器流路に接続されてプランジャがシリンダ内を該反応容器プレートの主平面内で摺動するシリンジを備えた送液機構により構成されているので、扱う試料の量を多くする場合に反応容器プレートの高さを高くすることなくシリンジのプランジャ摺動方向の長さを長くすることができる。また、反応容器、反応容器流路及び送液機構は密閉系として構成されているので、反応容器プレートの外部からの異物の浸入や、液体の外部への環境汚染を防ぐことができる。
【0023】
この反応容器プレートが遺伝子を含んだサンプルを測定するための反応容器プレートとなっている場合には、この反応容器プレートに注入され反応容器に導入されたサンプルを密閉系で扱うことができるようになるので、この反応容器プレートの外側の環境を汚染することがなく、また外部からの侵入物によってサンプルが汚染されることを防止することもできる。
【0024】
送液機構は、シリンジの吸引動作によってその内部に液体を吸引して貯留し、シリンジの吐出動作によってその内部に貯留した液体を吐出する液体貯留部を備えているようにすれば、送液対象の液体をシリンダ内に直接吸入することなく送液を行なうことができるので、プランジャとシリンダ内壁との間の隙間に液体が侵入することがなくなり、それによって生じる汚染等の問題を防止することができる。
【0025】
また、封止容器に接続された封止容器流路と、液体を送液するためのシリンジと、シリンジを主流路又は封止容器流路に接続するための切替えバルブを備えているようにすれば、そのシリンジ及び切替えバルブを用いて封止容器内の液体を主流路に注入することができる。
切替えバルブはロータリー式バルブとすることができる。その場合、ロータリー式バルブの回転中心に送液機構につながるポートを配置すれば、流路構成が簡単になる。
さらに、シリンジの吸引動作で吸引された液体を貯留する空間がロータリー式バルブ上に設けられているようにすれば、上記ポートと液体を貯留する空間との間の流路を短くする又は無くすことができ、構造が簡単になる。さらに、切替えバルブ上の領域を有効に利用することができる。
【0026】
本発明の反応容器プレートの具体的な流路構成例として、反応容器に接続された反応容器エアー抜き流路をさらに備え、反応容器流路は、貼り合わされた2枚の部材の接合面に形成された溝、又は溝及び基板に形成された貫通孔からなり、かつ、シリンジに接続される主流路と、主流路から分岐した所定容量の計量流路と、一端が計量流路に接続され他端が反応容器に接続された注入流路を備え、主流路及び反応容器エアー抜き流路は密閉可能になっており、注入流路は計量流路よりも細く形成されて主流路及び計量流路に液体が導入されるときの導入圧力状態並びに主流路内の上記液体がパージされるときのパージ圧力状態では上記液体を通さず、それらよりも加圧状態で上記液体を通すものであるようにし、本発明の反応処理方法では本発明の反応容器プレートを用いるようにすれば、反応容器プレートの外部からの異物の浸入や、液体の外部への環境汚染を防ぐことができる。
さらに、反応容器に接続された反応容器エアー抜き流路を備えているので、注入流路を介しての反応容器への液体の注入の際に反応容器と反応容器エアー抜き流路の間で気体を流通させることができる。これにより、反応容器への液体の注入を円滑に行なうことができる。また、反応容器エアー抜き流路は、反応容器への液体の注入の際に、反応容器エアー抜き流路から反応容器内の気体を吸引して反応容器内を減圧させて液体を注入させる注入方法に用いることもできる。
【0027】
上記流路構成例において、計量流路及び注入流路の水滴に対する接触角は90度以上であり、注入流路と計量流路の境界の面積は1〜10000000μm2であるようにすれば、主流路及び計量流路に液体が導入されるときに液体が注入流路に浸入しにくくなり、主流路及び計量流路に液体を導入するときの導入圧力を大きくすることができる。
【0028】
また、複数の反応容器を備え、それらの反応容器ごとに計量流路及び注入流路を備え、主流路に複数の計量流路が接続されているようにすれば、複数の計量流路に液体を順次導入することができ、その後、注入流路を介して複数の反応容器に液体を同時に注入することができる。
【0029】
注入流路の他端は反応容器の内側上面に突出して形成された凸部の先端に配置されており、凸部は先端部が基端部に比べて細くなっているようにすれば、注入流路を通って反応容器に注入される液体が反応容器に滴下しやすくなる。
【0030】
また、本発明の反応容器プレートが遺伝子を含んだサンプルを測定するための反応容器プレートである場合、反応容器で遺伝子増幅反応を行なうことができるようになっていれば、反応容器プレート外で遺伝子増幅反応を行なったサンプルを準備する必要がなくなる。
【0031】
また、反応容器はその底部又は上方から光学的に測定が可能なように光透過性の材質にて構成されているようにすれば、反応容器内の液体を他の容器へ移動させることなく光学的に測定することができる。
【0032】
また、反応容器は反応容器流路に導入される液体に遺伝子が含まれている場合にその遺伝子と反応するプローブを備えているようにすれば、反応容器内でプローブに対応する塩基配列をもつ遺伝子の検出を行なうことができる。
【発明を実施するための最良の形態】
【0033】
図1は反応容器プレートの一実施例を示す図であり(A)は概略的な平面図、(B)は(A)のA−A位置での断面に計量流路15、注入流路17、サンプル容器エアー抜き流路19,21、液体ドレイン空間29、エアードレイン空間31及びベローズ53の断面を加えた概略的な断面図、(C)は(A)のA’−A’位置での断面に切替えバルブ63を加えた概略的な断面図である。図2はこの実施例を分解して示す断面図及び切替えバルブの概略的な分解斜視図である。図3はこの実施例の1つの反応容器近傍を示す概略図であり、(A)は平面図、(B)は斜視図、(C)は断面図である。図4はサンプル容器を拡大して示した図であり(A)は平面図、(B)は(A)のB−B位置での断面図である。図5は試薬容器を拡大して示した図であり(A)は平面図、(B)は(A)のC−C位置での断面図である。図6はエアー吸引用容器を拡大して示した図であり(A)は平面図、(B)は(A)のD−D位置での断面図である。
図1から図6を参照して反応容器プレートの一実施例について説明する。
【0034】
反応容器プレート1は容器ベース3の一表面に開口部をもつ複数の反応容器5を備えている。この実施例では6×6個の反応容器5が千鳥状に配列されている。反応容器5内に試薬7及びワックス9が収容されている。
【0035】
反応容器5を含む容器ベース3の材質は特に限定されるものではないが、反応容器プレート1を使い捨て可能として用いる場合には、安価に入手可能な素材があることが好ましい。そのような素材として、例えばポリプロピレン、ポリカーボネートなどの樹脂素材が好ましい。反応容器5内の物質の検出を吸光度、蛍光、化学発光又は生物発光などにより行なう場合には、底面側から光学的な検出ができるようにするために光透過性の樹脂で形成されていることが好ましい。特に蛍光検出を行なう場合には、容器ベース3の材質として低自蛍光性(それ自身からの蛍光発生が少ない性質のこと)で光透過性の樹脂、例えばポリカーボネートなどの素材で形成されていることが好ましい。容器ベース3の厚さは0.2〜4.0mm(ミリメートル)、好ましくは1.0〜2.0mmである。蛍光検出用の低自蛍光性の観点からは容器ベース3の厚さは薄い方が好ましい。
【0036】
図1及び図3を参照して説明すると、容器ベース3上に反応容器5の配列領域を覆って流路ベース11が配置されている。流路ベース11は例えばPDMS(ポリジメチルシロキサン)やシリコーンゴムからなる。流路ベース11の厚みは例えば1.0〜5.0mmである。流路ベース11は容器ベース3との接合面に溝を備えている。その溝と容器ベース3の表面によって、主流路13、計量流路15、注入流路17、反応容器エアー抜き流路19,21、ドレイン空間エアー抜き流路23,25が形成されている。主流路13、計量流路15及び注入流路17は反応容器流路を構成する。流路ベース11の容器ベース3との接合面には、反応容器5上に配置された凹部27も形成されている。図1(A)及び図3(A),(B)では流路ベース11について溝及び凹部のみを図示している。
【0037】
主流路13は1本の流路からなり、すべての反応容器5の近傍を通るように折れ曲がって形成されている。主流路13の一端は容器ベース3に設けられた貫通孔からなる流路13aに接続されている。流路13aは後述する切替えバルブ63のポートに接続されている。主流路13の他端は容器ベース3に形成された液体ドレイン空間29に接続されている。主流路13を構成する溝の寸法は例えば深さが400μm(マイクロメートル)、幅が500μmである。また、主流路13は、計量流路15が接続されている位置の下流側の所定長さ部分、例えば250μmの部分は幅が他の部分に比べて細く形成されており、例えばその幅は250μmである。
【0038】
計量流路15は主流路13から分岐して反応容器5ごとに設けられている。計量流路15の主流路13とは反対側の端部は反応容器5の近傍に配置されている。計量流路15を構成する溝の深さは例えば400μmである。計量流路15は内部容量が所定容量、例えば2.5μL(マイクロリットル)に形成されている。計量流路15の主流路13に接続されている部分の幅寸法は、上述の主流路13の細くなっている部分よりも太く、例えば500μmに形成されている。これにより、主流路13の一端から流れてくる液体に対して、計量流路15が分岐している部分では主流路13の方が計量流路15よりも流路抵抗が大きくなっている。主流路13の一端から流れてくる液体は、まず計量流路15に流れ込み、計量流路15が液体で充填された後、主流路13の細くなっている部分を介して下流側へ流れるようになっている。
【0039】
注入流路17も反応容器5ごとに設けられている。注入流路17の一端は計量流路15に接続されている。注入流路17の他端は反応容器5上に配置された凹部27に接続されて反応容器5上に導かれている。注入流路17は、反応容器5内と注入流路17内で圧力差がない状態で反応容器5内の液密を保つ寸法で形成されている。この実施例では、注入流路17は複数の溝により構成されており、その溝の寸法は例えば深さが10μm、幅が20μm、ピッチが20μmであり、500μmの幅領域に13本の溝が形成されている。ここでは、注入流路17を構成する溝と計量流路15の境界の面積、すなわち注入流路17を構成する溝の断面積は200μm2である。また、凹部27は深さが例えば400μmであり、平面形状は反応容器5よりも小さい円形である。
【0040】
反応容器エアー抜き流路19は反応容器5ごとに設けられている。反応容器エアー抜き流路19の一端は反応容器5上に配置された凹部27に注入流路17とは異なる位置で接続されて反応容器5上に配置されている。反応容器エアー抜き流路19は、反応容器5内と反応容器エアー抜き流路19内で圧力差がない状態で反応容器5内の液密を保つ寸法で形成されている。反応容器エアー抜き流路19の他端は反応容器エアー抜き流路21に接続されている。この実施例では、反応容器エアー抜き流路19は複数の溝により構成されており、その溝の寸法は例えば深さが10μm、幅が20μm、ピッチが20μmであり、500μmの幅領域に13本の溝が形成されている。
【0041】
反応容器エアー抜き流路21はこの実施例では複数本設けられている。それぞれの反応容器エアー抜き流路21には複数の反応容器エアー抜き流路19が接続されている。反応容器エアー抜き流路21は反応容器エアー抜き流路19を容器ベース3に形成されたエアードレイン空間31に接続するためのものである。反応容器エアー抜き流路21を構成する溝の寸法は例えば深さが400μm、幅が500μmである。
【0042】
ドレイン空間エアー抜き流路23は液体ドレイン空間29を後述する切替えバルブ63のポートに接続するためのものである。ドレイン空間エアー抜き流路23の一端は液体ドレイン空間29上に配置されている。ドレイン空間エアー抜き流路23の他端は容器ベース3に設けられた貫通孔からなる流路23aに接続されている。流路23aは後述する切替えバルブ63のポートに接続されている。ドレイン空間エアー抜き流路23を構成する溝の寸法は例えば深さが400μm、幅が500μmである。
【0043】
ドレイン空間エアー抜き流路25はエアードレイン空間31を後述する切替えバルブ63のポートに接続するためのものである。ドレイン空間エアー抜き流路25の一端はエアードレイン空間31上に配置されている。ドレイン空間エアー抜き流路25の他端は容器ベース3に設けられた貫通孔からなる流路25aに接続されている。流路25aは後述する切替えバルブ63のポートに接続されている。ドレイン空間エアー抜き流路25を構成する溝の寸法は例えば深さが400μm、幅が500μmである。
【0044】
流路ベース11上に流路カバー33(図1(A)での図示は省略している。)が配置されている。流路カバー33は流路ベース11を容器ベース3に固定するためのものである。流路カバー33には反応容器5上の位置に貫通孔が形成されている。
【0045】
図1及び図4を参照して説明すると、反応容器5の配列領域及びドレイン空間29,31とは異なる位置で容器ベース3にサンプル容器35、試薬容器37及びエアー吸引用容器39が形成されている。サンプル容器35、試薬容器37及びエアー吸引用容器39は本発明の反応容器プレートの封止容器を構成する。
【0046】
サンプル容器35近傍の容器ベース3に、サンプル容器35の底部から裏面に貫通しているサンプル流路35aと表面から裏面に貫通しているサンプル容器エアー抜き流路35bが形成されている。サンプル容器35の開口部周囲の容器ベース3上に突起部35cが配置されている。サンプル容器エアー抜き流路35b上の突起部35cに貫通孔からなるサンプル容器エアー抜き流路35dが形成されている。突起部35cの表面にサンプル容器35とサンプル容器エアー抜き流路35dを連通しているサンプル容器エアー抜き流路35eが形成されている。
【0047】
サンプル容器エアー抜き流路35eは例えば幅5〜200μm、深さ5〜200μmの寸法の1本又は複数本の細孔によって形成されており、サンプル容器35内とサンプル容器エアー抜き流路35d内で圧力差がない状態でサンプル容器35の液密を保つためのものである。突起部35c上にサンプル容器35及びエアー抜き流路35dを覆って弾性部材であるセプタム41が形成されている。セプタム41は例えばシリコーンゴムやPDMSなどの弾性材料によって形成されており、尖端が鋭利な分注器具により貫通でき、かつ貫通後に分注器具を引き抜くとその貫通孔を弾性によって閉じることができる。セプタム41上にセプタム41を固定するためのセプタムストッパ43が配置されている。セプタムストッパ43はサンプル容器35上に開口部をもつ。この実施例ではサンプル容器35内に予め試薬45が収容されている。
【0048】
図5に示すように、試薬容器37近傍の容器ベース3に、試薬容器37の底部から裏面に貫通している試薬流路37aと表面から裏面に貫通している試薬容器エアー抜き流路37bが形成されている。試薬容器37の開口部周囲の容器ベース3上に突起部37cが配置されている。試薬容器エアー抜き流路37b上の突起部37cに貫通孔からなる試薬容器エアー抜き流路37dが形成されている。突起部37cの表面に試薬容器37と試薬容器エアー抜き流路37dを連通している試薬容器エアー抜き流路37eが形成されている。
【0049】
試薬容器エアー抜き流路37eは例えば幅5〜200μm、深さ5〜200μmの寸法の1本又は複数本の細孔によって形成されており、試薬容器37内と試薬容器エアー抜き流路37d内で圧力差がない状態で試薬容器37の液密を保つためのものである。突起部37c上に試薬容器37及びエアー抜き流路37dを覆って例えばアルミニウムからなるフィルム47が形成されている。試薬容器37内に希釈水49が収容されている。
【0050】
図6に示すように、エアー吸引用容器39は試薬容器37と同様の構成をもつ。すなわち、エアー吸引用容器39近傍の容器ベース3に、エアー吸引用容器39の底部から裏面に貫通しているエアー吸引用流路39aと表面から裏面に貫通しているエアー吸引用容器エアー抜き流路39bが形成されている。エアー吸引用容器39の開口部周囲の容器ベース3上にエアー吸引用容器エアー抜き流路39d,39eを備えた突起部39cが配置されている。突起部39c上に例えばアルミニウムからなるフィルム47が形成されている。エアー吸引用容器39内には液体及び固体は収容されておらず、エアーが充満している。
【0051】
また、この実施例の反応容器プレート1はサンプル容器35のサンプルを各反応容器19へ送液するための送液機構を備えている。送液機構について図1及び図2を参照しながら説明する。
送液機構は、反応容器5の配列領域、ドレイン空間29,31及び容器35,37,39とは異なる位置に設けられたシリンジ51と、シリンジ51と流路52aを介して接続されてシリンジ51の吸引・吐出動作に応じて液体の吸引・吐出を行なう液体貯留部52とで構成されている。
【0052】
シリンジ51は、容器ベース3と容器ボトム55との対向面に形成されたシリンダ51a及びシリンダ51a内に配置されて当該反応容器プレート1の主平面内で摺動するプランジャ51bを備えている。なお、図1(A)においては、プランジャ51bの先端部分のみが図示されている。
液体貯留部52は、容器ベース3の下面に設けられた凹部56a、容器ボトム55に形成された貫通孔56b及びシール板57の貫通孔57cにより形成されている。液体貯留部52はシリンジ51のシリンダ51b内のプランジャ51b可動領域と同等の容積をもっている。
【0053】
この送液機構では、シリンジ51のプランジャ51bを吸引方向に駆動して液体貯留部52内の気体をシリンダ51a内に吸引することにより、液体貯留部52内を減圧して液体貯留部52内に液体又は気体を吸引して貯留する。また、プランジャ51bを吐出方向に駆動してシリンダ51a内の気体を液体貯留部52側に押し出すことにより、液体貯留部52内に貯留されていた液体又は気体を吐出する。すなわちこの送液機構では、シリンジ51と液体貯留部52の間では気体のやりとりのみが行なわれ、送液対象の液体がシリンダ51a内に取り込まれることがないため、シリンジ51が汚染されることはない。なお、シリンジ51は貯留される液体が最大に達したときの液体貯留部52の液面よりも上位に位置しており、液体貯留部52からシリンジ51側に液体が流れ込むことがないようになっている。
【0054】
容器ベース3には、反応容器5の配列領域、ドレイン空間29,31、容器35,37,39及びシリンジ51とは異なる位置にベローズ53も設けられている。ベローズ53は内部空間が封止されており、伸縮することにより内部容量が受動的に可変なものであり、例えば容器ベース3に設けられた貫通孔53a内に配置されている。
【0055】
反応容器5の配列領域とは異なる位置で容器ベース3の裏面に容器ボトム55が取り付けられている。容器ボトム55にはベローズ53に連通する位置にエアー抜き流路53bが設けられている。ベローズ53は容器ボトム55の表面に密着して接続されている。容器ボトム55は流路13a,23a,25a,35a,35b,37a,37b,39a,39b,51c,53bを所定のポート位置に導くためのものである。
【0056】
容器ボトム55の容器ベース3とは反対側の面に円盤状のシール板57、ロータアッパー59及びロータベース61からなるロータリー式の切替えバルブ63が設けられている。切替えバルブ63はロック65により容器ボトム55に取り付けられている。
【0057】
シール板57は、その周縁部近傍に設けられ、流路13a,35a,37a,39aのいずれかに接続される貫通孔57aと、それよりも内側の同心円上で流路23a,25a,35b,37b,39b,53bのうち少なくとも2つ接続される貫通溝57bと、中心部に設けられた液体貯留部52を構成する貫通孔57cと、を備えている。
ロータアッパー59は、シール板57の貫通孔57aと同じ位置に設けられた貫通孔59aと、シール板57の貫通溝57bに対応して表面に設けられた溝59bと、中心に設けられた貫通孔59cを備えている。貫通孔59cは液体貯留部52の底部に位置し、貯留された液体が流れやすいように上面側の口が広く下面側の口が狭くなっている。
ロータベース61はその表面に、ロータアッパー59の周縁部と中心に配置された2つの貫通孔59a,59cを接続するための溝61aを備えている。
【0058】
切替えバルブ63の回転により、液体貯留部52が流路13a,35a,37a,39aのいずれかに接続されるのと同時に、エアー抜き流路53bが流路23a,25a,35b,37b,39bのいずれかに接続される。
図1(A)に示した切替えバルブ63の位置は、シリンジ流路51cは流路13a,35a,37a,39aのいずれにも接続されておらず、エアー抜き流路53bも流路23a,25a,35b,37b,39bのいずれとも接続されていない初期状態の位置を示している。
【0059】
反応容器プレート1では、注入流路17は反応容器5内と注入流路17内で圧力差がない状態で反応容器5の液密を保つように形成されている。反応容器エアー抜き流路19も反応容器5内と反応容器エアー抜き流路19内で圧力差がない状態で反応容器5の液密を保つように形成されている。反応容器流路の主流路13と、主流路13が接続された液体ドレイン空間29及びドレイン空間エアー抜き流路23は切替えバルブ63の切替えにより密閉可能になっている。容器35,37,39はセプタム41又はフィルム47で封止されている。容器35,37,39に接続された流路35a,35b,37a,37b,39a,39bは切替えバルブ63の切替えにより密閉可能になっている。エアー抜き流路53bの一端はベローズ53に接続されて密閉されている。このように、反応容器プレート1内部の容器及び流路は密閉系で形成されている。なお、ベローズ53を備えていない構成であってエアー抜き流路53bが反応容器プレート1外部の雰囲気と接続されている場合であっても、切替えバルブ63の切替えによりエアー抜き流路53bを反応容器プレート1内部の容器及びエアー抜き流路53b以外の流路とは遮断できるので、液体が収容される又は液体が流される容器及び流路を密閉系にすることができる。
【0060】
この反応容器プレート1を用いて処理する反応処理装置は、反応容器5の温度調整をするための温調機構、シリンジ51を駆動するためのシリンジ駆動ユニット、及び切替えバルブ63を切り替えるための切替えバルブ駆動ユニットを備えたものである。シリンジ駆動ユニットは反応容器プレート1の側方(図1(A)では反応容器プレート1の下側)に配置され、その駆動部の先端にプランジャ51bを装着してプランジャ51bをシリンダ51a内で一定方向(図1(A)では上下方向)に摺動させるものである。プランジャ51bの駆動は例えばステッピングモータにより行なわれる。
【0061】
図7から図13は、サンプル容器35からサンプル液を反応容器5に導入する動作を説明するための平面図である。図1及び図7から図13を参照してこの動作を説明する。
【0062】
図示しない尖端が鋭利な分注器具を用い、サンプル容器35上のセプタム41を貫通して例えば5μLのサンプル液をサンプル容器35内に分注する。サンプル液を分注後、分注器具を引き抜く。分注器具を引き抜いたときのセプタム41の貫通孔はセプタム41の弾性により閉じられる。
【0063】
シリンジ駆動ユニットにプランジャ51bを装着し、切替えバルブ駆動ユニットを切替えバルブ63に接続する。
図7に示すように、図1(A)に示した切替えバルブ63の状態から切替えバルブ63を回転させてサンプル流路35aと液体貯留部52を接続し、サンプル容器エアー抜き流路35bをエアー抜き流路53bに接続する。このとき、エアー抜き流路37b,39bもエアー抜き流路53bに接続される。サンプル容器35には例えば45μLの試薬45が収容されている。
【0064】
シリンジ51のプランジャ51bを駆動してサンプル容器35内のサンプル液及び試薬45を混合させる。その後、サンプル容器35内の混合液を液体貯留部52内に例えば10μLだけ吸引する。このとき、サンプル容器35はエアー抜き流路35e,35d,35b、切替えバルブ63及びエアー抜き流路53bを介してベローズ53に接続されているので、サンプル容器35内の気体容量の変化にともなってベローズ53が伸縮する。以下に説明する動作工程でも、プランジャ51bの摺動によるシリンダ51aの内部容量の変化にともなってベローズ53が伸縮する。
【0065】
図8に示すように、切替えバルブ63を回転させて試薬流路37aと液体貯留部52を接続し、試薬容器エアー抜き流路37bをエアー抜き流路53bに接続する。試薬容器37には例えば190μLの希釈水49が収容されている。液体貯留部52内に吸引した混合液を試薬容器37内に注入し、シリンジ51を駆動して混合液と希釈水49と混合する。その希釈混合液を液体貯留部52内に例えば全部、すなわち200μL吸引する。このとき、試薬容器37はエアー抜き流路37e,37d,37b、切替えバルブ63及びエアー抜き流路53bを介してベローズ53に接続されているので、試薬容器37内の気体容量の変化にともなってベローズ53が伸縮する。
【0066】
図9に示すように、切替えバルブ63を回転させて、主流路13の一端に接続された流路13aと液体貯留部52を接続し、液体ドレイン空間29、エアードレイン空間31に接続された流路23a,25aをエアー抜き流路53bに接続する。プランジャ51bを吐出方向に駆動して、液体貯留部52内に吸引した希釈混合液を主流路13に送る。流路13a側から主流路13に注入された希釈混合液は、シボ及び矢印によって示すように、流路13a側から順に計量流路15を満たし、液体ドレイン空間29に到達する。希釈混合液が主流路13及び計量流路15に導入されるときの導入圧力状態では、注入流路17は、気体は通すが希釈混合液を通さない。計量流路15への希釈混合液の充填にともなって計量流路15の気体は注入流路17を介して反応容器5内へ移動する。この気体の移動にともない、反応容器5内の気体の一部は反応容器エアー抜き流路19,21へ移動する。さらに反応容器エアー抜き流路19からベローズ53までの流路内の気体は順次ベローズ53側へ移動する(白抜き矢印参照)。また、液体ドレイン空間29に希釈混合液が注入されることにより、液体ドレイン空間29からベローズ53までの流路内の気体は順次ベローズ53側へ移動する(白抜き矢印参照)。これにより、ベローズ53は膨張する。
【0067】
図10に示すように、切替えバルブ63を回転させてエアー吸引用流路39aと液体貯留部52を接続し、エアー吸引用容器エアー抜き流路39bをエアー抜き流路53bに接続する。プランジャ51bを吸引方向に駆動してエアー吸引用容器39内の気体を液体貯留部52内に吸引する。このとき、エアー吸引用容器39はエアー抜き流路39e,39d,39b、切替えバルブ63及びエアー抜き流路53bを介してベローズ53に接続されているので、エアー吸引用容器39内の減圧にともなってベローズ53が収縮する(白抜き矢印参照)。
【0068】
図11に示すように、切替えバルブ63を回転させて、図9の接続状態と同じく、流路13aと液体貯留部52を接続し、流路23a,25aをエアー抜き流路53bに接続する。プランジャ51bを吐出方向に駆動し、液体貯留部52内の気体を主流路13に送って主流路13内の希釈混合液をパージする(白抜き矢印参照)。このときのパージ圧力状態では注入流路17は希釈混合液を通さないので、計量流路15内には希釈混合液が残存している(シボ参照。)。パージされた希釈混合液は液体ドレイン空間29内に収容される。また、液体ドレイン空間29に希釈混合液が注入されることにより、液体ドレイン空間29からベローズ53までの流路内の気体は順次ベローズ53側へ移動する(白抜き矢印参照)。これにより、ベローズ53は膨張する。
【0069】
図12に示すように、切替えバルブ63を回転させて、図10の接続状態と同じく、エアー吸引用流路39aと液体貯留部52を接続し、エアー吸引用容器エアー抜き流路39bをエアー抜き流路53bに接続する。プランジャ51bを吸引方向に駆動してエアー吸引用容器39内の気体を液体貯留部52内に吸引する。このとき、図10を参照して説明したのと同様に、ベローズ53が収縮する(白抜き矢印参照)。
【0070】
図13に示すように、切替えバルブ63を回転させて、流路13aと液体貯留部52を接続し、流路25aをエアー抜き流路53bに接続する。この接続状態は、主流路13の下流側端が接続された液体ドレイン空間29が切替えバルブ63内の流路に接続されていない点で図9及び図11に示した接続状態とは異なる。プランジャ51bを吐出方向に駆動する。主流路13の下流側端はベローズ53には接続されていないので、主流路13内が液体導入圧力及びパージ導入圧力よりも大きく加圧される。これにより、計量流路15内の希釈混合液が注入流路17を通って反応容器5内に注入される。希釈混合液が反応容器5内に注入された後は主流路13内の気体の一部は計量流路15及び注入流路17を介して反応容器5内に流れ込む。このとき、反応容器5は反応容器エアー抜き流路19,21、エアードレイン空間31、ドレイン空間エアー抜き流路25a及びエアー抜き流路53bを介してベローズ53に接続されているので、反応容器5、ベローズ53間の気体は順次ベローズ53側へ移動する(白抜き矢印参照)。これにより、ベローズ53は膨張する。
【0071】
切替えバルブ63を図1の接続状態にして反応容器プレート1内部の容器、流路及びドレイン空間を密閉した後、温調機構67により反応容器5を加熱してワックス9を融解させる。これにより、反応容器5に注入された希釈混合液はワックス9の下に入り、希釈混合液と試薬7が混ざり反応する。このように、反応容器プレート1によれば反応処理を密閉系で行なうことができる。
また、希釈混合液を反応容器5内に注入する前に、温調機構67により反応容器5を加熱してワックス9を融解させておき、反応容器5内への希釈混合液の注入時にワックス9が融解しているようにしてもよい。この場合、反応容器5に注入された希釈混合液は直ちにワックス9の下に入り、希釈混合液と試薬7が混ざり反応する。切替えバルブ63の接続状態が図13の状態であっても、ベローズ53により密閉系は確保されている。希釈混合液の注入後に切替えバルブ63を図1の接続状態にすれば、反応容器プレート1内部の容器、流路及びドレイン空間を密閉することができる。ここで切替えバルブ63を図1の接続状態に切り替えるタイミングは、希釈混合液の注入直後から希釈混合液と試薬7の反応終了までのいずれのタイミングであってもよいし、希釈混合液と試薬7の反応終了後であってもよい。
このように、反応容器プレート1によれば、反応処理を密閉系で行なうことができ、反応処理前及び反応処理後も密閉系にすることができる。
【0072】
この実施例では流路13,15,17,19,21,23を形成するための溝は流路ベース11に形成されているが、本発明はこれに限定されるものではなく、それらの流路の全部又は一部分を形成するための溝を容器ベース3表面に形成してもよい。
【0073】
図14は反応容器プレートの他の実施例の反応容器近傍を拡大して示す概略的な断面図である。この実施例は、反応容器ベースと流路ベースの間に流路スペーサを配置した以外の構成は図1から図13を参照して説明した上記実施例と同じである。
【0074】
容器ベース3上に反応容器5の配列領域を覆って流路スペーサ73が配置され、さらにその上に流路ベース11、流路カバー33がその順に配置されている。流路スペーサ73は例えばPDMSやシリコーンゴムからなる。流路スペーサ73の厚みは例えば0.5〜5.0mmである。流路スペーサ73は反応容器5内に突出している凸部75を反応容器5ごとに備えている。凸部75は断面が略台形に形成されており、例えば基端部の幅は1.0〜2.8mm、先端部の幅は0.2〜0.5mmであり、先端部が基端部に比べて細くなっている。また、凸部75の表面には超撥水処理が施されている。ただし、凸部75の表面に必ずしも撥水処理が施されていなくてもよい。
【0075】
さらに、流路スペーサ73は凸部75の先端部から反対側の面に貫通している貫通孔からなる注入流路77を凸部75の形成位置ごとに備えている。注入流路77の内径は例えば500μmである。注入流路77の流路ベース11側の開口は流路ベース11の注入流路17に接続されている。なお、この実施例では図1から図13を参照して説明した上記実施例と比較して流路ベース11に凹部27を備えていない。
さらに、流路スペーサ73は流路ベース11の反応容器エアー抜き流路19と反応容器5を連通させるための貫通孔からなる反応容器エアー抜き流路79も備えている。
【0076】
また、図示は省略するが、流路スペーサ73は、主流路13の両端部、反応容器エアー抜き流路21のエアードレイン空間31側の端部、及びドレイン空間エアー抜き流路23,25の両端部に貫通孔を備え、それらの流路13,21,23,25を容器ベース3に設けられた容器29,31又は流路23a,25bに接続している。
【0077】
この実施例では、注入流路77の注入流路15とは反対側の端部(注入流路の他端)は反応容器5の内側上面に突出して形成された凸部75の先端に配置されているので、注入流路15,77を通って反応容器5に注入される液体が反応容器5に滴下しやすくなる。
【0078】
さらに、液体が注入流路77を通って凸部75の先端から吐出される際に凸部75の先端に形成される液滴が反応容器5の側壁に接触するように凸部75の先端を反応容器5の側壁近傍に配置すれば、反応容器5の側壁を伝って液体を反応容器5内に注入することができ、より確実に反応容器5内に液体を注入することができる。ただし、凸部75の形成位置は、凸部75の先端に形成される液滴が反応容器5の側壁には接触しない位置であってもよい。
【0079】
図15は反応容器プレートのさらに他の実施例の反応容器近傍を拡大して示す概略的な断面図である。
この実施例は、図14を参照して説明した実施例と比べて、反応容器5の内部に突起部81をさらに備えている。突起部81の先端は凸部75の先端の下方に配置されている。これにより、凸部75の先端に形成される液滴を反応容器5内に導きやすくなる。特に、突起部81の少なくとも先端の表面に親水性処理を施しておけば、特に有効である。
【0080】
図16は反応容器プレートのさらに他の実施例の反応容器近傍を拡大して示す概略的な断面図である。
この実施例は、図15を参照して説明した実施例と比べて、反応容器5の側壁に形成された段差部83と、反応容器5の上面とは間隔をもって段差部83の上面に形成された凸条部85をさらに備えている。段差部83及び凸条部85は上方から見て環状に形成されている。凸条部85の先端は反応容器5の側壁とは間隔をもって配置されている。
凸条部85の先端が反応容器5の上面及び側面とは間隔をもって配置されていることにより、反応容器5の内部に収容された液体が反応容器の側壁を伝って反応容器5の上面に到達するのを防止することができる。この効果は凸条部85の少なくとも先端部分に撥水処理を施しておくと特に有効である。
【0081】
図16に示した段差部83及び凸条部85を備えた構成は図14に示した実施例にも適用することができる。
また、図14、図15又は図16を参照して説明した各実施例では、流路13,15,17,19,21,23を形成するための溝は流路ベース11に形成されているが、本発明はこれに限定されるものではなく、それらの流路の全部又は一部分を形成するための溝は、流路スペーサ73の流路ベース11側表面、流路スペーサ73の容器ベース11側表面、容器ベース3表面のいずれに形成されていてもよい。
【0082】
以上、本発明の実施例を説明したが、本発明はこれらに限定されるものではなく、形状、材料、配置、個数、寸法、流路構成などは一例であり、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
【0083】
例えば、エアー抜き流路53bに接続されたベローズ53は内部容量が受動的に可変な容量可変部材であれば他の構造であってもよい。そのような構造として例えば可撓材料からなる袋状のものや、シリンジ状のものなどを挙げることができる。
また、ベローズ53等の容量可変部材は必ずしも備えていなくてもよい。
また、容器35,37,39に試薬等の液体を予め収容しないのであれば、エアー抜き流路の一部分に細孔からなる流路35e,37e,39eを必ずしも備えている必要はない。
【0084】
また、上記の実施例では、封止容器としての容器35,37,39に連通して設けられたエアー抜き流路35b,37b,39bは切替えバルブ63を介してエアー抜き流路53bに接続されるが、封止容器に連通して設けられるエアー抜き流路は反応容器プレート外部、又はベローズ53等の容量可変部に直接接続されていてもよい。
また、容器35,37,39の封止方法として開閉可能なキャップを用いてもよい。
【0085】
また、上記実施例では容器ベース3は1つの部品により形成されているが、容器ベースは複数の部品によって形成されていてもよい。
また、反応容器5内の試薬は乾燥試薬でもよい。
また、サンプル容器35内や反応容器5内に予め試薬は収容されていなくてもよい。
また、上記実施例では試薬容器37に希釈水49が収容されているが、希釈水49に変えて試薬を収容するようにしてもよい。
【0086】
また、容器ベース3に遺伝子増幅反応を行なうための遺伝子増幅容器を備えているようにしてもよい。例えば、試薬容器37を空の状態にしておけば、遺伝子増幅容器として用いることができる。
【0087】
また、反応容器5内に遺伝子増幅反応を行なうための試薬を収容しておけば、反応容器5内で遺伝子増幅反応を行なうことができる。
また、主流路13に導入される液体に遺伝子が含まれている場合、反応容器5内にその遺伝子と反応するプローブを備えているようにしてもよい。
【0088】
また、上記実施例では、液体貯留部52は切替えバルブ63上に配置されているが、切替えバルブ63上でなくてもよい。
また、上記実施例では切替えバルブとしてロータリー式の切替えバルブ63を用いているが、切替えバルブはこれに限定されるものではなく、種々の流路切替えバルブを用いることができる。また、切替えバルブを複数備えていてもよい。
【0089】
また、上記実施例では、計量流路15に充填された液体を注入流路17を介して反応容器5に注入する際に、エアーパージ後の主流路13内を加圧して液体を反応容器5に注入しているが、本発明の反応処理方法はこれに限定されるものではない。例えば、シリンジ51を用いて反応容器エアー抜き流路21内を陰圧にできるように流路構成を変更し、反応容器エアー抜き流路21内、ひいては反応容器5内を陰圧にすることによって計量流路15に充填された液体を注入流路17を介して反応容器5に注入するようにしてもよい。また、別途シリンジを用意して、主流路13内を陽圧にし、かつ反応容器5内を陰圧にして、反応容器5に液体を注入するようにしてもよい。
【0090】
また、上記実施例では、1本の主流路13を備え、すべての計量流路15が主流路13に接続されているが、流路構成はこれに限定されるものではない。例えば、複数本の主流路を設け、各主流路に1つ又は複数の計量流路を接続するようにしてもよい。
【0091】
本発明の反応容器プレートにおいて、主流路は密閉可能なものであるが、主流路の両端が開閉可能になっていることにより主流路が密閉可能になっている例を挙げることができる。ここで、「主流路の両端が開閉可能になっている」とは、主流路の端部に他の空間が接続され、この他の空間の、主流路とは反対側の端部が開閉可能になっている場合も含む。例えば、上記実施例では、流路13aや、液体ドレイン空間29、ドレイン空間エアー抜き流路23及び流路23aが上記他の空間に相当する。
また、本発明の反応容器プレートにおいて、反応容器エアー抜き流路は密閉可能なものであるが、反応容器エアー抜き流路の反応容器とは反対側の端部が開閉可能になっていることにより反応容器エアー抜き流路が密閉可能になっている例を挙げることができる。ここで、「反応容器エアー抜き流路の反応容器とは反対側の端部が開閉可能になっている」とは、反応容器エアー抜き流路の反応容器とは反対側の端部に他の空間が接続され、この他の空間の、反応容器エアー抜き流路とは反対側の端部が開閉可能になっている場合も含む。例えば、上記実施例では、エアードレイン空間31、ドレイン空間エアー抜き流路25及び流路25aが上記他の空間に相当する。
このような態様では、主流路及び計量流路に液体が導入され、次に主流路内の上記液体がパージされ、さらに計量流路内に残存する上記液体が反応容器内に注入された後、主流路の両端、及び反応容器エアー抜き流路の反応容器とは反対側の端部が閉じられて主流路及び反応容器エアー抜き流路が密閉される。
【産業上の利用可能性】
【0092】
本発明は種々の化学反応や生物化学反応の測定に利用することができる。
【図面の簡単な説明】
【0093】
【図1】反応容器プレートの一実施例を示す図であり(A)は概略的な平面図、(B)は(A)のA−A位置での断面にベローズ、ドレイン空間、計量流路、注入流路及びサンプル容器エアー抜き流路の断面を加えた概略的な断面図、(C)はシリンジ51及びベローズ53近傍を拡大して示す概略的な断面図である。
【図2】同実施例を分解して示す断面図及び切替えバルブの概略的な分解斜視図である。
【図3】同実施例の1つの反応容器近傍を示す概略図であり、(A)は平面図、(B)は斜視図、(C)は断面図である。
【図4】同実施例のサンプル容器を拡大して示した図であり(A)は平面図、(B)は(A)のB−B位置での断面図である。
【図5】同実施例の試薬容器を拡大して示した図であり(A)は平面図、(B)は(A)のC−C位置での断面図である。
【図6】同実施例のエアー吸引用容器を拡大して示した図であり(A)は平面図、(B)は(A)のD−D位置での断面図である。
【図7】サンプル容器からサンプル液を反応容器に導入する動作を説明するための平面図である。
【図8】図7に続く動作を説明するための平面図である。
【図9】図8に続く動作を説明するための平面図である。
【図10】図9に続く動作を説明するための平面図である。
【図11】図10に続く動作を説明するための平面図である。
【図12】図11に続く動作を説明するための平面図である。
【図13】図12に続く動作を説明するための平面図である。
【図14】反応容器プレートの他の実施例の反応容器近傍を拡大して示す概略的な断面図である。
【図15】反応容器プレートのさらに他の実施例の反応容器近傍を拡大して示す概略的な断面図である。
【図16】反応容器プレートのさらに他の実施例の反応容器近傍を拡大して示す概略的な断面図である。
【符号の説明】
【0094】
1 反応容器プレート
3 容器ベース
5 反応容器
11 流路ベース
13 主流路
15 計量流路
17 注入流路
19,21 反応容器エアー抜き流路
35 サンプル容器
35b,35d,35e サンプル容器エアー抜き流路
37 試薬容器
37b,37d,37e 試薬容器エアー抜き流路
39 エアー吸引用容器
39b,39d,39e エアー吸引用容器エアー抜き流路
51 シリンジ
51a シリンダ
51b プランジャ
53 ベローズ(容量可変部)
63,95 切替えバルブ
73 流路スペーサ
75 凸部
77 注入流路
79 反応容器エアー抜き流路

【特許請求の範囲】
【請求項1】
外部とは遮断された反応容器と、
前記反応容器に接続された反応容器流路と、
前記反応容器流路に接続され、シリンダ及び前記シリンダ内を該反応容器プレートの主平面内で摺動するプランジャからなるシリンジを備えて液体を送液する送液機構と、
を備えている反応容器プレート。
【請求項2】
前記送液機構は、前記シリンジの吸引動作によってその内部に液体を吸引して貯留し、前記シリンジの吐出動作によってその内部に貯留した液体を吐出する液体貯留部を備え、前記液体貯留部は底面に前記反応容器流路との接続口をもち、貯留する流体の液面よりも高い位置に前記シリンジとの接続口をもっている請求項1に記載の反応容器プレート。
【請求項3】
前記反応容器とは別途設けられた封止容器と、前記封止容器に接続された封止容器流路と、前記送液機構を前記反応容器流路又は前記封止容器流路に接続するための切替えバルブをさらに備えている請求項1又は2に記載の反応容器プレート。
【請求項4】
前記切替えバルブはその回転中心に前記送液機構につながるポートを備えたロータリー式バルブであり、前記シリンジの吸引動作で吸引された液体を貯留する空間が前記ロータリー式バルブ上に設けられている請求項3に記載の反応容器プレート。
【請求項5】
前記封止容器はサンプル液を収容するためのサンプル容器である請求項3又は4に記載の反応容器プレート。
【請求項6】
前記サンプル容器は、尖端の鋭利な分注器具により貫通でき、かつ貫通後に前記分注器具を引き抜くとその貫通孔を弾性によって閉じることのできる弾性部材によって封止されている請求項5に記載の反応容器プレート。
【請求項7】
前記サンプル容器に予めサンプル前処理液又は試薬が収容されている請求項6に記載の反応容器プレート。
【請求項8】
前記サンプル容器とは別に、前記封止容器からなる試薬容器を1つ又は複数備え、前記試薬容器はサンプル液の反応に使用される試薬を予め収容しフィルムで封止されているか、又は開閉可能なキャップを備えて試薬を注入できるようになっている請求項3から7のいずれか一項に記載の反応容器プレート。
【請求項9】
前記封止容器からなり遺伝子増幅反応を行なうための遺伝子増幅容器も備えている請求項3から8のいずれか一項に記載の反応容器プレート。
【請求項10】
前記反応容器に接続された反応容器エアー抜き流路をさらに備え、
前記反応容器流路は、貼り合わされた2枚の部材の接合面に形成された溝、又は前記溝及び前記基板に形成された貫通孔からなり、かつ、前記送液機構に接続される主流路と、前記主流路から分岐した所定容量の計量流路と、一端が前記計量流路に接続され他端が前記反応容器に接続された注入流路と、を備え、
前記主流路及び前記反応容器エアー抜き流路は密閉可能になっており、
前記注入流路は前記計量流路よりも細く形成されて前記主流路及び前記計量流路に液体が導入されるときの液体導入圧力状態並びに前記主流路内の前記液体がパージされるときのパージ圧力状態では前記液体を通さず、それらよりも加圧状態で前記液体を通すものである請求項1から9のいずれか一項に記載の反応容器プレート。
【請求項11】
前記注入流路の水滴に対する接触角は90度以上であり、前記注入流路と前記計量流路の境界の面積は1〜10000000μm2である請求項10に記載の反応容器プレート。
【請求項12】
複数の前記反応容器を備え、それらの反応容器ごとに前記計量流路及び前記注入流路を備え、前記主流路に複数の前記計量流路が接続されている請求項10又は11に記載の反応容器プレート。
【請求項13】
前記注入流路の前記他端は前記反応容器の内側上面に突出して形成された凸部の先端に配置されており、前記凸部は先端部が基端部に比べて細くなっている請求項10から12のいずれか一項に記載の反応容器プレート。
【請求項14】
前記反応容器は少なくとも呈色反応、酵素反応、蛍光や化学発光又は生物発光を生じる反応のいずれかの反応を行なうためのものである請求項1から13のいずれか一項に記載の反応容器プレート。
【請求項15】
遺伝子を含んだサンプルを測定するための反応容器プレートであり、前記反応容器で遺伝子増幅反応を行なうことができるようになっている請求項1から14のいずれか一項に記載の反応容器プレート。
【請求項16】
前記反応容器はその底部又は上方から光学的に測定が可能なように光透過性の材質にて構成されている請求項1から15のいずれか一項に記載の反応容器プレート。
【請求項17】
前記反応容器は、前記反応容器に注入される液体に遺伝子が含まれている場合にその遺伝子と反応するプローブを備えている請求項1から16のいずれか一項に記載の反応容器プレート。
【請求項18】
請求項10から13のいずれか一項に記載の前記反応容器プレートを用いた反応処理方法であって、
前記導入圧力で前記主流路及び前記計量流路に液体を充填し、
前記主流路に気体を流して前記計量流路内に前記液体を残存させつつ前記主流路内の前記液体を排出し、
前記主流路内を前記導入圧力よりも大きく陽圧に若しくは前記反応容器内を陰圧に又は前記陽圧及び前記陰圧の両方にすることより前記注入流路を介して前記計量流路内の前記液体を前記反応容器に注入することを特徴とする反応処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2009−58396(P2009−58396A)
【公開日】平成21年3月19日(2009.3.19)
【国際特許分類】
【出願番号】特願2007−226503(P2007−226503)
【出願日】平成19年8月31日(2007.8.31)
【出願人】(000001993)株式会社島津製作所 (3,708)
【Fターム(参考)】