説明

圧延銅箔

【課題】銅箔表面を適度に粗くして取り扱い性を向上し、さらに屈曲性に優れるとともに、表面エッチング特性が良好な圧延銅箔を提供する。
【解決手段】圧延平行方向に測定した表面の60度光沢度G60RDが100以上300以下で、200℃で30分間加熱して再結晶組織に調質した状態において、圧延面のX線回折で求めた200回折強度(I)が、微粉末銅のX線回折で求めた200回折強度(I0)に対し、20≦I/I0≦40であり、銅箔表面で圧延平行方向に長さ175μmで、かつ圧延直角方向にそれぞれ50μm以上離間する3本の直線上で、オイルピットの最大深さに相当する各直線の厚み方向の最大高さと最小高さの差の平均値dと、前記銅箔の厚みtとの比率d/tが0.1以下であり、圧延平行方向に測定した表面の60度光沢度G60 RDと、圧延直角方向に測定した表面の60度光沢度G60 TDとの比率G60 RD /G60 TDが0.8未満である圧延銅箔である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、屈曲性を要求されるFPCに好適に用いられる圧延銅箔に関する。
【背景技術】
【0002】
屈曲用FPC(フレキシブルプリント回路基板)に用いられる銅箔には高い屈曲性が求められる。銅箔に屈曲性を付与するための方法として、銅箔圧延面に(200)面の結晶方位の配向度を高める技術(特許文献1)、銅箔の板厚方向に貫通する結晶粒の割合を多くする技術(特許文献2)、銅箔のオイルピットの深さに相当する表面粗さRy(最大高さ)を2.0μm以下に低減する技術(特許文献3)が知られている。
【0003】
一般的なFPC製造工程は以下のようなものである。まず銅箔を樹脂フィルムと接合する。接合には、銅箔上に塗布したワニスに熱処理を加えることでイミド化する方法や、接着剤付きの樹脂フィルムと銅箔とを重ねてラミネートする方法がある。これらの工程によって接合された樹脂フィルム付き銅箔をCCL(銅張積層板)と呼ぶ。このCCL製造工程における熱処理によって、銅箔は再結晶する。
ところで、銅箔を用いてFPCを製造する際、カバーレイフィルムとの密着性を向上させるために銅箔表面をエッチングすると、表面に直径数10μm程度のくぼみ(ディッシュダウン)が発生することがあり、特に、高屈曲銅箔に発生しやすい。この原因は、高屈曲性を付与するために、再結晶焼鈍後の立方体組織が発達するように銅箔の結晶方位を制御することに起因する。つまり、このような制御を行っても、すべての結晶の方位が揃うことはなく、均一な組織の中に結晶方位の異なる結晶粒が局部的に存在することによるものと考えられる。その際、エッチングされる結晶面によってエッチング速度が異なるため、この結晶粒が周囲よりも局部的に深くエッチングされて、くぼみとなる。このくぼみは、回路のエッチング性を低下させたり、外観検査で不良と判定され歩留まりを低下させたりする原因となる。
また、エッチング液によって、立方体組織がランダム組織と比較してエッチング速度が早くなる場合と遅くなる場合がある。従って、再結晶焼鈍後の立方体組織が発達しすぎると、この立方体組織のエッチング速度が遅くなると生産性が低下したり、回路形成時に回路間に銅が残ってエッチング性が劣化する。一方、立方体組織のエッチング速度が速くなると、回路部までエッチングされやすくなり、やはりエッチング性が劣化する。
【0004】
このようなくぼみを低減する方法として、圧延前または圧延後に銅箔の表面に機械研磨を行って加工変質層となるひずみを与えた後、再結晶する技術(特許文献4)が報告されている。この技術によれば、加工変質層によって再結晶後に表面に不均一な結晶粒を群発させ、結晶方位の異なる結晶粒が単独で存在しないようになる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3009383号公報
【特許文献2】特開2006-117977号公報
【特許文献3】特開2001-058203号公報
【特許文献4】特開2009-280855号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献4記載の技術の場合、不均一な結晶粒が多く、銅箔表面の結晶が(100)面に配向していないため、屈曲性が低下するという問題がある。
一方、銅箔の製造時のロールとの密着性を確保したり、銅箔製品の取り扱いを容易にするため、最終冷間圧延でのロール粗度を大きくして銅箔表面を粗くすることが行われているが、銅箔表面を粗くすると、銅箔表面の結晶の配向度が低下して屈曲性が劣ったり、ディッシュダウンが生じやすいことが判明した。
すなわち、本発明は上記の課題を解決するためになされたものであり、銅箔表面を適度に粗くして取り扱い性を向上し、さらに屈曲性に優れるとともに、表面エッチング特性が良好な圧延銅箔の提供を目的とする。
【課題を解決するための手段】
【0007】
本発明者らは種々検討した結果、最終冷間圧延の最終パスの手前では銅箔の表面をあまり粗くせず、最終冷間圧延の最終パスで銅箔の表面を粗くすることで、最終的な銅箔の表面を粗くしつつ、せん断変形帯を少なくし、屈曲性を維持しつつ、ディッシュダウンも少なく、エッチング液によるエッチング速度差が小さくなるためエッチング性に優れた銅箔となることを見出した。
上記の目的を達成するために、本発明の圧延銅箔は、圧延平行方向に測定した表面のJIS-Z8741に従った60度光沢度G60RDが100以上300以下で、200℃で30分間加熱して再結晶組織に調質した状態において、圧延面のX線回折で求めた200回折強度(I)が、微粉末銅のX線回折で求めた200回折強度(I0)に対し、20≦I/I0≦40であり、銅箔表面で圧延平行方向に長さ175μmで、かつ圧延直角方向にそれぞれ50μm以上離間する3本の直線上で、オイルピットの最大深さに相当する各直線の厚み方向の最大高さと最小高さの差の平均値dと、前記銅箔の厚みtとの比率d/tが0.1以下であり、圧延平行方向に測定した表面の60度光沢度G60 RDと、圧延直角方向に測定した表面のJIS-Z8741に従った60度光沢度G60 TDとの比率G60 RD /G60 TDが0.8未満である。
【0008】
上記した200℃×30分熱処理後の銅箔表面を電解研磨後にEBSDで観察した場合に、圧延面の結晶方位と[100]方位との角度差が15度以上の結晶粒の面積率が30〜70%であることが好ましい。
鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延工程において、最終パスの1パス前の段階で圧延平行方向に測定した表面の60度光沢度G60 RDが300を超えることが好ましい。
【発明の効果】
【0009】
本発明によれば、銅箔表面を適度に粗くして取り扱い性を向上し、屈曲性に優れるとともに、表面エッチング特性が良好な圧延銅箔が得られる。
【図面の簡単な説明】
【0010】
【図1】オイルピットと光沢度との関係を示す図である。
【図2】オイルピットの最大深さに相当する平均値dの測定法を示す図である。
【図3】屈曲試験装置により屈曲疲労寿命の測定を行う方法を示す図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施形態に係る圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
【0012】
まず、本発明の技術思想について説明する。最終冷間圧延でのロール粗度を大きくして銅箔表面を粗くすると、銅箔の取り扱い性は向上するが、ディッシュダウンが生じ易くなり、エッチング性が低下する。これは、最終冷間圧延での粗いロールにより、銅箔の厚み方向にせん断変形帯が生じ、さらに圧延が続いてせん断変形帯が発達するためと考えられる。
一方、銅箔の屈曲性を得るために光沢度(表面粗さ)を高める手法が従来から知られている。これは、粗度の低いロールで最終冷間圧延することで、銅箔の厚み方向にせん断変形帯が生じ難くなるためと考えられる。但し、銅箔の光沢度を高くする(表面粗さを小さくする)と、銅箔の取り扱い性が低下する。
【0013】
これに対し、本発明者は、最終冷間圧延の最終パスの手前では銅箔の表面をあまり粗くせず(例えば、粗度の低いロールで圧延し)、最終冷間圧延の最終パスで銅箔の表面を粗くする(例えば、粗いロールで圧延する)ことで、最終的な銅箔の表面を粗くしつつ、せん断変形帯を少なくし、屈曲性を向上させつつ、表面エッチング特性が良好となることを見出した。
つまり、従来、銅箔の配向性は単に銅箔表面の粗さに依存すると考えられてきたが、実際には材料内部のせん断変形帯の規模がエッチング性及び配向度(及びディッシュダウン)に影響することが分かった。そして、最終冷間圧延において、最終パス以前のパスでせん断帯の発達を充分に抑制できれば、最終パスで銅箔表面を粗く仕上げても、エッチング性を良好とする配向度を得ることかできる。
【0014】
ところで、上記したせん断帯の発達度は、従来から用いられている光沢度の値だけでは明確に捉えることができない。つまり、最終的な銅箔の表面を粗くしつつ、せん断変形帯を少なくすると、オイルピットが浅くかつある程度幅を持ち、さらにオイルピットの発生頻度が少なくなると考えられるが(図1(a)参照)、これはオイルピットの方向に垂直である圧延平行方向RDの光沢度には表れ難い。一方、圧延直角方向TDから見ると、オイルピットがある程度幅を持つため、オイルピットの形状や頻度の変化を平行方向より捉えやすい。
【0015】
このようなオイルピットと光沢度との関係を図1を参照して説明する。
まず、図1(a)は本発明例のオイルピットと光沢度との関係を表した図であるが、圧延平行方向RDに沿って光沢度G RDを測定すると、オイルピットで反射光の向きが変わって検出されず、光沢度は低くなる。一方、圧延直角方向TDに沿って光沢度G TDを測定した場合、オイルピットがTDに沿って延びていることから、オイルピットで反射光の向きが横に(RD方向に)ずれるものの検出され、光沢度は高くなる。つまり、G RDに比べてG TDが相対的に高くなり、後述する60度光沢度を測定すると、G60 RD /G60 TD<0.8の関係を満たす。
【0016】
次に、図1(b)は銅箔表面が粗い場合の従来例のオイルピットと光沢度との関係を表した図であるが、銅箔表面が粗くなり過ぎてオイルピットの深さ及び長さ(発生頻度)が増え、圧延平行方向RD及び圧延直角方向TDのいずれに沿って光沢度を測定しても、オイルピットで反射光の向きが変わって検出されず、光沢度は低くなる。この場合、G RDに比べてG TDが相対的に低くなり、後述する60度光沢度を測定すると、G60 RD /G60 TD>1の関係を満たす。
【0017】
一方、図1(c)は、銅箔表面が平滑の場合の従来例のオイルピットと光沢度との関係を表した図であるが、銅箔表面が平滑になり過ぎてオイルピットが浅くなり過ぎるため、圧延平行方向RDに沿って光沢度G RDを測定しても、オイルピットで反射光の向きが変わり難くなって光沢度は高くなる。つまり、G TDに比べてG RDが相対的に高くなるので、後述する60度光沢度を測定すると、G60 RD /G60 TDの関係が1に近づく(つまり、RDとTDの異方性が小さくなる)。但し、銅箔表面が粗い場合の従来例である図1(b)のように銅箔表面が粗くないので、G60 RD /G60 TD<1となる。
【0018】
次に、本発明の圧延銅箔の規定及び組成について説明する。
(1)光沢度G60RD
圧延平行方向RDに測定した表面の60°光沢度G60 RDを100以上300以下とする。G60 RDが300を超えると、銅箔表面が平滑になり過ぎて銅箔の製造時のロールとの密着性が低下したり、銅箔製品の取り扱いに難がある。一方、G60 RDが100未満になると、銅箔表面が粗くなり過ぎ、材料内部でせん断変形帯が発達してディッシュダウンが生じやすくなり、エッチング性が低下する。
【0019】
(2)G60 RD /G60 TD
上記したように、最終冷間圧延の最終パスの手前では銅箔の表面をあまり粗くせず、最終冷間圧延の最終パスで銅箔の表面を粗くすることで、最終的な銅箔の表面を粗くしつつ、せん断変形帯を少なくし、屈曲性を維持しつつ、ディッシュダウンが少なくなる。そして、このようなせん断変形帯が少ない表面は、G60 RD /G60 TD<0.8となることが本発明者らの実験(後述する実施例)によって明らかとなった。従って、圧延平行方向に測定した表面の60°光沢度G60 RDと、圧延直角方向に測定した表面の60°光沢度G60 TDとの比率G60 RD /G60 TDを0.8未満に規定する。なお、比を採用したのは、全体の光沢度の影響を相殺させるためである。
G60 RD /G60 TD≧0.8となると、上記した図1(b)のように銅箔表面が平滑になり過ぎ、銅箔の製造時のロールとの密着性が低下したり、銅箔製品の取り扱いに難がある。又、上記した図1(c)のようにG60 RD /G60 TD>1となると、銅箔表面が粗くなり過ぎ、せん断変形帯が発達して屈曲性が低下したり、ディッシュダウンが生じ易くなる。
【0020】
なお、G60 RD /G60 TD<0.8とする方法としては、上記したように最終冷間圧延において、最終パス以前のパスでせん断帯の発達を抑制する、つまり最終冷間圧延の最終パス以前のパスで粗さ(表面粗さRaが例えば0.5μm以下)が比較的小さいロールを用いて圧延すればよい。一方、一方、最終冷間圧延の最終パスでは、粗さ(表面粗さRaが例えば0.6μm以上)が比較的大きいロールを用いて圧延し、最終的に得られる銅箔表面を粗くすればよい。
ここで、最終冷間圧延において、最終パスの1パス前の段階で圧延平行方向に測定した表面の光沢度G60 RDが300を超えるようにすると、最終冷間圧延の最終パス以前のパスでは銅箔表面が比較的平滑となり、せん断変形帯が導入され難くなるので好ましい。
【0021】
(3)d/t
銅箔の厚みtが薄くなると、同じ表面粗さであっても銅箔厚みに占める表面凹凸の割合が大きくなるため、上記したG60 RD /G60 TDによる銅箔表面の評価が十分に行えないことがある。そこで本発明では、d/t≦0.1に規定することで、銅箔の厚みによらず銅箔表面の評価が行える。
ここで、dは、図2に示すように銅箔表面で圧延平行方向RDに長さ175μmで、かつ圧延直角方向TDにそれぞれ50μm以上離間する3本の直線L〜L上で、オイルピットの最大深さに相当する各直線L〜Lの厚み方向の最大高さHと最小高さHの差diの平均値である。具体的には、接触式粗さで、L〜L上の厚み方向のプロファイルを測定して最大高さHと最小高さHを求め、各直線L〜Lのdiを平均すればよい。
銅箔(又は銅合金箔)の厚みは特に制限されないが、例えば5〜50μmのものを好適に用いることができる。
【0022】
(4)I/I0
本発明の銅箔に、高屈曲性を付与するため、200℃で30分間加熱して再結晶組織に調質した状態において、圧延面のX線回折で求めた200回折強度(I)を、微粉末銅のX線回折で求めた200回折強度(I0)に対し、20≦I/I0≦40に規定する。これにより、(200)面の配向度が適度な値となり、屈曲性及びエッチング性のバランスに優れた銅箔が得られる。この場合、(200)面の結晶方位を有する再結晶集合組織が発達し過ぎないため、(200)面以外の方位の組織がある程度分散し、この組織が局所的にエッチングされることによるディッシュダウンも小さくなる。また、本発明の銅箔に、更に高屈曲性を付与するためには、200℃で30分間加熱して再結晶組織に調質した状態において、25≦I/I0≦40とすることが好ましい。
I/I0<20になると、(200)面の配向度が少なくなって屈曲性が低下する。40<I/I0になると、(200)面の結晶方位を有する組織が増えて屈曲性は良好となるが、(200)面の再結晶集合組織が発達し過ぎた結果、(200)面以外の方位の組織が部分的に集中して生じてこの組織が大きくエッチングされてディッシュダウンが発生しやすくなりエッチング性に劣る。又、(200)面とそれ以外の方位とでエッチング速度が大きく異なることによってもエッチング性が低下する。
上記200℃で30分の焼鈍は、CCL製造工程において銅箔に付与される温度履歴を模したものである。
なお、銅箔にAg、Sn、In、Au、Pd及びMgの群から選ばれる1種又は2種以上を合計で30〜300wtppm含有させると、20≦I/I0≦40に管理しやすいので望ましい。
【0023】
20≦I/I0≦40に管理する方法としては、例えば冷間圧延と焼鈍とを繰り返し、最終焼鈍で平均結晶粒径を10〜20μmとし、その後に製品板厚に圧延する際、総加工度90〜96%とし、最終冷間圧延の最終パス以前のパスでせん断帯の発達を抑制するとよい。この場合、最終冷間圧延の最終パス以前のパスで粗さが比較的小さい(表面粗さRaが例えば0.05μm以下)ロールを用いて圧延することができる。
【0024】
(5)EBSDによる方位差
上記したように、ディッシュダウンは、銅箔を樹脂フィルムと接合する際の熱処理により、再結晶した均一な組織の中で結晶方位の異なる結晶粒が単独で存在する割合が多い場合、エッチングの際にこの単独結晶粒が周囲よりも深くエッチングされてできるくぼみである。そこで、上記熱処理として、CCL製造工程において銅箔に付与される温度履歴を模した熱処理条件(200℃で30分間)で銅箔を加熱して再結晶組織に調質する。そして、この状態の結晶方位として、銅箔表面を電解研磨後にEBSDで観察した場合に、圧延面の結晶方位と[100]方位との角度差が15度以上の結晶粒の面積率が30〜70%であることが好ましい。
EBSDで観察した場合に上記面積率が30〜70%であると、屈曲性とエッチング性に共に優れる銅箔が得られる。上記面積率が30%未満であるとエッチング性に劣り、70%を超えると屈曲性が低下する場合がある。なお、EBSDで観察した場合に上記面積率を30〜70%とするには、上記したように最終冷間圧延において、最終パス以前のパスでせん断帯の発達を抑制する、つまり最終冷間圧延の最終パス以前のパスで粗さ(表面粗さRaが例えば0.05μm以下)が比較的小さいロールを用いて圧延することが望ましい。又、銅箔にAg、Sn、In、Au、Pd及びMgの群から選ばれる1種又は2種以上を合計で30〜300wtppm含有させると、上記面積率を30〜70%に管理し易いので望ましい。
なお、すでに熱履歴を受けてCCLとなった銅箔についても、200℃で30分間加熱してよい。一度再結晶するまで熱処理された銅箔の組織は、それ以上加熱してもほぼ変化しないため、EBSDでの観察においては、熱履歴を受けた銅箔と受けない銅箔を区別せず、200℃で30分間加熱することとしている。
【0025】
(6)組成
銅箔としては、純度99.9wt%以上のタフピッチ銅、無酸素銅、電気銅を用いることができ、さらにAg、Sn、In、Au、Pd及びMgの群から選ばれる1種又は2種以上を合計で30〜300wtppm含有することが望ましい。無酸素銅はJIS-H3510(合金番号C1011)およびJIS-H3100(合金番号C1020)に規格され、タフピッチ銅はJIS-H3100(合金番号C1100)に規格されている。
【0026】
次に、本発明の圧延銅箔の製造方法の一例について説明する。まず、銅及び必要な合金元素、さらに不可避不純物からなる鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で所定厚みに仕上げる。
ここで、上記したように、最終冷間圧延の最終パスの手前では銅箔の表面をあまり粗くせず、最終冷間圧延の最終パスで銅箔の表面を粗くすることで、最終的な銅箔の表面を粗くしつつ、せん断変形帯を少なくし、屈曲性を向上させ、ディッシュダウンが少なくなる。そして、このようなせん断変形帯が少ない表面は、G60 RD /G60 TD<0.8となる。
【0027】
従って、最終冷間圧延の最終パスの手前では、銅箔の表面をあまり粗くしないよう、粗さ(表面粗さRaが例えば0.5μm以下)が比較的小さいロールを用いて圧延したり、最終冷間圧延における1パス加工度を大きくして圧延すればよい。一方、最終冷間圧延の最終パスでは、粗さ(表面粗さRaが例えば0.6μm以上)が比較的大きいロールを用いて圧延したり、粘度の高い圧延油を用いて圧延し、最終的に得られる銅箔表面を粗くする。
なお、最終的な銅箔の表面を粗くしつつ、せん断変形帯を少なくするためには、最終冷間圧延の最終2パス、又は最終パスで、上記したように粗いロールを用いたり粘度の高い圧延油を用いて圧延することが必要であるが、調整し易いことから最終パスでの圧延条件を調整することが好ましい。一方、最終冷間圧延の最終3パス以前からロールの粗さを粗くすると、せん断変形帯が発達する。
【0028】
なお、最終冷間圧延の直前の焼鈍で得られる再結晶粒の平均粒径が10〜20μmになるよう、焼鈍条件下を調整するとよい。又、最終冷間圧延での圧延加工度を92〜99%とするとよい。
【実施例】
【0029】
電気銅に表1に記載の元素を添加し、それぞれ大気中(実施例1〜3、5)及び還元雰囲気中(N2とCOの混合ガス)(実施例4、6、7〜14)でインゴットを鋳造した。なお、比較例1〜5はアルゴン雰囲気中でインゴットを鋳造した。大気中で鋳造したものは150〜300ppm酸素を含有し、還元雰囲気中で鋳造したものは無酸素銅(C1020)と同程度の酸素を含有していた。作製したインゴットを800℃以上で厚さ10mmまで熱間圧延を行い、表面の酸化スケールを面削した後、冷間圧延と焼鈍とを繰り返した後、それぞれ0.24mm(実施例1〜12)、0.12mm(実施例13)、0.36mm(実施例14)、1.2mm(比較例1〜5)の厚みになった後で焼鈍して平均結晶粒径を13μmとした。さらに最終冷間圧延で厚み0.012m(実施例1〜12、比較例1〜5)、0.006mm(実施例13)、0.018mm(実施例14)に仕上げた。なお、実施例1〜14の最終冷間圧延の加工度95%、比較例1〜5の最終冷間圧延の加工度99%とした。
なお、最終冷間圧延は5〜15パスで行い、表1に示すように、最終パスの手前までのロールの表面粗さ、及び最終パスのロールの表面粗さを変えて圧延を行った。最終パスの1パス目から最終パスの手前までのロールの表面粗さはすべて同じである。
【0030】
このようにして得られた各銅箔試料について、諸特性の評価を行った。
(1)光沢度
圧延平行方向RD、及び圧延直角方向TDにそれぞれ沿って銅箔表面の光沢度G60 RD、G60 TDをJIS-Z8741に従って測定した。
(2)立方体集合組織
試料を200℃で30分間加熱した後、圧延面のX線回折で求めた200回折強度の積分値(I)を求めた。この値をあらかじめ測定しておいた微粉末銅(325mesh,水素気流中で300℃で1時間加熱してから使用)のX線回折で求めた200回折強度の積分値(I0 )で割り、I/I0 値を計算した。
【0031】
(3)オイルピットの最大深さ(平均値d)
接触式粗さ計(小坂研究所製 SE-3400)を用い、図2に示すようにして、銅箔表面で圧延平行方向RDに長さ175μmで、かつ圧延直角方向TDにそれぞれ50μm以上離間する3本の直線L〜L上の最大高さHと最小高さHの差diをそれぞれ求めた。各直線L〜Lのdiを平均してdとした。なお、d(mm)/t(mm)とした。
(4)EBSDによる方位差
(2)で200℃で30分間加熱した後の試料表面を電解研磨後にEBSD(後方散乱電子線回析装置、日本電子株式会社JXA8500F、加速電圧20kV、電流2e-8A、測定範囲1000μm×1000μm、ステップ幅5μm)で観察した。[100]方位からの角度差が15度以上の結晶粒の面積率を画像解析で求めた。さらに、試料表面1mm四方の観察範囲内で結晶粒径が20μmを超えるものの個数を目視で数えた。
【0032】
(5)エッチング性
エッチング性は以下のようにして評価した。まず、試料表面をエッチング液(それぞれアデカテックCL-8(株式会社アデカ製)液と、DP-200(荏原ユージライト製)液)を用いて常温で2分間エッチングを行い、エッチング後の1mm四方の観察範囲の表面を光学顕微鏡で撮影した画像を明暗二値化し、明暗の割合を算出した。[100]方位を持った組織は銅箔表面に平行な面となるため明るく、その他の方位では表面に細かい凹凸を生じるため乱反射により暗く見える。
次に、上記明部と暗部のうち、割合が50%未満の方を面積率の少ない方の組織とみなした。面積率の少ない方の組織は、面積率の多い方の組織に囲まれて存在するため、面積率の少ない方の組織を多角形で近似し、この多角形の外接円の最小直径が50μmを超える箇所の個数を数えた。アデカテックCL-8、DP-200どちらの液を使用しても観察範囲内に当該箇所が10以下であり、かつ最終冷間圧延後で200℃で30分間加熱前のエッチング量と、最終冷間圧延後で200℃で30分間加熱後のエッチング量との差が±10%以内のものをエッチング性良好(○)とし、上記個数が10個より多いか、又は上記エッチング量の差が±10%を超えたものをエッチング性劣(×)とした。
ここで、エッチング量は、(エッチング前の銅箔重量−エッチング後の銅箔重量)で算出され、上記エッチング量の差が±10%以内であれば、最終冷間圧延後の再結晶の有無によらずエッチング量が変化し難く、エッチング性に優れると考えられる。
なお、銅箔表面にて、明るい面及び暗い面が混在しているよりは、明るい面又は暗い面のいずれかが多くなっている方がエッチング性が良好となる傾向にある。
【0033】
(6)表面の傷
各試料の表面を目視し、圧延方向に10mm以上の長さをもつ傷が、5箇所/m2以上ある場合を×とした。
(7)屈曲性
試料を200℃で30分間加熱して再結晶させた後、ポリイミドフィルム(商品名:カプトン(登録商標)EN)の片面(銅箔と接着する面)に熱可塑性PI接着剤を2μm塗工後乾燥し、27μm厚の樹脂層を形成した。この樹脂層の接着剤面に銅箔に積層して真空熱プレスを行い、銅張積層体を作製した。図3に示す屈曲試験装置により、銅張積層体の屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、被試験銅箔1は、矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、銅箔1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:2.5mm、振動ストローク:25mm、振動速度:1500回/分。なお、屈曲疲労寿命が50万回以上の場合に、優れた屈曲性を有していると判断した。屈曲疲労寿命が50万回以上であれば、折り畳み式携帯電話の折り畳み可動部等の厳しい屈曲にも耐えうる良好な屈曲性を持つ。
【0034】
得られた結果を表1に示す。
【0035】
【表1】

【0036】
表1から明らかなように、G60RDが100以上300以下で20≦I/I0≦40であり、かつd/tが0.1以下であり、G60 RD /G60 TDが0.8未満である各発明例の場合、エッチング性が優れており、さらに銅箔表面に傷がなく、屈曲性も良好であった。
【0037】
一方、最終冷間圧延で、最終パスの手前までのロールの表面粗さ、及び最終パスのロールの表面粗さをいずれもRa=0.05μm以下とした比較例1の場合、銅箔表面のG60RDが300を超え、銅箔表面に傷が付いて取り扱い性に劣った。
最終冷間圧延で、最終パスの手前までのロールの表面粗さをRa=0.06μm以上に粗くし、最終パスのロールの表面粗さをRa=0.05μm以下とした比較例2の場合、I/I0>40となってディッシュダウンの個数が増えてエッチング性が低下し、又、銅箔表面のG60RDが300を超え、銅箔表面に傷が付いて取り扱い性に劣った。
【0038】
最終冷間圧延で、最終パスの手前までのロールの表面粗さ、及び最終パスのロールの表面粗さをいずれもRa=0.6μm以上に粗くした比較例3、4、5の場合、I/I0>40となってディッシュダウンの個数が増えてエッチング性が低下した。
なお、比較例3、4の場合、最終冷間圧延のすべてのパスのロール表面粗さを粗くしたため、材料内部でせん断変形帯が発達して銅箔表面の結晶の配向度が低下し、I/I0>40となった。
一方、比較例5の場合、最終パスの手前までのロールの粗さを比較例3、4より平滑としたため、光沢度は比較例3、4よりも高い値となったが、やはりせん断帯の抑制が不十分となり、I/I0>40となってディッシュダウンの個数が増えてエッチング性が低下した。なお、最終パスの手前までのロール粗さを0.07μmとしたままで、せん断帯を抑制するためには、通板速度を下げるなどの方法があるが、その場合は光沢度が300を超えてしまい、表面傷判定が×になると考えられる。

【特許請求の範囲】
【請求項1】
圧延平行方向に測定した表面のJIS-Z8741に従った60度光沢度G60RDが100以上300以下で、200℃で30分間加熱して再結晶組織に調質した状態において、圧延面のX線回折で求めた200回折強度(I)が、微粉末銅のX線回折で求めた200回折強度(I0)に対し、20≦I/I0≦40であり、
銅箔表面で圧延平行方向に長さ175μmで、かつ圧延直角方向にそれぞれ50μm以上離間する3本の直線上で、オイルピットの最大深さに相当する各直線の厚み方向の最大高さと最小高さの差の平均値dと、前記銅箔の厚みtとの比率d/tが0.1以下であり、
圧延平行方向に測定した表面の60度光沢度G60 RDと、圧延直角方向に測定した表面のJIS-Z8741に従った60度光沢度G60 TDとの比率G60 RD /G60 TDが0.8未満である圧延銅箔。
【請求項2】
前記200℃×30分熱処理後の銅箔表面を電解研磨後にEBSDで観察した場合に、圧延面の結晶方位と[100]方位との角度差が15度以上の結晶粒の面積率が30〜70%である、請求項1記載の圧延銅箔。
【請求項3】
鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延工程において、最終パスの1パス前の段階で圧延平行方向に測定した表面の60度光沢度G60 RDが300を超える、請求項1又は2記載の圧延銅箔。
【請求項4】
Ag、Sn、In、Au、Pd及びMgの群から選ばれる1種又は2種以上を合計で30〜300wtppm含有する請求項1〜3のいずれかに記載の圧延銅箔。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−71139(P2013−71139A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−210596(P2011−210596)
【出願日】平成23年9月27日(2011.9.27)
【出願人】(502362758)JX日鉱日石金属株式会社 (482)
【Fターム(参考)】