説明

固定式等速自在継手

【課題】 固定式等速自在継手の発熱を抑えて耐久性を向上させる。
【解決手段】 固定式等速自在継手は、凹球面状の内周面14に軸方向に延びるボール溝16を円周方向に所定の間隔で形成した外輪10と、凸球面状の外周面24に軸方向に延びるボール溝26を円周方向に所定の間隔で形成した内輪20と、対をなす外輪10のボール溝16と内輪20のボール溝26との間に組み込んだボール30と、外輪10の内周面14と内輪20の外周面24との間に介在してボール30を保持するケージ40とを具備し、外輪10のボール溝16の中心O1および内輪20のボール溝26の中心O2が継手の角度中心Oと同じ軸方向位置にあり、かつ、対をなす外輪10のボール溝16と内輪20のボール溝26が交差している。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は固定式等速自在継手に関する。
【背景技術】
【0002】
自動車や各種産業機械の動力伝達装置に使用される等速自在継手は固定式としゅう動式に大別される。固定式は角度変位のみ可能であるのに対して、しゅう動作式は角度変位だけでなく軸方向変位(プランジング)も可能である。この発明は固定式等速自在継手に関する。
【0003】
図9に示す固定式等速自在継手は、ツェッパ型またはバーフィールド型と呼ばれるタイプで、外輪110と、内輪120と、複数のボール130と、ケージ140を主要な構成要素としている。
【0004】
外輪110はディスク型で、ボルトを挿入してフランジ結合するための貫通孔112を備え、原動軸または従動軸とトルク伝達可能に接続するようになっている。外輪110の内周面114は凹球面状で、その内周面の円周方向に等間隔に、軸方向に延びるボール溝116が形成してある。図9の外輪110の左側端面にはシールプレート118が装着してある。
【0005】
内輪120は、軸心部に形成したスプライン(またはセレーション。以下同じ。)孔122でシャフト(従動軸または原動軸)158とトルク伝達可能に接続する。内輪120の外周面124は凸球面状で、その外周面124の円周方向に等間隔に、軸方向に延びるボール溝126が形成してある。
【0006】
外輪110のボール溝116と内輪120のボール溝126は対をなし、各対のボール溝116、126間に1個ずつ、ボール130が組み込んである。
【0007】
ケージ140は外輪110と内輪120との間に介在させてあり、外周面142は外輪110の内周面114と適合した凸球面状で、内周面144は内輪120の外周面124と適合した凹球面状である。ケージ140の円周方向に所定間隔でポケット146が形成してあり、各ポケット146に1個ずつ、ボール130を収容させてある。したがって、ケージ140によってすべてのボール130が同一平面に保持される。ポケット146はケージ140を半径方向に貫通しており、ポケット146に収容されたボール130は、ケージ140の外径側で外輪110のボール溝116に臨み、ケージ140の内径側で内輪120のボール溝126に臨む。
【0008】
一般に、潤滑グリースの漏れを防止し、また、外部から水や異物が侵入するのを防止するため、ブーツ150を取り付けて使用する。ブーツ150は、可撓性材料でできたブーツ本体152とブーツアダプタ154とからなり、ブーツ本体152の小径部はシャフト158に取り付けてブーツバンド156で締め付けてある。ブーツ本体152の大径部はブーツアダプタ154の小径端部に巻き込んで固定してある。ブーツアダプタ154の大径端部は前述のシールプレート118とは反対側の外輪110の端面に取り付けてある。シールプレート118とブーツアダプタ154は外輪110を両側から挟みこんだ状態で図示しないフランジ間に固定される。
【0009】
自動車のプロペラシャフト用に使用される固定式等速自在継手として上述のバーフィールド型が知られている。従来、6個のボールを用いるバーフィールド型が一般的であったが、近年、軽量、コンパクト化のため、あるいは高性能化を目的として、種々の提案がなされている(特許文献1、2)。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許第3300663号公報
【特許文献2】特許第3859264号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
6個のボールを用いる従来のバーフィールド型に対して、高性能化、コンパクト化を目的として小径化し、ボール1個当たりの負荷容量の低下を抑えるため、ボール数を8個とする提案や(特許文献1)、内輪および外輪のボール溝を軸線に対して傾斜させたり、らせん状にしたり、隣り合うボール溝を面対称としたりことで、内輪および外輪のボール溝とボールとの接触力を抑制でき、耐久性が向上するなどの提案(特許文献2)がなされている。
【0012】
前者(特許文献1)の場合、ケージ140を円滑に作動させるため、図10に示すように軸方向オフセットが設けてある。すなわち、継手の軸線を含む平面において、外輪110の内周面114の中心および内輪120の外周面124の中心は共に継手の角度中心Oと一致しているが、外輪110のボール溝116の中心O1と内輪120のボール溝126の中心O2、継手の角度中心Oから互いに反対側に、軸方向に等距離Fだけオフセットさせてある。その結果、対をなすボール溝116、126は、軸方向の一方から他方へ向かって縮小したくさび形の断面形状を呈する。符号τはくさび角を表している。
【0013】
ボール130とボール溝116、126との接点の軌跡を破線で示してある。くさび角τの作用により、ボール130はくさびの開いている方向に力Wを受け、そのため、ボール130がポケット146の壁面を押し、ケージ140を円滑に作動させる。くさび角τは、図10から理解できるように、外輪110のボール溝116とボール130との接触部における接線と、内輪120のボール溝126とボール130との接触部における接線とがなす角と定義することができる。
【0014】
このように、ケージ140を作動させる上で軸方向オフセットは重要であるが、軸方向オフセットがあるために形成されるくさび角τの向きがすべて同じであることから、常に一方向だけに力Wが発生する。その結果、外輪110の内周面114とケージ140の外周面142および内輪120の外周面124とケージ140の内周面144が接触状態となり、負荷が高いときや高速で回転する場合に発熱の原因となり、耐久性に悪影響を与える。
【0015】
後者(特許文献2)でも軸方向オフセットが設けてあるが、外輪および内輪のボール接触力が低下することでケージに掛かる力が低下するが、従来型と同じように、大きな負荷が掛かるときや高速回転時に、ケージの外周面と外輪の内周面およびケージの内周面と内輪の外周面との接触により発熱が生じて耐久性に悪影響を与える。
【0016】
そこで、この発明の目的は、固定式等速自在継手の発熱を抑えて耐久性を向上させることにある。
【課題を解決するための手段】
【0017】
この発明は、軸方向オフセットを0にするとともに、隣り合うボール溝を交互に交差させることによって課題を解決した。軸方向オフセットが0ということは、軸方向オフセットを廃止する、言い換えれば、外輪10のボール溝16の中心O1および内輪20のボール溝26の中心O2が共に継手の角度中心Oと同じ軸方向位置にあることを意味する。
【0018】
すなわち、この発明の固定式等速自在継手は、凹球面状の内周面14に軸方向に延びるボール溝16を円周方向に所定の間隔で形成した外輪10と、凸球面状の外周面24に軸方向に延びるボール溝26を円周方向に所定の間隔で形成した内輪20と、対をなす外輪10のボール溝16と内輪20のボール溝26との間に組み込んだボール30と、外輪10と内輪20との間に介在してボール30を保持するケージ40とを具備し、外輪10のボール溝16の中心および内輪20のボール溝26の中心が継手の角度中心Oと同じ軸方向位置にあり、かつ、対をなす外輪10のボール溝16と内輪20のボール溝26が交差していることを特徴とする。
【0019】
軸方向オフセットを0とし(図5(a)参照)、対をなす外輪10のボール溝16と内輪20のボール溝26を交差させることで(図5(b)参照)、円周方向に交互に逆向きのくさび角τが発生する。したがって、隣り合うボール30には互いに逆向きの力Wが作用し、ボール30からケージ40のポケット46の壁面48に加わる力Wも円周方向に交互に逆向きとなり、ケージ位置が外輪10および内輪20の二等分面位置で安定する。そのため、ケージ40の外周面42および内周面44の球面接触が抑制され、高負荷時や高速回転時でも等速自在継手の作動が円滑となり、発熱が抑えられ、耐久性が向上する。
【0020】
ボールの数は、たとえば、6(請求項2)、8(請求項3)、10(請求項4)である。ボールの数によって、ボール径と、取り得るボール溝の交差角が変わる。ボールの数が少なければ、ボール径を大きくして1個あたりの負荷容量を大きくし、かつ、大きな交差角を取ることが可能となり、ケージの作動性に影響を及ぼすくさび角を大きく取ることができる。その反面、ボールのPCD(ピッチ円径)を大きくする必要があるため、外輪外径が大きくなる。ボール数が多いと、ボール径は小さく、かつ、交差角も小さくとることになる。この場合、くさび角が小さくなるが、ボール個数が多くなった分だけ、必要なくさび角によるケージの制御力を補うことができる。
【0021】
外輪のボール溝の中心と内輪のボール溝の中心を半径方向にオフセットさせてもよい(請求項5)。そのような構成を採用することにより、外輪および内輪のボール溝の負荷容量を大きくしたり、ボール溝の底部の肉厚を厚くすることができる。
【0022】
ボール溝は鍛造によって成形してもよく(請求項6)、あるいは、機械加工によって成形してもよい(請求項7)。ボール溝を鍛造で成形することにより、後加工が不要となり、その分だけコスト削減が可能となる。機械加工の具体例としては、ボール溝を高精度で仕上げることのできる、研削加工や焼入れ鋼切削が挙げられる。研削加工ではクーラントが必要であるのに対して、焼入れ鋼切削はクーラントを使用しないいわゆるドライ加工であるため、環境に対する負荷を減らすことができる。
【発明の効果】
【0023】
この発明によれば、高負荷時や高速回転時の発熱が抑制され、耐久性が向上する。また、ケージ位置が安定するため、ケージと外輪との間およびケージと内輪との間での接触抵抗が抑えられ、トルク損失が低下し、等速性が向上する。
より詳しく述べるならば(図5参照)、隣り合うボール溝では逆方向の荷重Wが発生し、そのためケージは全体として軸方向の荷重が±0となって二等分面の位置にとどまる。したがって、ケージの外球面と外輪の内球面、ケージの内球面と内輪の外球面が接触して接触抵抗を増すという現象が抑制され、その影響でトルク損失率が低下して等速性が向上する。等速自在継手におけるトルク損失とは、ボール溝とボールとの間の転がり抵抗や滑り抵抗、球面部の接触による抵抗などによって動力ロスが発生する。この発明の等速自在継手は、球面部の接触抵抗が抑えられるため、トルク損失が減少する。
【図面の簡単な説明】
【0024】
【図1】(a)は実施例を示す正面図、(b)は図1(a)のA−B断面図である。
【図2】(a)は外輪の正面図、(b)は図2(a)のY矢視図、(c)は断面図、(d)は斜視図である。
【図3】(a)は内輪の正面図、(b)は図3(a)のZ矢視図、(c)は断面図、(d)は斜視図である。
【図4】(a)は正面図、(b)は断面図、(c)は斜視図である。
【図5】(a)は縦断面図、(b)はボール溝の展開略図である。
【図6】軸方向長さが長い場合の内輪の斜視図である。
【図7】(a)(b)は半径方向オフセットの例を示す縦断面図である。
【図8】(a)は外輪の縦断面図、(b)は内輪の縦断面図である。
【図9】従来例を示す縦断面図である。
【図10】軸方向オフセットの影響を説明するための縦断面図である。
【発明を実施するための最良の形態】
【0025】
以下、図面に従ってこの発明の実施の形態を説明する。
まず、図1を参照して固定式等速自在継手の基本的構成について述べる。固定式等速自在継手は、外側継手部材としての外輪10と、内側継手部材としての内輪20と、トルク伝達要素としての複数のボール30と、ボール30を保持するためのケージ40を主要な構成要素としている。
【0026】
図2に示すように、外輪10はディスク型で、ボルトを挿入するための貫通孔12が形成してあり、原動軸または従動軸とフランジ結合するようになっている。外輪10の内周面は凹球面状で、その内周面の円周方向に所定の間隔で、ボール溝16が形成してある。ボール溝16は軸線に対して傾斜しており、隣り合ったボール溝16a、16b同士では傾斜の向きが逆である。傾斜角度を符号γで表してある。
【0027】
図3に示すように、内輪20は軸心部に形成したスプライン孔22を有し、このスプライン孔22で従動軸または原動軸とトルク伝達可能に接続するようになっている(図9のシャフト158参照)。内輪20の外周面24は球面状で、その外周面の円周方向に所定の間隔で、ボール溝26が形成してある。
外輪10のボール溝16と同じように、内輪20のボール溝26も軸線に対して傾斜しており、隣り合ったボール溝26a、26b同士では傾斜の向きが逆である。ここでも傾斜角度を符号γで表してある。
【0028】
外輪10のボール溝16と内輪20のボール溝26は対をなし、各対のボール溝16、26間に1個ずつ、ボール30が組み込んである。ボールの数は任意であるが、具体例を挙げるならば6個、8個、10個などである。図は8個の例を示している。
対をなす外輪10のボール溝16と内輪20のボール溝26は傾斜の向きが逆になるようにして組み立てる。
【0029】
図1および図4に示すように、ケージ40は外輪10の内周面14と内輪20の外周面24との間に介在させてある。したがって、ケージ40の外周面42は外輪10の内周面14と適合する凸球面状であり、ケージ40の内周面44は内輪20の外球面24と適合する凹球面状である。ケージ40の円周方向に所定間隔でポケット46が形成してあり、各ポケット46に1個ずつ、ボール30が収容される。ポケット46はケージ40を半径方向に貫通しており、ポケット46に収容されたボール30は、ケージ40の外径側で外輪10のボール溝16に臨み、ケージ40の内径側では内輪20のボール溝26に臨む。このようにして、ケージ40によってすべてのボール30が同一平面に保持される。
【0030】
図1(b)に示すように、軸方向オフセットは0である。すなわち、継手の軸線を含む平面において、外輪10のボール溝16の中心と、内輪20のボール溝26の中心は、共に継手の角度中心Oと同じ軸方向位置にある。
【0031】
ここで、軸方向オフセットとは外輪のボール溝の中心と内輪のボール溝の中心の軸方向位置が異なることを意味し、軸方向位置が同じであれば、半径方向に異なる位置にあってもよい。
【0032】
図7および図8に、継手の軸線を含む平面においてボール溝の曲率中心を半径方向にオフセットさせた実施例を示す。図7(a)は、ボール溝16、26の中心O3を軸線を越えてボール溝16、26から遠ざかる向きに、半径方向にオフセットさせた例である。図7(b)は、ボール溝16,26の中心O3を軸線からボール16、26溝寄りに、半径方向にオフセットさせた例である。それぞれ符号Fはオフセット量を表している。
【0033】
図7(a)の実施例は外輪10のボール溝16を深くすることができる。図8(a)は、図7(a)の実施例のボール溝(底)と図7(b)の実施例のボール溝(底)を重ねて表示したもので、符号R1は前者の場合の曲率半径を示し、符号R2は後者の場合の曲率半径を示す。また、対比のために、曲率中心が軸線上にある場合の曲率半径R0の円弧を破線で示してある。符号t0、t1は、ボール溝16の端部における溝底部分の外輪肉厚を表している。図8(a)から理解できるように、曲率中心をボール溝16から遠ざかる向きに、軸線から半径方向にオフセットさせた曲率半径R1のボール溝16は、破線で示す標準のボール溝よりも深くなる。
【0034】
また、図7(a)の実施例は内輪20のボール溝26の底部の肉厚を厚くすることができる。図8(b)は、図7(a)の実施例による内輪のボール溝と図7(b)の実施例による内輪のボール溝を重ねて表示したもので、符号R4は前者の場合の曲率半径を示し、符号R5は後者の場合の曲率半径を示す。また、対比のために、曲率中心が軸線上にある場合の曲率半径R3の円弧を破線で示してある。図8(b)から理解できるように、曲率中心をボール溝26から遠ざかる向きに、軸線から半径方向にオフセットさせた曲率半径R4のボール溝26の溝底部分の内輪肉厚t3は、破線で示す標準のボール溝の溝底部分の内輪肉厚t2よりも厚くなる。
【0035】
軸方向オフセットを0とし(図5(a)参照)、対をなす外輪10のボール溝16と内輪20のボール溝26を交差させることで(図5(b)参照)、円周方向に交互に逆向きのくさび角τが発生する。したがって、隣り合うボール30には互いに逆向きの力Wが作用し、ボール30からケージ40のポケット46の壁面48に加わる力Wも円周方向に交互に逆向きとなり、ケージ位置が外輪10および内輪20の二等分面位置で安定する。そのため、ケージ40の外周面42および内周面44の球面接触が抑制され、高負荷時や高速回転時でも等速自在継手の作動が円滑となり、発熱が抑えられ、耐久性が向上する。
【0036】
なお、軸方向オフセットを付与し、かつ、隣り合うボール溝を交差させた場合も、等速自在継手としては成立する。しかしながら、ボールが常に一方向に力を受けるため、ケージの外周面と外輪の内周面との接触、および、ケージの内周面と内輪の外周面との接触を抑制することはできない。したがって、依然として発熱の問題が解消せず、耐久性の向上は望めない。
【0037】
本来、軸方向オフセットおよび交差角2γは、くさび角τを発生させてケージ40を円滑に作動させる上で重要な要素であるため、ある程度大きく設定する必要がある。プロペラシャフトはドライブシャフトと違い、大きな作動角を必要としないため、外輪10、内輪20のボール溝長さを短くできる。そのため、交差角2γを大きく設定できる。
【0038】
これに対してドライブシャフト用では、最大作動角が大きいことから外輪及び内輪のボール溝長さを長く設定する必要が有り、図6に符号28で示すように内輪20の端面付近でボール溝26同士が交差してしまい凸球面状の外周面24がなくなってしまう。なお、図6は内輪20の場合であるが、外輪10についても同様である。また、ボール30の円周方向への移動量が大きくなり、ケージ40のポケット46の円周方向寸法を長く設定する必要が出てくる。そのため、ポケット46間の柱部分が細くなり、ケージ40の強度低下につながるという問題がある。したがって、大きな作動角が必要なフロントドライブシャフトには実際上は適用されないかもしれないが、大きな作動角を取らないリアドライブシャフトには適用可能である。
【符号の説明】
【0039】
10 外輪(外側継手部材)
12 貫通孔
14 内周面
16 ボール溝
20 内輪(内側継手部材)
22 スプライン孔
24 外周面
26 ボール溝
30 ボール(トルク伝達要素)
40 ケージ
42 外周面
44 内周面
46 ポケット
48 壁面

【特許請求の範囲】
【請求項1】
凹球面状の内周面に軸方向に延びるボール溝を円周方向に所定の間隔で形成した外輪と、
凸球面状の外囲面に軸方向に延びるボール溝を円周方向に所定の間隔で形成した内輪と、
対をなす外輪のボール溝と内輪のボール溝との間に組み込んだボールと、
外輪の内周面と内輪の外周面との間に介在してボールを保持するケージと
を具備し、外輪のボール溝の中心および内輪のボール溝の中心が継手の角度中心と同じ軸方向位置にあり、かつ、対をなす外輪のボール溝と内輪のボール溝が交差している固定式等速自在継手。
【請求項2】
ボール数が6である請求項1の固定式等速自在継手。
【請求項3】
ボール数が8である請求項1の固定式等速自在継手。
【請求項4】
ボール数が10である請求項1の固定式等速自在継手。
【請求項5】
外輪のボール溝の中心と内輪のボール溝の中心が半径方向にオフセットしている請求項1から4のいずれか1項の固定式等速自在継手。
【請求項6】
ボール溝が鍛造によって成形してある請求項1から5のいずれか1項の固定式等速自在継手。
【請求項7】
ボール溝が機械加工によって成形してある請求項1から5のいずれか1項の固定式等速自在継手。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−193860(P2012−193860A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2012−155459(P2012−155459)
【出願日】平成24年7月11日(2012.7.11)
【分割の表示】特願2008−207104(P2008−207104)の分割
【原出願日】平成20年8月11日(2008.8.11)
【出願人】(000102692)NTN株式会社 (9,006)