説明

導光板及びこれを用いたバックライトユニット並びにディスプレイ装置

【課題】光学性能を低下させることなく、厚みが薄くても剛性を維持でき、十分な信頼性を有する導光板及びこれを用いた液晶表示用バックライトユニット並びにディスプレイ装置を提供する。
【解決手段】入射光を表示要素に向けて導光する導光板7において、2層構造に積層された厚み及び種類の異なる透光性の第1樹脂層17と第2樹脂層18を有し、第1樹脂層17の光出射面17aに第1光学要素15を形成し、第2樹脂層18の第1樹脂層17と反対の面に第2光学要素16を形成する。そして、第1樹脂層17は第2樹脂層18よりも大きい曲げ強度を有する構成にした。さらに、第1樹脂層17の吸水率を第2樹脂層18の吸水率よりも小さくした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画素単位での透過/非透過のレンズシートおよびディスプレイ用光学シート、あるいは透明状態/散乱状態に応じて表示パターンが規定される表示素子が配置された液晶パネルを背面側から照明するバックライトユニットに用いられる導光板並びに当該バックライトユニットを用いたディスプレイ装置に関する。
【背景技術】
【0002】
近年、TFT型液晶パネルやSTN型液晶パネルを使用した液晶表示装置は、主としてOA分野のカラーノートPC(パーソナルコンピュータ)を中心に商品化されている。
このような液晶表示装置においては、液晶パネルの背面側(観察者側)に光源を配置し、この光源からの光で液晶パネルを照明する方式、いわゆる、バックライト方式が採用されている。
【0003】
この種のバックライト方式に採用されているバックライトユニットとしては、大別して冷陰極管(CCFL)等の光源ランプを、光透過性に優れたアクリル樹脂等からなる平板状の導光板内で多重反射させる「導光板ライトガイド方式」、いわゆる、エッジライト方式と、導光板を用いない「直下型方式」とがある。
【0004】
導光板ライトガイド方式のバックライトユニットが搭載された液晶表示装置としては、例えば、図9に示すものが一般に知られている。
かかる液晶表示装置は、バックライトユニットの上部に偏光板71,73に挟まれた液晶パネル72が設けられている。バックライトユニットは、光源ランプ76と、光源ランプ76からの光を液晶パネル72へ反射させる導光板79と、拡散フィルム(拡散層)78を備える。導光板79は略長方形板状のPMMA(ポリメチルメタクリレート)やアクリル等の透明な基材からなり、液晶パネル72の下面側に配設されている。また、拡散フィルム(拡散層)78は導光板79の上面(光射出側)に設けられている。
【0005】
さらに、導光板79の下面に、導光板79に導入された光を効率よく上記液晶パネル72方向に均一となるように散乱して反射されるための散乱反射パターン部が印刷などによって設けられる(図示せず)と共に、散乱反射パターン部下方に反射フィルム(反射層)77が設けられている。
【0006】
また、上記導光板79の側端部には光源ランプ76が取り付けられており、さらに、光源ランプ76の光を効率よく導光板79中に入射させるべく、光源ランプ76の背面側を覆うようにして高反射率のランプリフレクター81が設けられている。上記散乱反射パターン部は、白色である二酸化チタン(TiO)粉末を透明な接着剤等の溶液に混合した混合物を、所定パターン、例えばドットパターンにて印刷し乾燥、形成したものであり、導光板79内に入射した光に指向性を付与し、光射出面側へと導くようになっており、高輝度化を図るための工夫である。
【0007】
さらに、最近では、光利用効率をアップして高輝度化を図るべく、図10に示すように、拡散フィルム78と液晶パネル72との間に、光集光機能を備えたプリズムフィルム(プリズム層)74,75を設けることが提案されている。このプリズムフィルム74,75は導光板79の光射出面から射出され、拡散フィルム78で拡散された光を、高効率で液晶パネル72の有効表示エリアに集光させるものである。
【0008】
一方、直下型方式のバックライトユニットが搭載された液晶表示装置としては、図11に示すものが一般に知られている。
かかる液晶表示装置においては、上部に偏光板71、73に挟まれた液晶パネル72が設けられ、その下面側に、蛍光管やLED等からなる光源51から射出され、拡散フィルム82のような光学シートで拡散された光を、高効率で液晶パネル72の有効表示エリアに集光させるものである。光源51からの光を効率よく照明光として利用するために、光源51の背面には、リフレター52が配置されている。
【0009】
現在のバックライト市場ではコストダウンや、低消費電力、薄型化の要望が強い。特に薄型化の課題に関してはバックライト方式として導光板ライトガイド方式が実現し易い。そのため、近年は特に薄型化対応のため導光板ライトガイド方式の採用が進んでいる。
本方式は薄型化という大きな利点があるが、バックライトユニットの構成上信頼性に関しては直下型方式よりも不利な点が判明している。また、本方式は導光板や光学シートなどの光学部材と光源の位置が近いため、光源が点灯すると、光源から熱が発生し、近接する導光板や光学シートなどの光学部材の温度が上昇する。すると、光源からの距離により光学部材の面内で温度のばらつきが生じる。そのため光学部材にしわやたわみ、反りなどが発生し、信頼性を低下させている。
【0010】
導光板や光学シートなどの光学部材に、しわやたわみ、反りなどが発生すると、ディスプレイ装置の表示品位の低下を招く。これは、光学部材は集光や拡散、導光などの機能を有しているため、しわやたわみが発生すると輝度の明暗や視野角変化が生じるためである。特に導光板に反りが発生すると、光源からの光が入射する導光板端部が光源の位置からずれることにより、光が充分に入射せず、光損失が大きくなる。これにより反りが発生した箇所は周囲より輝度が低いため暗部となり、表示品位の低下に繋がる。
また、光学部材の反りやたわみがさらに強くなると、液晶パネルと接触する状況も発生する。光学部材が液晶パネルに接触すると画像の乱れが発生したり、さらに強い力が加わると液晶パネルが破損する場合がある。
以上のことから、導光板などの光学部材は十分な信頼性を有する必要があるが、バックライトユニットの薄型化が進み、光学部材の厚みが薄くなることで、十分な信頼性を得るのが難しくなってきている。
【0011】
特許文献1には、直下型バックライトに搭載される拡散板の反りを制御することで液晶パネルと接触して画像を乱す拡散板の反りを改善する方法が提案されている。しかし、この方法では、拡散板が薄くなると、温度による熱の影響が大きくなり、特に直立して液晶バックライトを使用する際に、板が自重により液晶パネル側まで湾曲することを防ぐことができない。特に光源を点灯させたり、周囲環境が高温になることで、この傾向が顕著になる。また、液晶バックライトが薄肉化することで、拡散板と液晶パネルの距離がますます小さくなるため、この方法のみでは対応できない。
【0012】
また、特許文献2にはバックライト装置に搭載される光学シートの線膨張率を近似させ、熱による伸長差によるシートのしわを低減させる方法が提案されている。線膨張率を制御することは光学部材の信頼性向上に効果的である。ただし、線膨張率のみでは、しわ改善効果のみにとどまり、根本的に光学部材の剛性を高めることはない。
【0013】
以上によりコストダウンと光学性能を両立しながら充分な信頼性を有するための具体的な解決策はなく、出射側最前面に拡散効果が強い拡散シートなどの光学シートを積載することでしわ視認性を低下させたり、ある程度の光学部材の厚みを維持して信頼性を確保している状況がある。よって光学性能と信頼性、および表示品位を有しながらコストダウンを実現するための根本的な解決方法が求められている。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特開2007−94112号公報
【特許文献2】特開2005−50802号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
ところで、コストダウンと部材の薄肉化が進むにつれて導光板に求められる信頼性の維持は難しくなる。
現在では、導光板にある程度の厚みを持たせ剛性を維持する方法や、または筐体形状を変更し、導光板の支持方法を変更する方法で対応しているのが現状である。厚みを維持すると薄型化やコストダウンに対応できない。
また、導光板の支持方法の検討により導光板のしわやたわみなど低減効果は確認できるが、支持方法はバックライトユニットの設計によって変更する必要があり、導光板自体がある程度の信頼性を有していないと、支持方法だけでは信頼性は解決できないことが判明している。
【0016】
以上のように液晶表示用のバックライトユニットの薄型化が進むと、必然的に導光板の薄肉化が求められる。しかし、導光板ライトガイド方式ではバックライトの各部材との距離が近くなるために、温度の影響が受けやすく、また液晶パネルとの接触の可能性も高くなり、十分な信頼性を得ることが難しくなっている。
そこで本発明は、光学性能を低下させることなく、厚みが薄くても剛性を維持でき、十分な信頼性を有する導光板及びこれを用いた液晶表示用バックライトユニット並びにディスプレイ装置を提供することを目的とする。
【課題を解決するための手段】
【0017】
請求項1の発明は、入射光を表示要素に向けて導光する導光板であって、2層構造に積層された厚み及び種類の異なる透光性の第1樹脂層と第2樹脂層を有し、前記第1樹脂層の前記第2樹脂層と反対の面である光出射面に第1光学要素が形成され、前記第2樹脂層の前記第1樹脂層と反対の面に第2光学要素が形成され、前記第1樹脂層は前記第2樹脂層よりも大きい曲げ強度を有することを特徴とする。
【0018】
請求項2の発明は、請求項1記載の導光板において、前記第1、第2光学要素は、一次元方向または二次元方向に配列された凹凸形状を呈していることを特徴とする。
【0019】
請求項3の発明は、請求項2または3記載の導光板において、前記第1樹脂層の厚みは、前記第2樹脂層の厚みより厚いことを特徴とする。
【0020】
請求項4の発明は、請求項1乃至3に何れか1項記載の導光板において、前記第1樹脂層に使用している樹脂材の吸水率は、前記第2樹脂層に使用されている樹脂材の吸水率よりも小さいことを特徴とする。
【0021】
請求項5の発明は、請求項1乃至4に何れか1項記載の導光板において、前記第1樹脂層と第2樹脂層は、押出加工により作製されることを特徴とする。
【0022】
請求項6の発明は、バックライトユニットであって、光源と、請求項1乃至5に何れか1項記載の導光板とを備えることを特徴とする。
【0023】
請求項7の発明は、請求項6記載のバックライトユニットにおいて、前記光源は冷陰極管、LED、ELもしくは半導体レーザーであることを特徴とする。
【0024】
請求項8の発明は、ディスプレイ装置であって、画素単位での透過/遮光に応じて表示画像を規定する液晶表示素子と、請求項6または7記載のバックライトユニットとを備えることを特徴とする。
【発明の効果】
【0025】
本発明の導光板及びこれを用いたバックライトユニット並びにディスプレイ装置によれば、導光板が曲げ強さの異なる、第1光学要素付の第1樹脂層と第2光学要素付の第2樹脂層とを積層した2層構造をなしているので、光学性能を低下させることなく、厚みが薄くても剛性を維持し、たわみにくくすることで反りを低減させ、液晶パネルとの接触を防止し、画像の乱れを生じさせないようにすることができ、併せて、樹脂層を積層する際の配置方法やそれぞれの層の厚み、また樹脂の吸水率を調整することで光学性能を維持しながら更なる信頼性を確保することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の導光板を含むディスプレイ装置の構成を示す概略断面図である。
【図2】本発明にかかる導光板の一例を示す説明図である。
【図3】本発明にかかる導光板の他の例を示す説明図である。
【図4】本発明にかかる導光板の更に他の例を示す説明図である。
【図5】本発明の導光板に要求される信頼性に関しての説明図である。
【図6】本発明の導光板を作製する際の押出法の説明図である。
【図7】本発明の導光板における賦形性、曲げ強さ、信頼性評価の実施例及び比較例を示す説明図である。
【図8】本発明の導光板における樹脂吸水率及び反り形状の検証例を示す説明図である。
【図9】従来における導光板ライトガイド方式によるディスプレイ装置の構成を示す説明図である。
【図10】従来における導光板ライトガイド方式によるディスプレイ装置の他の構成を示す説明図である。
【図11】従来における導光板ライトガイド方式によるディスプレイ装置の更に他の構成を示す説明図である。
【発明を実施するための形態】
【0027】
(第1の実施の形態)
次に、本発明の導光板及びこれを用いた導光板ライトガイド方式によるディスプレイ装置の実施の形態について図面を参照しながら詳細に説明する。
本実施の形態における導光板及びこれを用いた導光板ライトガイド方式によるディスプレイ装置1は、図1に示すように、バックライトユニット2と画像表示素子としての液晶パネル(液晶表示素子)3とを備えている。
バックライトユニット2は、ランプハウス6と、導光板7を備える。
ランプハウス6は、例えば所定間隔で配列されたLEDからなる複数の光源4と、光源4の背面に配設されていて背面側の出射光を反射させる反射板5とから構成されている。光源4はLEDに限定されることなく、冷陰極管(CCFL)、EL、LED、半導体レーザー等を採用することができる。
【0028】
導光板7は、光源4から進入する光を液晶パネル3と対向する正面7aに導光させるものであり、反射板5内に導光板7の背面7b及び側周面7cが覆われるようにして光源4の光照射方向前方側に配置されている。
液晶パネル3は偏光板9、9間に液晶素子10が挟持されて構成されるもので、この液晶パネル3は導光板7の正面に対向する配設されている。また、拡散板7と液晶パネル3との間には、拡散板7を透過する光を集光及び拡散する光学シート12、13、14が配設されている。
【0029】
図1に示した実施の形態では、光学シート12には、集光効果の高いプリズムシートが用いられる。また、光学シート13、14には光を拡散させる効果の高い拡散シートが用いられる。
このような光学シートの組み合わせは今回の実施の形態に示す組み合わせに限定されることはなく、光学シート12、13、14はすべて同じ光学シートを組み合わせることもでき、またすべて異なる光学シートを組み合わせることも可能である。また光学シートの積層枚数は3枚と限定されることはなく、1枚、もしくは2枚、または4枚以上積層したものでも可能であり、使用される光学シートの種類や積層順序は限定されることはない。また、プリズムシートや拡散シート以外にも集光拡散効果のあるマイクロレンズシートや2方向に形状が付与されているレンズシートなどの組み合わせが考えられ、その種類と積層順序により得られる光学性能が異なってくる。
【0030】
また、光学シートの組み合わせはバックライトユニットの信頼性にも影響する。導光板だけでなく光学シートが大きくうねり、画面内で凹凸が発生するとそれが輝度ムラとなって視認され表示品位が低下する場合がある。光学シートのしわやたわみ対策の例としては、光学シートの最も液晶パネル側の最上面に拡散シートなどの拡散効果の高い光学シートを配置し、輝度ムラを認識し難くさせる方法や、また剛性の高い光学シートを設置し、しわ自体の発生を減少させる方法が一般的である。
以上から光学シートは光学性能、信頼性、コストの観点から自由に組み合わせることができる。
【0031】
次に、本実施の形態に示す導光板7について、導光板の構造を模式的に表した図2を参照して詳細に説明する。
導光板7は、2層構造に積層された厚み及び種類の異なる透光性の第1樹脂層17と第2樹脂層18を有している。
また、第1樹脂層17の第2樹脂層18と反対の面を光出射面17aとして当該光出射面17aには、導光板7の側端面7aに対向配置した光源4から入射する光を閉じ込めるレンチキュラーレンズ形状である第1光学要素15が形成されている。さらに、第2樹脂層18の第1樹脂層17と反対の面18aには、導光板7の側端面7aに対向配置した光源4から入射する光を導光板7の正面(光学要素15側)に導光させ、液晶表示素子方向に光を立ち上げる効果を有するマイクロレンズ形状が凹形状となる、第1光学要素15と異なる形状の第2光学要素16が形成されている。
また、第1樹脂層17と第2樹脂層18に使用されている樹脂の曲げ強さが異なっており、第1樹脂層17に使用されている樹脂は、第2樹脂層18に使用されている樹脂よりも大きい曲げ強さを有している。そして、第1樹脂層17の厚みは、第2樹脂層18の厚みより厚く形成されている。
【0032】
ここで、導光板7に求められる信頼性に関して、図5を用いて説明する。
図5は実際に使用する場合を踏まえ、バックライトユニット2を直立で設置した場合の概略図である。
図5(a)は導光板7がたわみなく支持されており、導光板7と液晶パネル3との距離が一定である。この状態から、光源の点灯や周囲環境の上昇によりバックライトユニット2内の温度が上がると、導光板7は温度差による線膨張により伸びる。すると、図5(b)に示すように、導光板7にはその伸び分を許容するために液晶パネル3側に凸形状の反りが発生する。これは、液晶パネル3側の反対側は反射板5と金属からなる筐体があり、また導光板7は周囲をフレーム等により固定されているため、反射板側に凸形状になる反りは発生しない。導光板の強さは特に圧力が加わったときに引っ張られる側、つまり液晶パネル面側の第1樹脂層17の強さに大きく依存する。そのため、出射面側の第1樹脂層17に使用されている樹脂は、大きい曲げ強さを有していなくてはならない。
【0033】
また、樹脂の曲げ強さは樹脂の分子量と関係しているため、結果的に導光板7に付与される光学要素の賦形性にも影響する。樹脂の分子量が大きいと曲げ強さも強い傾向があるため、導光板7の曲げ強さを大きくするためには樹脂の分子量が大きい樹脂を選ぶことになる。しかし、特に押出法などにより導光板7を作製した場合、樹脂の分子量が大きいと光学要素の形状賦形性が悪化する。これは形状賦形のために樹脂を溶融した際に、分子量が大きいほど硬いため金型ロールを転写し賦形する場合、金型先端まで樹脂が入りにくい傾向があるためである。そのため高い賦形性を実現しようとする場合、樹脂が柔らかい、つまり分子量が小さい樹脂を選定するほうがよい。
【0034】
上述したように、本発明の導光板7は、光出射面側とその反対面に当たるもう一方の面の両面に光学要素15,16が賦形されている。そのうち特に光出射面の反対面に当たるもう一方の面側の光学要素16は導光板7の側端部に配置してある光源4から入射する光の立ち上げ効果を発揮するため、形状が意図した通りに賦形できるかどうかが重要であり、導光板7の光学性能に大きく影響する。導光板7を押出法により作製した場合、光学要素15,16の賦形性は樹脂の分子量に大きく影響される。そのため、より高精度な賦形が必要な導光板7の光出射面との反対面に当たるもう一方の面には曲げ強さが小さく、賦形性のよい樹脂を使用するのが効果的である。
【0035】
また、図3は導光板全体の厚み21に対し、それぞれの樹脂層の厚み分布が面内で一様であることを示している。また図4は導光板全体の厚み21に対し、第1、第2樹脂層17,18の厚み分布が面内で一様でないことを示している。ここで、第1樹脂層17の厚み19は、第2樹脂層18の厚み20よりも厚くなくてはならない。これは本発明の導光板は導光板の剛性を高め、たわみや反りを減少させることを目的としているため、曲げ強さの大きい樹脂を使用している第1樹脂層17の影響を強くするためである。また、本発明の導光板7は第1樹脂層17が第2樹脂層18の厚み20より厚ければ良いが、第1樹脂層17は可能な限り厚いほうが導光板全体の強さを高められるため良い。しかし、第2樹脂層18の厚みが薄すぎると層の厚みが安定せず、成形時の外観不良が生じたり、第2樹脂層18に付与されている光学要素16の形状が安定しないような事態が発生する場合がある。したがって、第1樹脂層17の厚みと第2樹脂層18の厚みは求められる導光板7の強さと成形性を考慮し調整することができる。
【0036】
次に、導光板7の湿度影響による吸湿性について図5を参照して説明する。
図5(a)は導光板7がたわみなく支持されており、導光板7と液晶パネル3との距離が一定である。
一方、図5(b)は導光板7が液晶パネル3側に凸形状の反りを有している。導光板7がたわむことにより、導光板7よりも液晶パネル3側に設置されている光学シート12、13、14も同様にたわみ、液晶パネル3と接触する現象が発生している。液晶パネル3は、圧力が外部から加わると画像に乱れが発生して表示品位が低下する。またさらに強い圧力が加わると液晶パネル3が破損する恐れがあるため、液晶パネル3と導光板7の接触は必ず防がなくてはならない。そこで導光板7の表裏の吸水率を変化させることで反りを制御し、液晶パネル3との接触を防ぐことはバックライトユニットの信頼性を向上させる点で有効である。
【0037】
そのためには導光板7の第1樹脂層17で使用される樹脂の吸水率は、第2樹脂層18で使用される樹脂の吸水率よりも小さいことが好ましい。これはバックライトユニット2を高湿度環境下に設置した場合、導光板7の表裏の吸水率に差を設けることで自重と吸湿性により生じる反りとたわみを可能な限り減少させ、樹脂を一種類のみ使用した場合よりも反り量を低減させることができる。そのため、高湿度環境下で反りとたわみを抑制させるためには、可能な限り吸水率の小さい樹脂を選択するとともに、液晶パネル3側の第1樹脂層17に使用される樹脂は、第2樹脂層18に使用される樹脂よりも小さい吸水率を有するようにすればよい。それにより、液晶パネル3側凸形状の反り量を減少させることができるため、信頼性の向上に繋がる。
【0038】
導光板7を成型する材料としては、光源部から出射される光の波長に対して光透過性を有するものが使用され、例えば、光学用部材に使用可能なプラスチック材料を使用することができる。
この材料の例としては、ポリエステル樹脂、アクリル樹脂、ポリカーボネ−ト樹脂、ポリスチレン樹脂、MS(アクリルとスチレンの共重合体)樹脂、ポリメチルペンテン樹脂、シクロオレフィンポリマー等の熱可塑性樹脂、あるいはポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート等のオリゴマーなどの透明樹脂が挙げられる。また、用途により、透明樹脂中に微粒子を分散させて使用してもよい。
本発明の導光板7の材料はこれらの材料の中から樹脂の屈折率や透明性などの光学性能や、成形性や光学要素の賦形性などから適宜選択できるが、導光板7の剛性を高める観点からは、この中の材料からできる限り曲げ強さが大きい樹脂を選択するのが良い。
【0039】
第1光学要素15に関しては、図2に示したレンチキュラーレンズ形状に限定されることはなく、他の形状が付与されていてもよい。形状の例としては円錐状、多角錐状、円柱状、多角柱状、マイクロレンズ形状の形状が一次元方向、もしくは二次元方向に連なって存在していてもよい。
第1光学要素15は、導光板自体の光の利用効率を高めるための輝度上昇効果や、導光板7の端面から入射した光の直進性を高める光閉じ込め効果、また光出射面側と反対の面側に賦形された第2光学要素16の視認性を低下させる隠蔽性効果など、導光板7に求める性能により光学要素の形状は適宜選択することができる。
また、これらの形状は規則的に配置されていても、不規則的に配置されていても良い。規則的に配置した場合、光学部材の面全体で均一な光学特性を設けることができる。しかし、規則的に配置することにより、導光板7より上に積層される光学シートや、液晶パネルなどの他の部材とのモアレが発生する可能性が生じるため、規則性を充分考慮する必要がある。
【0040】
一方、光学要素の形状を不規則的に配置する場合、規則的に設けた場合に最も懸念されるモアレの課題を解決することができるほか、サイズによる光学要素の配置変更を考慮する必要なく幅広く使用することが可能となる。しかし、不規則的にすることで面内での光学性能が不均一となりムラとなってしまうことがあるため不規則性についても充分考慮する必要がある。
また、第1、第2光学要素の形状はサンドブラストや腐食により粗面化されていてもよい。これは表面を粗面化することで導光板7の表面に傷が付いた場合に目立ち難くする効果や、微小凹凸による拡散効果、また導光板7よりも液晶パネル3側に設置される光学シートなどとの光学密着を防ぐ効果などを得ることができる。
【0041】
また、導光板7の第2樹脂層18に付与された光学要素16に関しては、図2に示したマイクロレンズ形状に限定されることなく、他の形状が付与されていてもよい。形状の例としてはプリズム形状、円錐状、多角錐状、円柱状、多角柱状の形状が一次元方向、もしくは二次元方向に連なって存在していてもよい。もう一方の面側に付与された光学要素は、導光板端面に配置された光源からの光を液晶パネル側に導光させるために非常に重要な役割を果たしており、光学要素の形状は、光源からの光を正面に導光させる光の立ち上げ効果と、光学要素の視認性から適宜選択することができる。
【0042】
また、第1光学要素17の配置に関しては、光源から正面への光の出射効率と、光の輝度分布により配置方法が選択される。図2に示したようにすべて同一形状の光学要素を使用する場合、光学要素1個当たりの光取り出し効果は同じであるため、単位面積当たりに付与されている光学要素17の面積の割合を表す面積率を光源からの距離によって変化させることで正面方向に得られる輝度を可能な限り均一にするように配置される。そのため、同一の形状を使用する場合は、光学要素17は面内で面積率を変化させて配置されるのが一般的である。また、形状の異なる複数の光学要素を使用した場合、光学要素ひとつずつの光取り出し効果が異なるため、配置を導光板面内で統一し、形状を変化させることで正面方向に均一な輝度を得ることが可能となる。
以上のことから、第1、第2光学要素は、光学要素の形状や配置に関して、適宜選択することができる。
【0043】
次に、本発明の導光板の作製方法について述べる。本発明の導光板は共押出法により作製される。
金型ロールに対して各種レンズ形状を有するダイヤモンドバイトを用いて、断面形状が三角形状やレンチキュラーレンズ形状の場合、各種レンズ形状を有するダイヤモンドバイトを使用し金型ロールを切削し各種レンズ形状に対応する部分を作製する。
また、半球状や楕円球状のレンズ形状に対応する部分を有する金型の成形方法の作製方法は、レーザー方式と切削方式が挙げられる。レーザー方式は、金型ロールに表面にブラック樹脂を均一に塗布し、レーザーを照射後、金型ロール全体を酸溶液につけることでレーザー照射部が腐食され光学突起部に対応する部分を成形する方法である。切削方式は、先端形状が非球面形状であるバイトの中心を金型ロールに断続的に押し当て、光学突起部に対応する部分を作製することができる方法である。
【0044】
また、金型ロールの作製方法としては、レーザー方式や切削方式以外にも、サンドブラストを使用する方法やビーズ分散による成形方法がある。
サンドブラスト方式は金型表面に直接ガラスビーズなどを吹きつけ、金型表面に凹凸をつける方法である。またビーズ分散方式は、ガラスビーズを平面状に密に充填させたシートから逆版を作製する方法である。
金型ロールの作製方法は凹凸形状や凹凸の密度、また金型ロールの材料等により適する成形方法が異なるため、求められる表面状態により適宜選択される。金型ロールの作製方法は一方式をのみを採用する必要はなく、2方式以上を採用し作製しても良い。また上記以外の作製方法により作製しても良い。
【0045】
次に、金型ロールを用いて導光板を成形する。導光板は押出法、キャスト法、もしくはインジェクション法で製造することができる。本作製法を使用した場合、厚みは導光板を製作するための板状の部材は、厚みが12μm以上5mm以下で作製する方法ができる。これは厚みが12μm未満では上述した製造方法による加工に耐えうる剛性が無く、厚みが5mmを越えると加工に耐えうる柔軟性がない。しかし本発明の導光板はバックライトユニットに搭載し使用する場合、特に0.5mm以上4mm以下が望ましい。これは導光板の厚みと光源の大きさの関係がバックライトユニットの光学性能に大きく影響するためである。導光板の厚みに対して光源の大きさが大きいと、導光板端面に入射されずに外部に漏れる光の量が多くなり、液晶表示素子へと導光する光が極端に減少するため、バックライトユニットの光学性能が大きく減少することが分かっている。
一方、光源に対して導光板の厚みが厚いと導光板のコストアップとなる。そのため導光板端面に配置する光源のサイズと導光板の厚みは可能な限り同じであることが望ましい。そのため現在の導光板の厚みは信頼性とコストの観点だけでなく、光源のサイズの問題から0.5mm以上4mm以下が使用されている現状がある。
なお、導光板7について代表的な作製例を説明してきたが、上記以外の材料や構造、プロセスなどを使用して作製することも可能である。
【0046】
次に、光学シートの作製方法について説明する。光学シートは本発明の導光板のように金型に押し付けることで成形することができる。
金型ロールの作製方法は、本発明の導光板の際の金型ロール作製方法と同じく切削方式やレーザー方式が挙げられる。ここで、金型の作製方法は切削方式とレーザー方式のどちらを用いてもよく、また両方用いて作製しても良い。また、どちらを先に作製しても良い。金型ロールの作製は上記に述べた方法のみに限定されることはなく、形状や精度により方法は適宜選択されるものとする。
【0047】
次に、金型ロールを用いて光学シート12を成形する。光学シート12は押出法、キャスト法、もしくはインジェクション法で製造することができる。光学シート12を製作するための板状の部材は、厚みが12μm以上1mm以下のものを使用できる。厚みが12μm未満では上述した製造方法による加工に耐えうる剛性が無く、厚みが1mmを越えると加工に耐えうる柔軟性がない。
【0048】
また、光学シート12はUV硬化法で製造してもよい。
UV硬化法で作製される場合、シート状の基材である基部上にUV硬化性の樹脂を塗布し、所望の形状の金型を押し当て、その後にUV照射して基部と光学突部及び光学要素からなる光学シートを得る。
また、2種以上の異なるレンズ形状を有している場合、それぞれの形状を別体として成型してもよいし、一体として成型してもよい。また各種レンズおよび基部を成型する場合には、内部にフィラーなど拡散剤を分散させ、成型することもできる。
また、これらの光学部材の光学要素が形成された面、または反対の面のその両方にハードコートや帯電防止層などの付与層があっても良い。ハードコート層は主に光学シート表面の傷つき防止効果を目的として付与されることが多い。しかし特にハードコート層を出射面、もしくは入射面のどちらか一方に設けた場合、線膨張率が異なるために反り等が発生する原因になる。特に筐体内では温度差が大きく、反りが発生しやすいため環境特性を充分考慮する必要がある。
【0049】
光学部材12を成型する材料としては、光源部から出射される光の波長に対して光透過性を有するものが使用され、例えば、光学用部材に使用可能なプラスチック材料を使用することができる。
この材料の例としては、ポリエステル樹脂、アクリル樹脂、ポリカーボネ−ト樹脂、ポリスチレン樹脂、MS(アクリルとスチレンの共重合体)樹脂、ポリメチルペンテン樹脂、シクロオレフィンポリマー等の熱可塑性樹脂、あるいはポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート等のオリゴマー又はアクリレート系等からなる放射線硬化性樹脂などの透明樹脂が挙げられる。また、用途により、透明樹脂中に微粒子を分散させて使用してもよい。
【実施例】
【0050】
以下、実施例について説明する。
(実験1:曲げ強さと信頼性検証)
本実験での導光板の樹脂は曲げ応力の異なる三菱レイヨン製アクリル樹脂2種を使用した。樹脂Aは曲げ強さ95MPa、24時間浸漬時の吸水率0.3%、樹脂Bは曲げ強さ140MPa、24時間浸漬時の吸水率0.3%である。これらの樹脂を使用し、層構成が単層、2層、3層である導光板を作製し、両面の形状の賦形性評価、曲げ強さ評価、信頼性評価を実施した。
出射面側の光学要素として幅150μm、高さ50μmのレンチキュラーレンズ形状を全面に配置し、第1、第2光学要素として直径50μm、高さ20μmのマイクロレンズ形状を光源からの距離に対して面積率を変化させて配置した導光板を作製した。第1、第2光学要素の形状賦形に関して金型ロールは切削方式によりレンチキュラーレンズ形状に対応する溝を形成した。精密切削機に金型ロールをセットし、先端にレンチキュラーレンズ形状を有するダイヤモンドバイトで切り込むことにより、下地表面にレンチキュラーレンズ形状を有する導光板を成形するための金型ロールを作製した。また、第1、第2光学要素のマイクロレンズ形状は、切削方式によりマイクロレンズ形状に対応する形状を形成した。精密切削機に金型ロールをセットし、非球面形状であるバイトの中心を金型ロールに断続的に押し当て、マイクロレンズ形状に対応する部分を作製した。以上のように作製した。
【0051】
出射面側に配置されるレンチキュラーレンズ形状に対応する金型ロールを、図6に示すように、金型押圧ロール37に設置した。また第1、第2樹脂層に形成されるマイクロレンズ形状に対応する金型ロールを、金型形成ロール36として押出機35に設置した。アクリル樹脂Aのみ、またはアクリル樹脂Bのみ、またその両方の樹脂を溶融し、押出機35によって成形し、当該アクリル樹脂が冷却されて硬化する前に金型形成ロール36と金型押圧ロール37によってそれぞれ成形し、第1樹脂層にはレンチキュラーレンズ形状を有し、第2樹脂層にはマイクロレンズ形状を有する導光板をそれぞれ得た。導光板の厚みはすべて2.0mmである。
【0052】
(比較例1の作製)
樹脂Aのみを使用し作製した導光板を比較例1とした。
(比較例2の作製)
樹脂Bのみを使用し作製した導光板を比較例2とした。
(実施例1の作製)
出射面側の第1樹脂層に樹脂Aを使用し、出射面側と反対の第2樹脂層に樹脂Bを使用した2層構成からなる導光板を作製し、実施例1とした。このときそれぞれの層の厚みは第1樹脂層と第1樹脂層の厚みが8:2となるように調整した。
(比較例3の作製)
出射面側の第1樹脂層に樹脂Bを使用し、出射面側と反対の第2樹脂層に樹脂Aを使用した2層構成からなる導光板を作製し、比較例3とした。このときそれぞれの層の厚みは第1樹脂層と第2樹脂層の厚みが8:2となるように調整した。
(比較例4の作製)
樹脂Aと樹脂Bを使用し、3層構成の導光板を作製した。最表面側に樹脂Aを使用し、内部に樹脂Bを使用し作製した導光板を比較例4とした。このときそれぞれの層の厚みは出射面側から1.5:7:1.5となるように調整した。
(比較例5の作製)
樹脂Aと樹脂Bを使用し、3層構成の導光板を作製した。最表面側に樹脂Bを使用し、内部に樹脂Aを使用し作製した導光板を比較例5とした。このときそれぞれの層の厚みは出射面側から1.5:7:1.5となるように調整した。
【0053】
(実験1:光学要素賦形性評価方法)
出射面側に配置したレンチキュラーレンズ形状と、出射面側と反対の面側に配置したマイクロレンズ形状が導光板上にどの程度賦形されているかどうか確認した。レンチキュラーレンズ形状とマイクロレンズ形状はキーエンス製レーザー顕微鏡を用いて観察し、設計値に対して実際に導光板上に賦形されている光学要素の形状の大きさの割合を示した賦形率の数値で表した。賦形率は99%以上の場合は合格(○)、賦形率99%未満は不合格(×)である。
(実験1:曲げ強さ・信頼性評価方法)
LG製23インチモニターに作製した導光板を設置し、さらにその導光板の上にきもと製拡散シート2枚、3M製プリズムシートの計3枚の光学シートを積載した。そして液晶パネルの代替としてガラス板をセットした。ガラス板には導光板の距離を確認できるように画面中心に2cm四方の穴が開いている。モニターを実際に使用する直立状態で環境試験機に投入し、試験機内を60℃95%に設定した。24時間後にガラス板中心の穴から導光板を観察し、液晶パネル代替のガラスと導光板が接触しているかどうか確認した。ガラス板と導光板が接触していない場合は合格(○)、ガラス板と導光板が接触している場合は不合格(×)である。
また作製した導光板について曲げ強さを測定した。曲げ強さの測定はJIS K7171に準拠して実施した。
【0054】
(実験1:評価結果)
図7に実験1の評価結果を示す。賦形性に関しては、出射面側に設けた光学要素であるレンチキュラーレンズ形状は、樹脂Aと樹脂Bともに100%の賦形性であった。しかし出射面側と反対面側に設けた光学要素であるマイクロレンズ形状は樹脂Aでは賦形性100%であったが、樹脂Bを使用した場合賦形率はいずれも80%で以下であり、賦形性は不合格(×)であった。また賦形性に関しては、層構成は影響しなかった。
次に、信頼性については比較例2の導光板と、実施例1の導光板のみ60℃95%24時間環境で液晶パネル代替として設置したガラス板との接触はなかった。それ以外の導光板に関しては、60℃95%24時間環境下で液晶パネル代替として設置したガラス板と接触し、またその後20℃65%の常温環境下で2時間放置しても、接触した状況のままであった。
以上から、形状賦形性と信頼性の両方で良好な結果が得られた導光板は実施例1のみであった。
【0055】
(実験2:樹脂吸水率と反り形状検証)
本実験では曲げ強さと吸水率の異なる樹脂を用意し、2層構成の導光板を作製し、導光板反り形状の検証を実施した。樹脂Aは三菱レイヨン製アクリル樹脂であり、曲げ強さ95MPa、24時間浸漬時の吸水率0.3%である。樹脂Bは三菱レイヨン製アクリル樹脂であり、曲げ強さ140MPa、24時間浸漬時の吸水率0.3%である。樹脂CはPSジャパン製ポリスチレンであり、曲げ強さ105MPa、24時間浸漬時の吸水率0.1%である。これらの樹脂を使用し、2層構成の導光板を作製し、反り形状の検証を実施した。
出射面側と、出射面側と反対のもう一方の面側に付与した光学要素は実験1と同形状であり、出射面側の光学要素として幅150μm、高さ50μmのレンチキュラーレンズ形状を全面に配置し、出射面側ともう一方の面側の光学要素として直径50μm、高さ20μmのマイクロレンズ形状を光源からの距離に対して面積率を変化させて配置した導光板を作製した。金型の作製方法、および導光板の作製方法は実験1と同様である。導光板の厚みはすべて2.0mmである。
(実施例2の作製)
樹脂Aと樹脂Cの2種類の樹脂を使用し、2層構成からなる導光板を作製した。出射面側には吸水率0.1%の樹脂C、出射面との反対面には吸水率0.3%の樹脂Aを使用した。このときそれぞれの層の厚みは出射面側の樹脂層ともう一方の面側の樹脂層の厚みが8:2となるように調整した。
(比較例6の作製)
樹脂Bと樹脂Cの2種の樹脂を使用し、2層構成からなる導光板を作製した。出射面側には吸水率0.3%の樹脂B、出射面と反対面には吸水率0.1%の樹脂Cを使用した。このときそれぞれの層の厚みは出射面側の樹脂層ともう一方の面側の樹脂層の厚みが8:2となるように調整した。
【0056】
(実験2:反り形状評価方法)
環境試験機内の平面板上に実施例1、実施例2、比較例6の導光板をそれぞれ出射面側が下になるように設置し、導光板端部の平面板からの距離を定規により測定した。測定位置は導光板の4隅の4箇所と、長辺および短辺の中心の4箇所からなる計8箇所である。そのうちもっとも平面板からの距離が大きい場所をその導光板の反り量の数値として記録した。
次に、環境試験機内を60℃95%の高温高湿度環境に設定し、24時間後に同様の測定を実施し、さらに常温常湿環境20℃65%に2時間放置した際に同様の測定を実施した。
【0057】
(実験2:評価結果)
実験2の評価結果について図8に示す。環境試験機稼動前の導光板の反り量の初期値はすべて0mmであった。その後高温高湿度環境60℃95%に24時間放置した後の反り量は実施例2がもっとも良く試験中は2mm、その後の常温環境戻しで1mmと、実施例1、比較例6と比較し、反り量が少なく、良好な結果が得られた。
【符号の説明】
【0058】
1…ディスプレイ装置
2…バックライトユニット
3…液晶パネル
4…光源
5…反射板
6…ランプハウス
7…導光板
9…偏光板
10…液晶素子
12、13、14…光学シート
15…第1光学要素
16…第2光学要素
17…第1樹脂層
18…第2光学要素
19…第1樹脂層の厚み
20…第2樹脂層の厚み
21…導光板全体の厚み
35…押出機
36…金型形成ロール
37…金型押圧ロール

【特許請求の範囲】
【請求項1】
入射光を表示要素に向けて導光する導光板であって、
2層構造に積層された厚み及び種類の異なる透光性の第1樹脂層と第2樹脂層を有し、
前記第1樹脂層の前記第2樹脂層と反対の面である光出射面に第1光学要素が形成され、
前記第2樹脂層の前記第1樹脂層と反対の面に第2光学要素が形成され、
前記第1樹脂層は前記第2樹脂層よりも大きい曲げ強度を有する、
ことを特徴とする導光板。
【請求項2】
前記第1、第2光学要素は、一次元方向または二次元方向に配列された凹凸形状を呈していることを特徴とする請求項1記載の導光板。
【請求項3】
前記第1樹脂層の厚みは、前記第2樹脂層の厚みより厚いことを特徴とする請求項1または2記載の導光板。
【請求項4】
前記第1樹脂層に使用している樹脂材の吸水率は、前記第2樹脂層に使用されている樹脂材の吸水率よりも小さいことを特徴とする請求項1乃至3に何れか1項記載の導光板。
【請求項5】
前記第1樹脂層と第2樹脂層は、押出加工により作製されることを特徴とする請求項1乃至4に何れか1項記載の導光板。
【請求項6】
光源と、請求項1乃至5に何れか1項記載の導光板とを備える、
ことを特徴とするバックライトユニット。
【請求項7】
前記光源は冷陰極管、LED、ELもしくは半導体レーザーであることを特徴とする請求項6記載のバックライトユニット。
【請求項8】
画素単位での透過/遮光に応じて表示画像を規定する液晶表示素子と、請求項6または7記載のバックライトユニットとを備える、
ことを特徴とするディスプレイ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−51135(P2013−51135A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2011−188673(P2011−188673)
【出願日】平成23年8月31日(2011.8.31)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】