説明

心臓電位分布図の体表面測定値との相関

【課題】多電極胸部パネルを用いて、少数の心内膜上の点と多数の外部受信点との間の行列関係を構築することにより信頼性の高い心内膜電位分布図を得ること。
【解決手段】行列を反転させることにより、心内膜電位分布図が作成できる情報が得られる。その後、多電極胸部パネルを使い、新しい電気信号を行列関係に加え、再び行列を反転することで新しい心内膜電位分布図を非侵襲的に得る。

【発明の詳細な説明】
【開示の内容】
【0001】
〔関連出願との相互参照〕
本出願は、2006年9月6日出願の米国仮出願第60/824,680号の優先権を主張するものであり、その開示は参照して本明細書に組込まれる。
【0002】
〔発明の背景〕
〔発明の分野〕
本発明は、心臓不整脈の診断および治療に関する。また更に特定すれば、本発明は心臓不整脈(cardiac arrhythmias)の診断、およびその心臓組織の切除療法(ablative therapy)に使用する心臓の電位分布図作成法(electrical mapping)の改良に関する。
【0003】
〔関連技術の説明〕
体表心電図(ECG)検査技術(body surface electrocardiographic techniques)にもとづく非侵襲性心臓内電位分布図作成(noninvasive mapping of electrical potentials in the heart)法が知られている。これらの方法は、心内膜面(endocardial surface)上ばかりでなく心外膜面(epicardial surface)上の電位の3次元マップを得るために3次元撮像をECGデータと組み合わせている。
【0004】
文献、モードレ(Modre)等による、「ペーシングされたリズムデータの非侵襲性心房活性化マッピング("Atrial Noninvasive Activation Mapping of Paced Rhythm Data")」、ジャーナル・オブ・カルディオバスキュラー・エレクトロフィジオロジー14(J. Cardiaovasc. Electrophysiology 14): 712〜719 (2003年7月)には、磁気共鳴画像(MRI)とECGマッピングデータとにもとづく心臓表面モデル活性時間(AT)撮像法(surface heart model activation time (AT) imaging approach)が述べられている。心内膜および心外膜表面のマッピングはこのような方法でおこなわれた。ATパターンは心房電位のCARTO(商標)マップと比較された。外部の解剖学的マーカー(External anatomic markers)を使って、内部のマッピングの後にカテーテルの先端を体表面上のマーカー位置に移動させて、CARTOデータをMRI座標システムに適用した。心房内のAT撮像は限局性不整脈(focal arrhythmias)患者の心房活動の非侵襲性撮像に有用ではないかと言われている。
【0005】
〔発明の概要〕
本発明の実施例において、心臓の電位マッピングを二つの手法、即ち侵襲性が比較的高い手法と侵襲性のより低い手法でおこなっている。一実施例においては、侵襲性の高い手法によるマップはカテーテルマッピングシステムによる心臓内(endocardial)マップである。複数のより侵襲性の低い手法によるマップは、体表ECGにもとづいて非侵襲的な方法で得ることができる。これらの手法の代わりあるいはそれらと組み合わせて、より侵襲性の低い手法によるマップを、胸壁を通して心膜内に挿入したカテーテルなどの心外膜接触プローブ(epicardial contact probe)を使って、得ることもできる。このより侵襲性の低い手法によるマップは、上述のModre等による文献に述べられているように、心内膜上の電位も示すが通常は心外膜(epicardium)上の電位を示す。侵襲性の低い手法によるマップは、心臓の外部で得たデータにもとづくもので、ときには心内膜の情報を含むこともあるが心外膜上の電位がマッピングの主な対象である。
【0006】
心内膜および心外膜の電位分布図の特徴は、解剖学的標識点および/あるいはそれら分布図の電気的特徴を使って互いに位置合わせすることができる。この位置合わせの目的は、二つの電位分布図の電気的特徴の対応あるいは相関を確定することである。一旦相関が確定されれば、電気的変換関数を以後反復される心外膜マッピングに適用して、侵襲性心内膜マッピングを繰返す必要なしに心内膜の新しい電位分布図を作成できる。
【0007】
本発明の態様によれば、少数の心内膜電位測定値と比較的多数のECGチャンネルを使って患者固有の心内膜電位の時空間分布図を作成する。なお、後者は体表電位分布図として得られる。さらに、時空間心外膜電位分布図が推定できる。
【0008】
例えば、本発明の方法を使って非侵襲性または心膜方法(epicardial approaches)による不整脈の切除治療の事後観察ができる。治療後は、その治療が成功したかどうかを調べるために心外膜の電位分布図の作成を繰返すだけでよい。心外膜の電位分布図で観察される変化は、治療結果を確認するために心内膜の電位分布図上に投影することができる。
【0009】
本発明の方法は、同じ様に測定し作図できる心臓の他の特性についての心内膜および心外膜のマップを関連付けるのにも使用することができる。
【0010】
本発明の実施例は、カテーテルなどのプローブを、生存している被験者の心臓の心室に挿入して、心臓の電位分布図を作成する方法を提供する。プローブは少なくとも一つの電極を有し、また第1位置センサーを備えてもよい。心臓内の少なくとも一つの送信点で少なくとも一つの電極から電気信号を発射し、少なくとも一つの受信点で受信する。典型的には、複数の、送信点と受信点とがある。受信点は被験者の体内でも体外でもよい。この方法は、さらに送信点に対して相対的な受信点の位置を求め(locate)、また発射された電気信号と受信された電気信号との間の線形行列関係などの関数関係を計算して行なう。この計算は、発射された電気信号と受信された電気信号との間の線形行列関係を規定する測定リードフィールド行列(measured lead field matrix)を求め、また測定リードフィールド行列から反転リードフィールド行列(inverted lead field matrix)を計算することにより行なう。あるいは、反転リードフィールド行列は、測定リードフィールド行列を明白に計算することなく求めることができる。この方法は、さらに、同じあるいは他の受信点で電気生理学的信号を受信し、また反転リードフィールド行列を電気生理学的信号に加えて心内膜の電位分布図を得ることにより行なう。
【0011】
本方法の一態様では、受信点を第2位置センサーと関連付け、また、第1位置センサーおよび第2位置センサーを読み、第1および第2位置センサー間の差を求めることにより、送信点に対して相対的な受信点の位置を求める。
【0012】
本発明のさらに他の態様では、カテーテルは少なくとも二つの電極を有し、電気信号は電極の異なるサブセットから発射される。発射された信号は、時分割多重化あるいは周波数分割多重化されてもよい。
【0013】
本方法のさらに他の態様によれば、電極はユニポーラー電極(unipolar electrode)である。さもなければ、電極はバイポーラー(bipolar)でもよい。
【0014】
本方法の一態様では、インピーダンスは受信点と送信点のサブセットとの間で測定される。
【0015】
本方法の他の態様では、送信点のサブセットの間で発生した電気ダイポール(dipole)から信号を受信する。
【0016】
本方法のさらに他の態様では、電気信号を発射するステップと、発射された電気信号を受信するステップと、測定リードフィールド行列を求めるステップと、反転リードフィールド行列を計算するステップとを、被験者の呼吸周期の所定のフェーズ(phase)に対して行なう。
【0017】
本方法のさらに他の態様では、電気信号を発射するステップと、発射された電気信号を受信するステップと、測定リードフィールド行列を求めるステップと、反転リードフィールド行列を計算するステップとは、被験者の心臓周期の所定のフェーズに対して行なう。
【0018】
本方法の一態様は、胸郭の解剖学的画像を得るステップと、解剖学的画像を使用して胸郭の有限要素モデルを作成するステップと、有限要素モデルのパラメータを調整して計算されたリードフィールド行列を測定されたリードフィールド行列に整合させるステップと、を含む。
【0019】
本方法のさらに他の態様では、反転リードフィールド行列は測定リードフィールド行列を正規化することで計算される。正規化は、反転リードフィールド行列のゼロ空間を取除くことで行なわれる。
【0020】
本発明の他の態様は、本方法を実施する装置を提供する。
【0021】
本発明のより良く理解するために、本発明の詳細説明は例示として参照され、添付図面と共に読まれるものであり、図面では同じ構成要素には同じ参照番号が付けられている。
【0022】
〔発明の詳細な説明〕
以下の説明において、本発明の完全な理解のために多くの具体的な詳細事項を述べる。しかし、これらの具体的な詳細事項なしでも本発明を実施できることは当業者には明らかであろう。他の場合、周知の回路、制御論理(control logic)および従来のアルゴリズムとプロセスのためのコンピュータプログラム命令の詳細は、本発明の理解を不必要にむずかしくしないために示されていなかった。
【0023】
実施例1
最初に本発明の実施例に従って構成され動作するシステム20を示す図1を参照する。システム20を使って、解剖学的ならびに電気的データを得るため、またカテーテル22を使用して組織の切除するために使用するために、プローブあるいはカテーテル22の位置を求める。心内膜の電位分布図作成時、カテーテル22は公知の血管内を通す方法で被検者26の心臓24の心房内に配置される。心外膜の電位分布図を得るために、カテーテル22を、心臓24を囲む囲心腔に経皮的に挿入してもよい。さもなければ、さらに詳しく後述するように心外膜の電位分布図を非侵襲的な方法で得ることもできる。典型的な心臓マッピング法および装置が、米国特許第5,471,982号、同第5,391,199号、同第6,226,542号、同第6,301,496号および同第6,892,091号、ならびにPCT特許出願公開第WO94/06349号、同第WO96/05768号および同第WO97/24981号に記載されており、これらの開示は参照して本明細書に組込まれる。例えば、米国特許第5,391,199号には心臓の電気的活動を検出するための電極と、外部から印加した磁界に対するカテーテルの相対的位置を求めるミニチュアコイルとの両方を備えたカテーテルが述べられている。このカテーテルを使えば、複数位置での電気的活動を測定しそれらの位置の空間座標を求めることでデータを一組のサンプルポイントから短い時間で収集できる。
【0024】
つぎに、カテーテル22(図1)の実施例の遠位端部44の平面図である図2について述べる。遠位端部44はその先端48に心臓組織の電気的特性を測定するための電極46を備えている。電極46は、ユニポーラー電極またはバイポーラー電極でもよい。電極46は、例えば刺激電位分布図作成(pace mapping)などの診断目的で、および/あるいは、例えば欠陥のある心臓組織の切除などの治療目的で電気信号を心臓に送ることにも使える。カテーテル22の遠位端部44には遠磁界(far field)電気信号を測定するための非接触電極(non-contact electrodes)54の配列52を随意で備えている。配列52は、非接触電極54を遠位端部44の長軸に沿って直線的に配列した、直線状配列である。カテーテル22の遠位端部44には体内における少なくともカテーテルの位置を測定するための信号を発生する少なくとも一つの位置センサー(location sensor)56が含まれている。いくつかの実施例では、体内でのカテーテルの向き(orientation)も測定される。位置センサー56は先端48に隣接するのが好ましい。カテーテル22のこの実施例は、上述の米国特許第6,892,091号にさらに詳しく記載されている。
【0025】
図1を再び参照すると、カテーテル22の遠位端部44内の電極およびトランスデューサーは、ケーブル58でカテーテル22の挿入チューブを通って制御プロセッサ28(図1)に接続され、この制御プロセッサは、信号をカテーテル22に送る信号発生器29と、画像処理装置21と、EKG処理装置27とを含むシステム20の他の要素を制御する。制御プロセッサ28は便宜上一つの装置として示してある。しかし、制御プロセッサは本明細書に述べるさまざまな処理をおこなう複数の処理機構として構成できる。制御プロセッサ28は、心臓24の特定な標識点あるいは特徴に対するカテーテル22の相対的な位置座標を求める。制御プロセッサ28は表示装置40を駆動し、表示装置は体内のカテーテルの位置を示し、またシステムにより作成した機能的な電位分布図(functional maps)を表示する。制御プロセッサ28は、通常カテーテル22の先端に配置される切除トランスデューサー(ablation transducers)も駆動する。カテーテル22を使って解剖学的画像または心内膜の電位分布図を作成する。さらに、カテーテルの電極を切除に使用することもできる。システム20は、アメリカ合衆国カリフォルニア州91765ダイヤモンド・バー、ダイヤモンド・キャニオン・ロード、3333所在のバイオセンス・ウエブスター社(Biosense Webster, Inc., 3333 Diamond Canyon Road, Diamond Bar, CA 91765, U.S.A.)から市販されているCARTO(商標)XP EP誘導および切除システム(CARTOTM XP EP Navigation and Ablation System)でよく、これはさらに詳細に後述する本発明のいくつかの特徴を実現するように適当に改造される。
【0026】
本発明のいくつかの実施例において、心外膜電位分布図は、3個の電極が代表的に図示されているが、複数の体表電極31を使って非侵襲的に得ることができるが、非侵襲の手法を用いる場合には正確な心外膜電位分布図を得るためにもっと大きな電極配列が通常は必要であることが当該分野では知られている。電極31は、多電極胸部パネル(multi-electrode chest panels)に適宜に取付けることができ、これは以下の文献のいずれにも述べられており、それらは参照して本明細書に組込まれる。即ち、ランスベリ(Ransbury)等による米国特許出願公開第2004/0015194号、シッペンスグロウネべーゲン(Sippensgroenewegen)による米国特許出願公開第2001/0056289号、ラマナタン(Ramanathan)等によりインターネット上のネイチャー・メディスン(Nature Medicine)で発表された「心臓の電気生理学および不整脈のための非侵襲心電図撮像(Noninvasive Electrocardiographic Imaging for Cardiac Electrophysiology and Arrhythmia)」、および前述のモードレ(Modre)等による文献である。電極31は、ケーブル33により制御プロセッサ28に接続され、そしてEKG処理装置27に連結される。
【0027】
電極31は被検者の体内に位置することもできる。例えば、それらの電極は、食道誘導(esophageal leads)されるものであってもよいし、または、一時的にもしくは長期にわたって冠状静脈洞(coronary sinus)もしくは心外膜などの領域に配置される電極とすることもできる。
【0028】
上述の心膜内技術(intrapericardial technique)を使って、心外膜の電位分布図を得ることができる。この方法は、心内膜の電位分布図を得るための上述した血管内カテーテル法(intravascular catheterization technique)よりもっと侵襲性が低い。またこの手法はカテーテル22として心外膜接触プローブを用い、このプローブは既知の挿入技術を使って胸壁を介して心膜内に挿入される。
【0029】
いずれにしても、心外膜電位分布図は心内膜の電位も示すが、典型的には、心外膜上の電位を示す。しかし、主要なデータは心臓の外部から得られるので、本明細書では用語「心外膜電位分布図」(epicardial electrical map)を使う。
【0030】
表示装置40に接続されている画像処理装置21を使って、心内膜および心外膜の電位分布図の特徴(features)を解剖学的標識点および/あるいは分布図の電気的特徴にもとづいて互いに位置を合わせる。この位置合わせの目的は、二つの電位分布図の電気的特徴間の変換関数(transformation function)、本明細書では変換(transform)とも呼ぶ、を確定することである。一旦変換が確定されれば、それ以後に得られる心外膜電位分布図を新しい心内膜電位分布図に変換できる。いくつかの実施例では、この変換は心外膜電位分布図を心内膜電位分布図上に投影するだけで(by a simple visual projection)おこなうことができる。あるいは、新しい心内膜電位分布図を得るために新しい心外膜電位分布図を数学的に変換することもできる。
【0031】
ある実施例で用いた適当な位置合わせ技術が、本願と同じ譲受人の米国特許第6,650,927号に記載されており、この特許は参照して本明細書に組込まれる。この技術について簡単に説明する。
【0032】
心外膜電位分布図と心内膜電位分布図は3次元の分布図でありうる。これら電位分布図の位置合わせは、本願と同じ譲受人の米国特許出願第11/215,435号、名称「生理学的データを利用するマルチモーダル画像の分割および位置合わせ」(Segmentation and Registration of Multimodal Images using Physiological Data)に述べられている方法を使っておこなうことができ、この特許出願は参照して本明細書に組込まれる。
【0033】
実施例2
本発明の実施例に従って構成され動作するシステム106を示す図3を参照する。システム106はシステム20(図1)と同様のものである。しかし、被検者26は複数、通常約125から250個の電極110を備えた体幹ベスト(torso vest)108を着せられており、これらの電極はベスト108内部に配置されて被検者26の体幹の前部、後部および側部にわたって電位測定値を得る。電極110はリード線112およびケーブル33を介して制御プロセッサ28に接続されている。制御プロセッサ28は、体幹ベスト(torso vest)108からのデータを受信し処理をするように変更されている。
【0034】
制御プロセッサ28は、本特許出願の譲受人に譲渡された2005年1月7日出願の米国特許出願第11/030,934号に述べられているようにインピーダンス検出のための電気回路系を含み、この特許出願の開示は参照され本明細書に組込まれる。システムは、少数の心内膜上の点と電極110との間のインピーダンス測定値にもとづいてそれらの関数関係を得るように変更されている。ある実施例では、この関係は本明細書でリードフィールド行列(lead field matrix)と呼ぶ、係数の線形多次元行列(linear multidimensional matrix)である。この行列の逆行列を、例えば米国特許出願公開第2003/0120163号(ヨーラム・ルディ(Yoram Rudy)等)に述べられているように推定する。なおこの出願公開の開示は参照して本明細書に組込まれる。この開示では、逆行列は心外膜の電位に対応する。しかし、システム106では上記行列の逆行列は心内膜のコンダクタンス分布図に対応するもので、これは従来技術を超える進歩である。いままでは、外部測定値と心内膜電位との間の変換関数(transfer function)を確実に測定できなかった。これは、電界が心筋内の線維筋性組織(fibromuscular tissue)を横切るからである。上述したように、そのような組織の量と向きは個々人で違う。あるいは、システム106のいくつかの実施例ではリードフィールド行列およびその逆行列は心外膜のコンダクタンスに基づくマップに関係することがある。リードフィールド行列の逆転をさらに詳細に後述する。
【0035】
心内膜上の1点だけを使うことができる。受信点(receiving point or points)は被検者の内部でも外部でもよい。例えば、1個あるいは複数の食道誘導(esophageal leads)、冠状静脈洞電極、心外膜あるいは心筋内電極でも受信点として利用できる。
【0036】
つぎに、図4を参照するが、これは本明細書に開示する本発明の実施例による体幹ベスト108を示す胸郭114の簡略化した断面図であり、胸郭の周りに電極110が配されている。図4は右心房116も示し、また心内膜上の3点118、120および122を示す。後述するように、心内膜上の点118、120および122に位置されたカテーテル電極と電極110との間でインピーダンス測定を行なう。いくつかの例では、心外膜上に位置された電極(図4には示されていない)と電極110との間でもインピーダンスを測定する。
【0037】
つぎに、図5を参照するが、これは本明細書に開示する本発明の実施例による体幹ベスト108の詳細を示す簡略図である。体幹ベスト108は、電極110と符合一致できる分散したストレス点(distributed stress points)124を含むように構成される。しかし、そのような符合一致は便宜上のことであり、必要条件ではない。ストレス点124は、所定の自由度を有する柔軟性のあるスプライン(splines)126で接続している。スプライン126により、体幹ベスト108が胸郭114(図4)の寸法形状にぴったり合うようになる。体幹ベスト108は、電極110を含む座標系における基準点である少なくとも一つの位置センサー128を有する。このような位置センサーの使用は、本願と同じ様に譲渡された米国特許出願第2004/0068178号の位置探索システム(locating system)について教示されており、この米国特許出願の開示は参照して本明細書に組込まれる。位置センサー128により、医療処置時に電極110の位置の追跡ができ、また差分計算(difference computations)することで心臓内電極と関連付けることができる。電極110が心内膜上の点に対して相対的に配置できるかぎりは、位置センサー128は必須のもではない。
【0038】
つぎに、図6を参照するが、これは本発明の他の実施例による心内膜および心外膜電位分布図をたがいに関連付ける方法のフローチャートである。図6に示されている処理ステップのシーケンスの多くは、当業者には明らかなように例示的であり変更することができる。
【0039】
最初のステップ130では、被験者に体幹ベスト108を装着し、制御プロセッサ28(図3)に接続する。前述の米国特許出願公開第2003/0120163号に述べられているように、体表心外膜電位分布図(body surface epicardial electrical map)を作成する。
【0040】
ステップ132では、心臓にカテーテルを挿入し、再度体幹ベスト108(図3)上の電極110を使って限定された(limited)インピーダンス分布図を作成する。普通は、心内膜上の点118、120、122(図4)などの少数の点を使って限定されたインピーダンス分布図を得る。
【0041】
ステップ134では、心臓の解剖学的画像を得る。これは予め得る、即ち最初のステップ130およびステップ132を行なう同じセッションで得ることができる。実際に、もし患者がコンピュータ断層撮影(CT)あるいは心筋潅流(myocardial perfusion)SPECT(単一光子放出型コンピュータ断層撮影)時に体表電極の「ベスト」を着けているならば、解剖学的画像を公知の技術、例えば超音波撮影法でほぼリアルタイムで随意に得ることができる。しかし、上述の様にして得たインピーダンスデータで、一般的なボディモデルの作成および一般的なボディモデルからさらに個々の患者別のモデルの展開に十分なことがよくある。
【0042】
ステップ136では、前述の米国特許出願公開第2003/0120163号に記載の行列ソリューション技術(matrix solution techniques)を応用して、心内膜上の点118、120、122と電極110(図3)のそれぞれとの間のコンダクタンスを、心臓周期(cardiac cycle)のさまざまな時点で測定してインピーダンス分布図を作成する。
【0043】
ステップ138では、最初のステップ130とステップ132で作成した分布図を組み合わせて、そしてステップ134で得た解剖学的画像と位置合わせをする。このステップは、体表心外膜電位分布図を詳細な組み合わせ心内膜電位分布図に変換するものである。
【0044】
ステップ140は随意選択ステップである。ある用途では、心室の部分的な情報を得ることが重要である。ステップ140では、分布図を分割して一つあるいはそれ以上の領域マップ(regional maps)を作成する。画像分割および部分的なデータを得るための画像処理技術は当該技術分野では周知で、このステップではなにか適当な方法を用いればよい。
【0045】
ステップ142では、心臓に対する切除療法(ablative therapy)を従来どおり行なう。つぎに、ステップ144では、最初のステップ130およびステップ132、136、138で述べた電位分布図作成および処理を繰返して新しい詳細な心内膜電位分布図を得て、切除を検証する。切除を検査する技術は公知で、例えば本願と同様に譲渡された米国特許出願第11/357,512号、名称「ペーシングによる損傷アセスメント」(Lesion Assessment by Pacing)に記載されており、その出願の開示は参照して本明細書に組込まれる。
【0046】
最後のステップ146では、上述の処理につづいて一度あるいは複数回、新しい体表心外膜電位分布図を最初のステップ130で説明したようにして作成する。つぎに、ステップ132、134で得たものと同じ解剖学的画像と限定的なインピーダンス分布図(limited impedance map)とを使って、長期モニタリング用に一つあるいはそれ以上の新しい合成心内膜電位分布図を作成する。この新しい電位分布図は、上述したように随意に分割できる。ベストの電極は、最初の電位分布図における位置とは通常一致しないが、心内膜上の点に対するベストの電極の相対的な位置がわかる限り、処理は有効である。
【0047】
全般的な動作
つぎに、図7を参照するが、これは本明細書に開示した本発明の実施例に従う、図6で述べた方法のさらなる実施の詳細を示す簡略化した図面である。電極152を有する多電極胸部パネル150を着けた被験者の胸郭の断面図148を示す。心臓内のカテーテル154は、心室156内の所定位置にある。カテーテル154は、位置センサー158と複数の電極160とを有する。ジェネレータ162が電極160を刺激する。信号が電極152内で検出され受信機164に送られる。受信機164に接続されているプロセッサ166が心室156と電極152との間のコンダクタンスを測定し、限定された心内膜コンダクタンス分布図を作成する。電極152の数にくらべて比較的少ない電極160、従って比較的少ない心臓内の点を使ってコンダクタンスあるいはインピーダンス測定値を得ることが分かるであろう。
【0048】
心室156の心内膜表面上の点168からの信号と電極152が受信した信号との間に行列の関係(matrix relationship)が確定できる。点168それぞれの正確な位置は、カテーテル挿入中の位置センサー158に対して測定される。後述する技術および前述のルディ等の文献に記載の技術などいろいろな技術を利用して行列を逆転させることにより、電極152における信号が分かれば心室156内の点168における電位を計算することができる。心臓周期および呼吸周期中ならびにカテーテル回収後のいろいろな時点でこの計算をすることで、時間と共に変化する心室156の心内膜電位分布図を作成できる。この分布図は、複数電極胸部パネル内の電気信号を測定し、それら信号を同じ調整された行列の係数として適用し、行列の逆転を繰返す、あるいは測定した信号を前回逆転した行列に直接加える、だけでその後の処理においても再生できる。
【0049】
この方法は、従ってカテーテル先端からの情報を統合する。まず、測定した心内膜の電位を、「測定リードフィールド行列(measured lead field matrix)」を呼ばれることもあるリードフィールド行列の要素に加える。つぎに、カテーテルの先端とベストの電極との間のインピーダンス測定値を使って、リードフィールド行列を更新する。カテーテルが移動するにつれて、その位置を連続して追跡し、心内膜電位用およびリードフィールド行列用にさらに測定値を累積する。これらの測定値を使ってリードフィールド行列に対する逆の解(inverse solutions)を累進的に改善する。
【0050】
心室156の心内膜表面上の点168からの信号と電極152が受信した信号とのあいだの、信頼性のある線形行列関係の確立が、ときどき再生し前回のものと比べることができる有効な心内膜(あるいは心外膜)電位分布図を得るためには必要である。「逆問題」(inverse problem)として知られるこの問題は、空間の曖昧さ(spatial ambiguity)が本質的に存在するとゆう意味で複雑であることが知られている。従来は、心内膜電位に適用した数学的な処理は画像の解像度を悪くする傾向があった。心外膜電位を使って逆問題を解くと妥当な結果が得られるが、心外膜への適用では画像が不鮮明となる。この問題は、患者によって異なる心筋の線維性の構造によりさらに複雑になっている。これを処理するには、MRIあるいはCTスキャンから簡単に推定できないテンソル−インピーダンス(tensor-impedance)モデルが必要である。
【0051】
順問題
「順問題(forward problem)」は、所与の電源配列に対する所与の電気および誘電特性(導電率)を有する媒体における電位を求めるプロセスである。この問題は、唯一つの解を持つ線形行列式(linear matrix equation)となる。
【数1】

ここで、
Aは、変換行列(リードフィールド行列)、

は、電流源あるいは心内膜および心外膜電位または膜貫通型の電位(transmembrane potentials)、さらに、

は、体表ベストで測定した電位の配列、即ち体表電位分布図である。
【0052】
モデルにもとづいた方法
ある方法では、一般的な人間の体組織の導電率およびMR/CTモデルの分割が特徴づけられる。リードフィールド行列を、有限要素法(FEM)ソルバー(solver)を使って計算する。機械あるいは電気モデルは、行列A、即ち
【数2】

に影響を与える主要な要素

を示すある程度の自由をもっている。
【0053】
主要な要素

は、観察野内の臓器の幾何学的位置あるいはサイズおよびさまざまな組織の割合でよい。臓器および組織の導電率は個々の患者で異なる。例えば、線維方向(fiber direction)は心筋内の導電率テンソル(conductivity tensor)の方向に影響を与える。モデルは、リードフィールド行列に反映されるこれらの差を特徴付けることで、改善され患者固有のものとなる。
【0054】
注入信号による測定値を使って主要な要素


を最適化するので、FEMの解は以下のようになる。
【数3】

ここで

は、位置

(その時点で接地されている基準座標系内)に配置されたカテーテルに注入した電流である。

は、点源(point source)

に対するFEMソルバーにより計算されたインピーダンス行列である。一組の機械的あるいは電気的モデルパラメータ(model parameters)

に対して、値

は、受信位置の組における測定電圧を示すベクトルである。測定値はインピーダンス測定値でもよい。あるいは、それらの値は電気ダイポール(electrical dipoles)からの信号にもとづくリードフィールド行列の測定値でもよい。そのようなダイポールは、カテーテル内の二つの隣接する電極間の電圧差を確定することで得ることができる。もし電極が適当に配列されているならば、ダイポールを三つの直交する方向に向けることができる。
【0055】
測定したインピーダンス

に対する最適化は式4で与えられる。
【数4】

パラメータ

の組の候補としては、臓器のサイズ、導電率、線維方向(fiber direction)および異方性比(anisotropy ratio)がある。公知の最適化サーチアルゴリズム(optimization search algorithms)、例えば遺伝的アルゴリズム(genetic algorithms)、焼きなまし法(simulated annealing)、および神経ネットワーク(neural networks)、あるいはそれらの混成などを使ってパラメータ

の組の値を求めることができる。そのような最適化の例がD.ファリーナ(D. Farina)、O.スキパ(O. Skipa)、C.カルトワッサー(C. Kaltwasser)、O.デュッセル(O. Dossel)、およびW.R.バウアー(W. R. Bauer)による「最適化にもとづく心臓の消磁の再現"Optimization-based reconstruction of depolarization of the heart"」(2004年アメリカ合衆国シカゴにて開催された第31回プロシーディング・コンピュータ・イン・カルディオロジーにて発表(Proc. Computers in Cardiology, Chicago, USA, 2004, 31)), 第129〜132頁(129-132)に述べられている。
【0056】
ダイポールにより発生した電位は、リードフィールド行列に加えると単一電圧源と同じ作用をする。ある場合には、心臓の電気的活動を、強度および指向性パラメータが心臓周期全般にわたって変化する心筋全体にひろがる一組のダイポールとして記述するのがより便利である。
【0057】
パラメータ

の組を使うと、患者の解剖学的構造(patient's anatomy)を正確に表わすためにFEMモデルを較正できる。心臓内部から信号を発生すると、心筋の特性、即ち線維方向についての仮定の正確さ、に関する重要な情報が得られる。その信号で他の診断情報も得られる。虚血性、創痕およびステント関連組織は、通常の導電性とは著しくずれていることがある。この方法のさらなる利点は、それ自体診断情報として価値のある可視化された心筋インピーダンス分布図である。これに付け加えるか、またはそれとは別に、カテーテルを心外膜上に配置してもよく、そして信号を心外膜リードを介して注入できる。このようにして処置を行なえば、外部表示値にもとづいて心臓の心外膜電位分布図を作成できる。以下の説明は、心内膜電位分布図に関するが、必要な変更を加えて心外膜電位分布図作成にも適用できる。もし所望ならば、本明細書に開示する原理を適用することで、心外膜の電位を心内膜の信号に関連させる変換行列を得ることができる。
【0058】
さもなければ、電流を二つの隣り合う心臓内の電極を通して与えて、それにより電流ダイポールの働きを真似る。このようにして、リードフィールド行列Aのいくつかの行列要素を直接測定できる。この方法を用いて最初のリードフィールド行列を更新でき、あるいはこの方法を用いてMRIまたはCTデータセットなしでリードフィールド行列Aが構成できる。いずれの場合でも、生体電気源(bioelectric sources)から発生する電流ダイポールの代わりに注入された電流による信号を使って体表電位分布図(BSPM)を作成する。
【0059】
逆問題の数学的な解は、呼吸により劣化する。この劣化は、呼吸周期の一時点、例えば呼息の終わり(end expiration)にデータ収集をゲート制御する(gating)ことにより最小限にすることができる。しかし、呼吸周期全体にわたってデータ収集をし、呼吸周期のフェーズに対し補正される呼吸に依存するリードフィールド行列を構成するのが望ましいこともある。これを行なえば、逆問題に対する解の質が著しく向上する。
【0060】
本発明者等は、行列の逆転に固有の技術的な問題を解決する方法を発見した。信号をいろいろな組み合わせで、通常は心室内に配置された比較的少数のソースに注入し、それらの信号を受信点で測定することにより、リードフィールド行列を正確に列ごとに求めることができる。この計算を、行列の未知の係数と同じ数の心臓内電極の異なる組み合わせを使って繰返す。勿論、係数の数は心臓内電源と外部リード(external leads)の数により決まる。
【0061】
多電極カテーテル、例えばバイオセンス・ウエブスター社から発売されているPEN−TARAY(商標)高密度マッピング・カテーテル(High-Density Mapping Catheter)を使うならば、カテーテルは静止しているが心内膜電位が多くの点で測定される。これによれば、体幹ベストを使用する測定を迅速に行なうことができる。
【0062】
つぎに、図8を参照するが、これは本明細書に開示する本発明の実施例による順行列の展開のための方法を示す図である。式1は図8の上部に行列形式182として示してある。心室184内の二つあるいはそれ以上のソース、例えば電極160(図7)を使って電気信号を加える。図8の下部に示すように、この信号は図の上部のベクトル188に対応するベクトル186として表わされている。図の上部のベクトル192に対応するベクトル190として表わされている複数のインピーダンス測定値はソースと体幹194上の複数の外部リード、例えば電極152(図7)との間で得る。これにより、リードフィールド行列198の一つの列196を確定できる。図8の例では、列196はリードフィールド行列198の最左端の列200である。ソース信号の位置を繰返し変えることにより、あるいは多要素マッピングカテーテル(multi-element mapping catheter)の場合にはソース信号の組み合わせを変えることにより、行列方程式が生成され解かれる。同時に、リードフィールド行列198の係数が高い精度で求められ、雑音は注入した信号の比較的大きな絶対値により圧倒される。
【0063】
つぎに、図9を参照するが、これは本明細書に開示する本発明の実施例による信号注入で測定したリードフィールド行列を確定する上述の方法を示すフローチャートである。最初のステップ202では、患者に体幹ベストを装着し位置探索プロセッサ(location processor)、例えばシステム106(図3)に連結している心臓マッピングカテーテルを患者に挿入することで、患者の準備がなされる。マッピングカテーテルが複数の電極を備えていることが望ましい。これにより、カテーテルを心臓内で過剰に誘導することなく十分なソースを使えるので、処置がはかどる。リードフィールド行列を確定するために必要な測定値の数が記録される。
【0064】
つぎに、ステップ204では少なくとも二つの心臓内ソースリードの組み合わせを選択する。心臓の解剖学的な基準となる特徴に対するこれらのソースの位置は、システム106の位置探索処理機能により正確に知ることができる。
【0065】
ステップ204で、当業者には明らかなように、リードフィールド行列の算出を適切に調整して、ユニポーラリード(unipolar leads)を使うこともできる。
【0066】
つぎに、ステップ206では電流源リード(current source leads)を使って電気信号を注入して電気ダイポールを生成する。この信号の適当な値は1〜100kHzで1〜10mAである。これらの信号は定電圧または定電流信号でよい。
【0067】
つぎに、ステップ208ではステップ206で選択したソースリードと体幹ベストの各リードとの間のインピーダンス測定値を記録する。インピーダンスは本願と同様に譲渡された米国特許出願公開第2007/0060832号、名称「皮膚インピーダンスの検出」の教示を利用して測定でき、この出願公開は参照して本明細書に組込まれる。電気ダイポールを使用する実施例では、ダイポールの位置および向きは体幹ベストのリードで決定される。
【0068】
つぎに、制御は判断ステップ210に進み、測定値がもっと必要かどうかを判断する。もし判断ステップ210の判断が肯定ならば、制御はステップ204に戻って他のソースを選ぶ。
【0069】
判断ステップ210の判断が否定であれば、制御が最終ステップ212に進む。行列方程式が解かれ、リードフィールド行列値が報告される。
【0070】
上述したように、図8および9で述べた測定は呼吸周期に対してゲート制御される。さらに、測定は心臓周期に対してゲート制御される。これらの周期中にさまざまな点での測定を繰返すことにより、時間と共に変化する個々の患者固有のリードフィールド行列の組が所望の時空間解像度(spatiotemporal resolution)で得ることができる。
【0071】
有限要素モデルを考えると、パラメータの最適化が必要なことを思い出すであろう。最終ステップ212を行なった後、そして信頼性のあるリードフィールド行列が得られれば、最適化アルゴリズムを適用して式3におけるパラメータ

を、得られた患者固有の有限要素モデルにおけるモデリングエラーが大幅に減少した実際のリードフィールド行列に整合(conformity)させて確定できる。従って、逆問題の解をはるかに高い信頼度で展開できる。最終的には、患者の心臓内の電気生理学的活動を示すほぼ完全な画像を、呼吸周期によりアーチファクトを生じることなく少数の初期の心臓内測定値から作成できる。これらの「4次元」画像は、例えば治療を評価するために時々繰返すことができる。以後のマッピングにおける受信点は最初のマッピングにおける受信点と同じである必要は無いこと、またそれらの点の最初の送信点あるいは最初の受信点に対する相対的な位置が、例えば基準座標で同一であればよいことに注意すべきである。反転したリードフィールド行列の新しい受信点への適用は有効なままである。
【0072】
実施例3
【数5】

式5における記法は式4の場合と同じである。式4で記述したモデルにもとづく最適化技術を用いて、リードフィールド行列自体を明白に計算することなく反転リードフィールド行列

を直接求める。
【0073】
実施例4
つぎに、図10を参照するが、これは本明細書に開示する本発明の実施例に従う3次元の患者固有の心臓電気解剖モデル(cardiac electroanatomic model)を生成する方法の機能ブロック図である。この機能図は、システム106(図3)を特化し、実施例1、2、3について上述した技術と装置を利用し、図9に関して述べた方法を用いることで実施できる。
【0074】
最初に、3次元解剖学的患者モデル214を、従来の3次元解剖学的撮像法を使って機能グループ216で作成する。これはステップ134(図6)と類似しているが、モデルは通常心臓自体以外に胸の臓器と組織も含む。機能グループ218は、被験者体内の既知の座標を有する電気信号の行列を展開し、この行列は機能ブロック219でモデル214と合体される。
【0075】
機能グループ220において、電気解剖学的マップを実施例1で述べたように心臓へのカテーテル挿入中に作成する。このマップは、アメリカ合衆国カリフォルニア州91765ダイヤモンド・バー、ダイヤモンド・キャニオン・ロード、3333所在のバイオセンス・ウエブスター社から市販されているCARTO XP EP誘導および切除システムを使って得ることができる。
【0076】
カテーテルを挿入している間、機能グループ222において図9で述べた方法を行なう。測定したインピーダンス配列を機能ブロック224で計算する。その配列はブロック226に適用される。この配列を使って機能ブロック226のモデル214を改善し、従ってモデル228に寄与する。つぎに、機能ブロック230においてモデル228を使って逆問題を解き、FEMパラメータ(式3、4、5)を最適化する。通常、以下に述べる逆問題は機能グループ222によるデータの提供以前にブロック230において最初に解かれ、そして最初の電気解剖学的画像が機能ブロック232で作成される。最初の解において、心内膜電位と随意の心外膜電位の事前に用意した電気解剖学的画像の組を機能ブロック232で作成してもよい。その後、機能グループ222の利点を含めてから改良された画像が機能ブロック234で作成される。機能グループ222により提供されたデータの他の効果は、機能ブロック236におけるリードフィールド行列の計算である。これは、機能ブロック224で測定した行列と繰り返し比べられ、式3、4、5を解くための最適化アルゴリズムを利用してFEMを向上する。
【0077】
図10に記述したシステムオペレーションを使って、リードフィールド行列の心臓周期cc(t)の間の心臓の動きへの依存は、呼吸パラメータr(t)を決めることにより求めることができる。この技術は最終的にカテーテル挿入処理をスピードアップし、不整脈および梗塞の診断を向上し、心臓の介入治療(cardiac interventional therapies)の成果を向上する。
【0078】
逆問題
図6および7で述べた方法とシステムを使うことによる主要な目的は、「逆問題(inverse problem)」として知られている、少数の心内膜電位と多くの体表測定値にもとづく心内膜における電源の計算である。式1において、測定した信号のベクトル

は既知である。上述したように、リードフィールド行列Aは患者のMRIあるいはCTスキャンを用いていくつかの順方向計算を解くことにより計算することができる。つぎに、ソースを記述するベクトル

を次式から求める。
【数6】

【0079】
数学的には、リードフィールド行列Aの逆行列

を見つける必要がある。不幸なことに、この問題は悪条件問題(ill-posed)である。行列Aは、消えることのないゼロ空間を有し、即ちこのゼロ空間に属しそして雑音より小さい電位

を生むいろいろなベクトル

を見つけることができる。ベクトル

とゼロ空間外のベクトルとのすべての線形結合は同じ電位

を生じ、従って式1の解である。さらに、行列Aの係数は、個別の導電率が未知のため或る不確定性を持っている。
【0080】
正規化による解
正規化は、逆転のゼロ空間が切り捨てられる逆問題についての周知の方法である。最もよく使われる方法は、最小のノルム(できるだけ小さいソース)で解を選択するゼロのチホノフの新しい因子(Tikhonov new factor of zero)によるチホノフ正規化(Tikhonov regularization)である。
【0081】
リードフィールド行列を上述した方法で測定するときに逆転の質を良くする主要な要因が二つある。第1は、信号対雑音比が注入信号の大きさにより向上する。ECG膜貫通型電位は約10mVで継続時間が比較的短いが、一方発生した信号はおよそ数ボルトで継続時間はずっと長い。従って、平均化技術を使って信号対雑音比をさらに改善できる。二桁の改善も簡単に達成できる。これにより、より小さいエネルギー固有値が有効に解に参加でき最終的に観察する心内膜電位の信頼度が向上する。第2に、多数の心臓内ソースを用いるので行列の質が向上する。この目的のために、多素子マッピングカテーテル(multi-element mapping catheter)と多数の受信電極を有する体幹ベストの使用が望ましい。
【0082】
本発明はこれまで特に図示し説明してきたことに限定されないことは当業者には分かるであろう。むしろ、本発明の範囲には従来技術には無くまた本明細書を読めば当業者が思いつく本発明の変形変更ばかりでなく、上述したさまざまな特徴の組み合わせとサブコンビネーションも含まれる。
【0083】
〔実施の態様〕
(1)生存している被験者の心臓の電位分布図を作成する方法において、
少なくとも一つの電極を有するプローブを前記心臓の心室に挿入するステップと、
前記心臓内の少なくとも一つの送信点で前記電極から電気信号を発射するステップと、
前記発射された電気信号を少なくとも一つの受信点で受信するステップと、
前記少なくとも一つの送信点に対して相対的な前記受信点の位置を求めるステップと、
前記発射された電気信号と前記受信された電気信号との間の関数関係を求めるステップと、
電気生理学的信号を新しい受信点で受信するステップと、
前記関数関係を前記電気生理学的信号に適用して心内膜電位分布図を得るステップと、
を含む、方法。
(2)実施態様1に記載の方法において、
前記関数関係は、測定された反転リードフィールド行列である、方法。
(3)実施態様2に記載の方法において、
前記被験者の胸郭の解剖学的画像を得るステップと、
前記解剖学的画像を使用してパラメータを有する前記胸郭の有限要素モデルを作成するステップであって、前記有限要素モデルが計算された反転リードフィールド行列を有する、ステップと、
前記パラメータを調整して前記計算された反転リードフィールド行列を前記測定された反転リードフィールド行列に整合させるステップと、
をさらに含む、方法。
(4)実施態様1に記載の方法において、
前記電気生理学的信号を受信する前記ステップ、および前記関数関係を適用する前記ステップを行う前に、前記プローブを前記被験者から取除くステップ、
をさらに含む、方法。
(5)実施態様1に記載の方法において、
前記少なくとも一つの受信点は、前記被験者の体外にある、方法。
(6)実施態様1に記載の方法において、
前記少なくとも一つの受信点は、前記被験者の体内にある、方法。
(7)実施態様1に記載の方法において、
前記プローブは、少なくとも二つの電極を有し、
電気信号の発射は、前記電極の異なるサブセットを使って前記電気信号を時分割多重化することにより行なわれる、方法。
(8)実施態様1に記載の方法において、
前記プローブは、少なくとも二つの電極を有し、
電気信号の発射が、前記電極の異なるサブセットを使って前記電気信号を周波数分割多重化することにより行なわれる、方法。
(9)実施態様1に記載の方法において、
前記電極は、ユニポーラー電極である、方法。
(10)実施態様1に記載の方法において、
前記電極は、バイポーラー電極である、方法。
(11)実施態様1に記載の方法において、
電気信号を発射する前記ステップ、前記発射された電気信号を受信する前記ステップ、および前記関数関係を求める前記ステップは、前記被験者の呼吸周期の所定のフェーズに対して行なわれる、方法。
(12)実施態様1に記載の方法において、
電気信号を発射する前記ステップ、前記発射された電気信号を受信する前記ステップ、および関数関係を求める前記ステップは、前記被験者の心臓周期の所定のフェーズに対して行なわれる、方法。
【0084】
(13)生存している被験者の心臓の電位分布図を作成する方法において、
第1位置センサーおよび少なくとも一つの電極を有するカテーテルを、前記心臓の心室に挿入するステップと、
前記心臓内の複数の送信点で前記電極から電気信号を発射するステップと、
前記発射された電気信号を前記被験者の体外にある複数の受信点で受信するステップと、
前記送信点に対して相対的な前記受信点の位置を求めるステップと、
測定されたリードフィールド行列を求め前記発射された電気信号と前記受信された電気信号との間の線形行列関係を求めるステップと、
前記測定されたリードフィールド行列から反転リードフィールド行列を計算するステップと、
電気生理学的信号を前記受信点で受信するステップと、
前記反転リードフィールド行列を前記電気生理学的信号に適用して心内膜電位分布図を得るステップと、
を含む、方法。
(14)実施態様13に記載の方法において、
前記受信点を求める前記ステップは、
前記受信点を第2位置センサーと関連付けるステップ、ならびに、
前記第1位置センサーおよび前記第2位置センサーを読み前記第1および第2位置センサー間の差を求めるステップ、
を含む、方法。
(15)実施態様13に記載の方法において、
前記カテーテルは、少なくとも二つの電極を有し、
電気信号の発射は、前記電極の異なるサブセットで行なわれる、方法。
(16)実施態様13に記載の方法において、
前記電極は、ユニポーラー電極である、方法。
(17)実施態様13に記載の方法において、
前記電極は、バイポーラー電極である、方法。
(18)実施態様13に記載の方法において、
前記発射された電気信号を受信する前記ステップは、前記受信点と前記送信点のサブセットとの間のインピーダンスを測定することにより行なわれる、方法。
(19)実施態様13に記載の方法において、
前記発射された電気信号を受信する前記ステップは、前記送信点の前記サブセットの間で発生する電気的ダイポールにより生じる信号を測定することにより行なわれる、方法。
(20)実施態様13に記載の方法において、
電気信号を発射する前記ステップ、前記発射された電気信号を受信する前記ステップ、測定されたリードフィールド行列を求める前記ステップ、および反転リードフィールド行列を計算する前記ステップは、前記被験者の呼吸周期の所定のフェーズに対して行なわれる、方法
(21)実施態様13に記載の方法において、
電気信号を発射する前記ステップ、前記発射された電気信号を受信する前記ステップ、測定されたリードフィールド行列を求める前記ステップ、および反転リードフィールド行列を計算する前記ステップは、前記被験者の心臓周期の所定のフェーズに対して行なわれる、方法
(22)実施態様13に記載の方法において、
前記被験者の胸郭の解剖学的画像を得るステップと、
前記解剖学的画像を使用してパラメータを有する前記胸郭の有限要素モデルを作成するステップであって、前記有限要素モデルは、計算されたリードフィールド行列を有する、ステップと、
前記パラメータを調整して前記計算されたリードフィールド行列を前記測定されたリードフィールド行列に整合させるステップと、
をさらに含む、方法。
(23)実施態様13に記載の方法において、
反転リードフィールド行列を計算する前記ステップは、前記測定されたリードフィールド行列を前記反転リードフィールド行列のゼロ空間を取除くことにより正規化するステップを含む、方法。
【0085】
(24)生存している被験者の心臓を撮像するシステムにおいて、
撮像装置と、
信号発生器と、
前記被験者に着せる体幹ベストに接続されたプロセッサであって、
前記体幹ベストは、複数の受信器、および第1位置センサーを備え、
前記プロセッサは、前記撮像装置、前記信号発生器、および前記心臓に挿入されるように構成されたマッピングカテーテルに接続され、
前記マッピングカテーテルは、マッピング電極を有し、
前記プロセッサは、前記第1位置センサーを読んで前記受信機に対して相対的な前記マッピング電極の位置を求めるように動作し、
前記プロセッサは、前記信号発生器に電気信号を順次前記マッピング電極へと送らせるように、また前記マッピング電極に順次前記電気信号を前記心臓内の異なる送信点から発射させるように動作する、
プロセッサと、
を含み、
前記発射された電気信号は、前記受信器を介して受信電気信号として前記プロセッサに送られ、
前記プロセッサは、
それぞれの位置での前記発射された電気信号と前記受信された電気信号との間の線形行列関係を規定する測定されたリードフィールド行列を求め、
前記測定されたリードフィールド行列から反転リードフィールド行列を計算し、
前記反転リードフィード行列を適用して前記受信器で受信した前記被験者の電気生理学的信号を処理することで、前記電気生理学的信号から心内膜電位分布図を作成し、さらに前記心内膜電位分布図を前記撮像装置上に表示する、
ように動作する、システム。
(25)実施態様24に記載のシステムにおいて、
前記マッピングカテーテルは、少なくとも二つのマッピング電極を有し、
前記信号発信器は、前記電気信号を前記マッピング電極の異なるサブセットに順次送ることにより、前記発射された電気信号を作るように動作する、システム。
(26)実施態様24に記載のシステムにおいて、
前記プロセッサは、前記被験者の呼吸周期の所定のフェーズで前記測定されたリードフィールド行列を求めるように動作する、システム。
(27)実施態様24に記載のシステムにおいて、
前記プロセッサは、前記被験者の心臓周期の所定のフェーズで前記測定されたリードフィールド行列を求めるように動作する、システム。
(28)実施態様24に記載のシステムにおいて、
前記プロセッサは、
前記被験者の胸郭の解剖学的画像を受取り、
前記解剖学的画像を使って、パラメータを有する前記胸郭の有限要素モデルを作成し、前記有限要素モデルは、計算されたリードフィールド行列を有しており、さらに、
前記パラメータを調整して前記計算したリードフィールド行列を前記測定されたリードフィールド行列に整合させる、
ように動作する、システム。
(29)実施態様24に記載のシステムにおいて、
前記プロセッサは、前記反転リードフィールド行列のゼロ空間を取除くことにより、前記測定されたリードフィールド行列を正規化することで前記反転リードフィールド行列を計算するように動作する、システム。
【図面の簡単な説明】
【0086】
【図1】本明細書に開示した本発明の実施例に従って構成され動作する、複数の心臓電位分布図を関連付けるためのシステムのハイ・レベル図である。
【図2】図1に示すシステムに使用するカテーテルの遠位端部の平面図である。
【図3】本明細書に開示した本発明の他の実施例に従って構成され動作する、心内膜および心外膜電位分布図を関連付けるためのシステムを示す図である。
【図4】本明細書に開示した本発明の実施例に従う、胸郭の簡略化した断面図で、体幹ベスト(torso vest)と胸郭の周りに配された電極とを示す。
【図5】本明細書に開示した本発明の実施例に従う、図4の体幹ベストの詳細を示す略線図である。
【図6】本発明の他の実施例に従う、心内膜および心外膜電位分布図を関連付けるための方法のフローチャートである。
【図7】本明細書に開示した本発明の実施例に従う、心内膜および心外膜電位分布図を関連付けるための方法の態様を示す略線図である。
【図8】本明細書に開示した本発明の実施例に従う、順行列問題(forward matrix problem)を解くための手法を示す図である。
【図9】本明細書に開示した本発明の実施例に従う、リードフィールド行列を信号注入により求める方法のフローチャートである。
【図10】本明細書に開示した本発明の実施例に従う、3次元の患者固有の心臓の電気解剖学的モデルを作成するための方法を示す機能ブロック図である。

【特許請求の範囲】
【請求項1】
生存している被験者の心臓の電位分布図を作成する方法において、
少なくとも一つの電極を有するプローブを前記心臓の心室に挿入するステップと、
前記心臓内の少なくとも一つの送信点で前記電極から電気信号を発射するステップと、
前記発射された電気信号を少なくとも一つの受信点で受信するステップと、
前記少なくとも一つの送信点に対して相対的な前記受信点の位置を求めるステップと、
前記発射された電気信号と前記受信された電気信号との間の関数関係を求めるステップと、
電気生理学的信号を新しい受信点で受信するステップと、
前記関数関係を前記電気生理学的信号に適用して心内膜電位分布図を得るステップと、
を含む、方法。
【請求項2】
生存している被験者の心臓を撮像するシステムにおいて、
撮像装置と、
信号発生器と、
前記被験者に着せる体幹ベストに接続されたプロセッサであって、
前記体幹ベストは、複数の受信器、および第1位置センサーを備え、
前記プロセッサは、前記撮像装置、前記信号発生器、および前記心臓に挿入されるように構成されたマッピングカテーテルに接続され、
前記マッピングカテーテルは、マッピング電極を有し、
前記プロセッサは、前記第1位置センサーを読んで前記受信機に対して相対的な前記マッピング電極の位置を求めるように動作し、
前記プロセッサは、前記信号発生器に電気信号を順次前記マッピング電極へと送らせるように、また前記マッピング電極に順次前記電気信号を前記心臓内の異なる送信点から発射させるように動作する、
プロセッサと、
を含み、
前記発射された電気信号は、前記受信器を介して受信電気信号として前記プロセッサに送られ、
前記プロセッサは、
それぞれの位置での前記発射された電気信号と前記受信された電気信号との間の線形行列関係を規定する測定されたリードフィールド行列を求め、
前記測定されたリードフィールド行列から反転リードフィールド行列を計算し、
前記反転リードフィード行列を適用して前記受信器で受信した前記被験者の電気生理学的信号を処理することで、前記電気生理学的信号から心内膜電位分布図を作成し、さらに前記心内膜電位分布図を前記撮像装置上に表示する、
ように動作する、システム。
【請求項3】
請求項2に記載のシステムにおいて、
前記マッピングカテーテルは、少なくとも二つのマッピング電極を有し、
前記信号発信器は、前記電気信号を前記マッピング電極の異なるサブセットに順次送ることにより、前記発射された電気信号を作るように動作する、システム。
【請求項4】
請求項2に記載のシステムにおいて、
前記プロセッサは、前記被験者の呼吸周期の所定のフェーズで前記測定されたリードフィールド行列を求めるように動作する、システム。
【請求項5】
請求項2に記載のシステムにおいて、
前記プロセッサは、前記被験者の心臓周期の所定のフェーズで前記測定されたリードフィールド行列を求めるように動作する、システム。
【請求項6】
請求項2に記載のシステムにおいて、
前記プロセッサは、
前記被験者の胸郭の解剖学的画像を受取り、
前記解剖学的画像を使って、パラメータを有する前記胸郭の有限要素モデルを作成し、前記有限要素モデルは、計算されたリードフィールド行列を有しており、さらに、
前記パラメータを調整して前記計算したリードフィールド行列を前記測定されたリードフィールド行列に整合させる、
ように動作する、システム。
【請求項7】
請求項2に記載のシステムにおいて、
前記プロセッサは、前記反転リードフィールド行列のゼロ空間を取除くことにより、前記測定されたリードフィールド行列を正規化することで前記反転リードフィールド行列を計算するように動作する、システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−68084(P2008−68084A)
【公開日】平成20年3月27日(2008.3.27)
【国際特許分類】
【外国語出願】
【出願番号】特願2007−230556(P2007−230556)
【出願日】平成19年9月5日(2007.9.5)
【出願人】(500520846)バイオセンス・ウェブスター・インコーポレイテッド (75)
【氏名又は名称原語表記】Biosense Webster, Inc.
【住所又は居所原語表記】3333 Diamond Canyon Road, Diamond Bar, California 91765, U.S.A.
【Fターム(参考)】