説明

応力腐食割れ監視方法及びその監視装置

【課題】応力腐食割れの発生確率を精度良く求められる応力腐食割れ監視方法を提供する。
【解決手段】応力腐食割れ監視装置18の電極1a,1b,2を、原子力プラントの炉水と接する構造部材の近傍で炉水中に配置する。電極2には応力が付与されている。電極1aと電極2間の電圧信号を入力するエレクトロメータ5は電位ノイズを求める。電極1bと電極2間に流れる電流信号を入力する無抵抗電流計6は電流ノイズを求める。電位ノイズ及び電流ノイズはA/D変換器7でディジタル信号に変換されてパーソナルコンピュータ8に入力される。パーソナルコンピュータ8は、両ノイズ情報を基に、電極2表面の酸化皮膜のボイド移動速度Jm’を求める。このボイド移動速度Jm’、及び予め求められたボイド移動速度Jm’とSCC発生確率との相関を用いて、原子力プラントの炉水と接する構造部材のSCC発生確率を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、応力腐食割れ監視方法及びその監視装置に係り、特に、沸騰水型原子力発電プラントに適用するのに好適な応力腐食割れ監視方法及びその監視装置に関する。
【背景技術】
【0002】
原子力発電プラントの機器及び配管等の構造部材は、ステンレス鋼及びニッケル基合金等は構造材料で構成されている。これらの構造材料は、特定の条件の下では応力腐食割れ(以下、SCCと称する)の感受性を示す。そこで、SCCの防止策が、原子炉の健全性を維持するために適用されている。また、近年では原子炉の設備利用率の向上と、長寿命化のような経済性向上の観点からもSCCの予防策が適用されている。
【0003】
SCC防止策には、材料の耐食性向上、応力の改善あるいは腐食環境の緩和を目的としたものが適用されている。沸騰水型原子炉(BWR)では、構造部材が曝されている原子炉冷却水(炉水)の腐食環境の改善に基づくSCC対策の一つとして、水素注入が国内外で広く行われている(例えば、特許第2687780号公報及び特開2005−43051号公報参照)。炉水は、原子炉圧力容器内で冷却水の放射線分解により生成された、腐食の原因となる酸素及び過酸化水素を含んでいる。酸素及び過酸化水素を含む冷却水が、腐食環境を形成している。
【0004】
構造材料の腐食電位(以下、ECPという)が腐食環境の指標として用いられている。R.L.Cowanらの“Experience with hydrogen water chemistry in boiling water reactors”, Water chemistry of nuclear reactor systems 4, 1, p29, BNES (1986)によれば、ECPが−300から−200mV vs. SHE程度の値より低くなると応力腐食割れの発生が抑制されることが知られている。
【0005】
水素注入は、水素を注入した給水を原子炉圧力容器内に供給することによって炉水に水素を添加し、この水素を炉水に含まれる酸素及び過酸化水素と反応させて水に戻すことにより、ECPを低下させてSCCの発生を抑制する技術である。
【0006】
そして、水素注入時のECPの低下を促進させる技術である、例えば特開平4−223299号公報に示された技術が知られている。この技術は、炉水に白金族貴金属元素を注入する貴金属注入である。この貴金属注入は、注入された白金族貴金属元素が有する水素の電気化学反応への触媒作用を利用して、水素注入時におけるECPをさらに低下させる。
【0007】
これらの従来技術では、SCC効果を評価するために構造材料のECPを精度良く知る必要がある。そこで、原子炉圧力容器内あるいは原子炉圧力容器に接続された配管に腐食電位センサを設置し、構造材料のECPを測定することが行われている。このECPを測定する例が、特開平4−84754号公報、特開平7−72110号公報、特開2005−221381号公報及び特表2002−532681号公報に記載されている。
【0008】
特開平4−84754号公報は、ニューラルネットモデルを用いた応力腐食割れの有無を推定することを記載している。すなわち、測定対象部に複数の電極を設置し、これらの電極間に流れる電流をニューラルネットモデルに入力して学習させ、この学習結果に基づいてニューラルネットモデルを用いた応力腐食割れの有無を推定する。
【0009】
特開平7−72110号公報は、原子炉容器に設けられた貫通管(または貫通部材)内に電気化学センサを設置する応力腐食監視装置を記載している。この電気化学センサは、貫通管から絶縁された複数の電極を有し、貫通管の内面及び電極が電気化学検出セルを構成しており、そして、貫通管の内面及び電極にそれぞれ接続された信号導体が接続される検出回路を有する。検出回路は、貫通管の劣化度を電気化学的活動度の関数として評価する。
【0010】
特開2005−221381号公報は、腐食監視方法を説明している。この腐食監視方法は、設備の検査対象箇所に複数の電極を有する測定電極を設置し、この測定電極によって検査対象箇所の電気化学ノイズ抵抗を測定し、その設備の腐食状況を把握する方法である。
【0011】
特表2002−532681号公報は、電気化学的ノイズ腐食測定システムを記載している。この電気化学的ノイズ腐食測定システムは、作用電極、対向電極及び参照電極を測定システムに接続し、この測定システムが、作用電極と参照電極の間の電位を監視し、作用電極と対向電極の間の電流を監視している。
【0012】
SCCは、ECPだけでなく、炉水に含まれる不純物、特に硫酸イオンの影響を強く受ける。M.Sambongiらは、“Effects of Reactor Water Impurities on ECP and SCC”, 1998 JAIF International Conference on Water Chemistry in Nuclear Power Plants, p343 (1998)において、ECPが同じであっても、炉水中の不純物濃度が高いほど、SCCが発生しやすくなることを記載している。すなわち、応力腐食割れの感受性(発生及び進展速度の情報を含む)は、ECP及び導電率に依存している。導電率は、炉水に含まれる不純物の濃度で決まる。このため、BWR原子力発電プラントでは、ECPを下げることを実施する以前から、不純物濃度を下げて炉水の純度を低く保つ運転が行われている。
【0013】
【特許文献1】特許第2687780号公報
【特許文献2】特開2005−43051号公報
【特許文献3】特開平4−84754号公報
【特許文献4】特開平7−72110号公報
【特許文献5】特開2005−221381号公報
【特許文献6】特表2002−532681号公報
【特許文献7】特開平4−223299号公報
【非特許文献1】“Experience with hydrogen water chemistry in boiling water reactors”, R.L.Cowan et. Al., Water chemistry of nuclear reactor systems 4, 1, p29, BNES (1986)
【非特許文献2】“Effects of Reactor Water Impurities on ECP and SCC”, M. Sambongi et. al., 1998 JAIF International Conference on Water Chemistry in Nuclear Power Plants, p343 (1998)
【発明の開示】
【発明が解決しようとする課題】
【0014】
現状では原子炉圧力容器内の構造部材付近でのSCCに関するパラメータの測定は、ECPでしか行うことができない。不純物の作用については、原子炉圧力容器に接続されたサンプリングラインでサンプリングした炉水の導電率及び不純物濃度を測定し、これらの測定値と事前の実験データを用いて推定せざるを得ない。したがって、原子炉圧力容器内でECP及び不純物の作用が重畳した影響を一意に測定し、適切にSCCについての環境作用を評価するためのパラメータが必要となっている。
【0015】
前述の特開平4−84754号公報、特開平7−72110号公報、特開2005−221381号公報及び特表2002−532681号公報に開示されたECPの測定は、全面または局部の腐食の状態を測定するものであって、応力腐食割れのような応力のかかった状態を考慮していない。
【0016】
本発明の目的は、プラントの構造部材における応力腐食割れの発生確率を精度良く求めることができる応力腐食割れ監視方法及びその監視装置を提供することにある。
【課題を解決するための手段】
【0017】
上記目的を達成する本発明の特徴は、プラントを攻勢する構造部材と接する水中に複数の電極を配置し、これらの電極の出力に基づいて、電極のボイド移動速度を求め、求められたボイド移動速度、及びそのボイド移動速度と応力腐食割れ発生確率の相関情報を用いて、上記構造部材の応力腐食割れ発生確率を求めることにある。
【0018】
本発明は、ボイド移動速度を用いてプラントを構成する構造部材の応力腐食割れ発生確率を求めるので、構造部材における応力腐食割れ発生確率を精度良く求めることができる。これにより、構造部材に対する応力腐食割れの監視精度をさらに向上させることができる。腐食電位及び炉水の不純物濃度の両者の増大の影響を重畳して受けるボイド移動率を基に、構造部材の応力腐食割れ発生確率を求めているので、この応力腐食割れの発生確率をさらに精度良く求めることができる。
【0019】
ボイド移動速度は、水と接する構造部材に応力腐食割れを発生させる要因の一つであるその水の水質条件の指標となる酸化皮膜内の点欠陥(カチオン空孔)の移動速度を意味する。
【0020】
好ましくは、複数の電極のうち応力が付与された第1電極と応力が付与されていない第2電極との間に生じる電圧、及び第1電極と応力が付与されない第3電極の間を流れる電流に基づいて、第1電極のボイド移動速度を求め、求められたボイド移動速度及び上記の相関情報を用いて、その構造部材の応力腐食割れ発生確率を求めることにある。
【0021】
応力を付与した第1電極及び応力が付与されていない他の電極によって、第1電極に係る電圧及び電流の信号を得ることができ、この電圧及び電流に基づいて得られた第1電極のボイド移動速度、及び上記相関情報を用いているので、応力が発生している構造部材の応力腐食割れ発生確率をより精度良く求めることができる。
【発明の効果】
【0022】
本発明によれば、プラントの構造部材における応力腐食割れの発生確率を精度良く求めることができる。
【発明を実施するための最良の形態】
【0023】
発明者らは、応力腐食割れの評価方法を、原子炉の構造材料におけるSCCの発生メカニズムに立ち返って検討した。この検討の結果、SCCの発生確率を精度良く評価できる手法を初めて見出すことができた。これにより、原子炉構造材料のSCC対策として実施される水素注入などに代表される腐食環境緩和方法の効果を精度良く評価できるようになり、原子炉の健全性及び信頼性の向上につなげることができた。上記した発明者らによる検討の結果を以下に説明する。
【0024】
発明者らは、SCCによるき裂の発生確率を解析するために、C.Y. Chao及びJ. Electrochemの論文であるSoc., Vol.128, p1187 (1981)に記載された点欠陥モデルを用いい、この点欠陥モデルにより酸化皮膜の破壊確率を計算した。算出したその破壊確率を基に、ステンレス鋼の酸化皮膜表面のECPがある値なった状態で、SCCの発生確率を求めた。点欠陥モデルによれば、ステンレス鋼の酸化不膜、すなわち不働態皮膜の破壊時間は(1)式で与えられる。
【0025】
【数1】

【0026】
ここで、ζ/Jmは酸化皮膜破壊の閾時間、Fはファラデー定数、VはECP、VcはSCC発生の閾電位、Rがガス定数、Tは温度、αは酸化皮膜印加電位係数であり、ECPのうち酸化皮膜内でボイド移動に用いられる電位の比率を与える。この(1)式は、孔食の式であるが、不働態皮膜の電気化学的破壊過程はSCCと同じであるとみなして、SCCへの適用を試みた。酸化皮膜印加電位係数αは、不純物の濃度によって決まるので、例えば、前述の論文である“Effects of Reactor Water Impurities on ECP and SCC”, M. Sambongi et. al., 1998 JAIF International Conference on Water Chemistry in Nuclear Power Plants, p343 (1998)に記載された硫酸イオンでの実験データ(図1参照)に基づいて、αを0.28と決定した。Sambongiらのデータとは別に測定したデータにより、酸化皮膜破壊の閾時間ζ/Jmを与えた。このとき、純水、すなわち導電率が0.06μS/cm、ECP=0.1V vs SHEでのSSRT(低歪速度引張試験)の実験データで値を決定した。歪み速度は8×10-7/sのケースとした。応力の影響を考慮して、(1)式を(2)式のように改良した。
【0027】
【数2】

【0028】
ここで、

【0029】
(=dε/dt)は歪み速度である。酸化皮膜の破壊歪みが一定のとき、酸化皮膜が歪みによって破壊される時間は歪み速度dε/dtの逆数に比例する。そこで、電気化学的効果と力学的効果が積で作用すると考えて、SSRTの場合は(2)式をSCCに適用することを試みた。この結果、図2に示すように、SSRTで得られたSCC破面率のECP及び導電率への依存性を説明することができた。図2において、各実線は該当する導電率に対する解析結果であり、△は0.5μS/cmでの実験結果を示している。同様に、○は0.3μS/cm、◇は0.2μS/cm、□は0.1μS/cm及び▽は0.06μS/cmでの各実験結果を示している。
【0030】
そこで、酸化皮膜内のボイド移動速度(カチオン空孔の消滅速度)Jmを測定することができれば、任意の環境でSCC発生時間tを得ることができる。(2)式は、さらに
【0031】
【数3】

【0032】
のように変形することによって、(4)式のようにすることができる。このため、発明者
【0033】
【数4】

【0034】
らは、見掛けのボイド移動速度であるJm’を実測できれば、ECPと不純物イオンの影響を含んだ形でSCCの発生確率を評価することができることを新たに見出した。
【0035】
図3に示すように、見掛けのボイド移動速度Jm’は酸化皮膜の腐食速度に比例すると考えられる。このため、構造部材の母材の表面に酸化皮膜が破壊されないで存在する場合、及びその酸化皮膜が破壊された場合におけるそれぞれの腐食速度を測定することによって、酸化皮膜内の電位勾配εと酸化皮膜の厚さLの積によって決まる、酸化皮膜内の電位εLによって移動するボイド(カチオン空孔)の移動速度Jm’を求めることができる。図3において、V**は酸化皮膜内のカチオン空孔、M+は酸化皮膜内のカチオンである。Wは炉水のpH及び酸化皮膜/溶液界面の電位差によって決まる値である。したがって、原子炉内で連続的に酸化皮膜が存在するとき(酸化皮膜が破壊されていないとき)、及び酸化皮膜が存在しないとき(酸化皮膜が破壊されているとき)における各腐食速度を測定できれば、原子炉構造材の酸化皮膜がECP及び不純物によってどのような速度で破壊されるかがわかり、SCCの発生確率がより精度良く求めることができる。
【0036】
次に、炉水と接する構造部材表面の酸化皮膜が破壊されていない場合、及び酸化皮膜が破壊されている場合における各腐食速度を測定する方法について述べる。電気化学ノイズの測定、すなわち、電位ノイズ及び電流ノイズのそれぞれの測定を行い、各ノイズの測定値を用いて(5)式によりノイズ抵抗を計算する。このノイズ抵抗は腐食速度と(6)式の関係があることが知られている。この(6)式は特表2002−532681号公報の
ノイズ抵抗=電位ノイズ/電流ノイズ ……(5)
腐食速度∝1/ノイズ抵抗 ……(6)
段落0014に記載されている。
【0037】
そこで、予めSCCを発生させるために応力を付与した電極(測定対象箇所に設置)の電気化学ノイズを測定すれば、図4に示すように、測定対象箇所におけるノイズ抵抗の値の変化が分かる。SCCの発生により酸化皮膜が破壊された瞬間において、酸化皮膜が破壊されたときの腐食速度が得られる。一方、応力腐食割れが発生していないときには、ノイズ抵抗は、酸化皮膜が破壊されていないときの腐食速度に対応したノイズ抵抗となる。この結果に基づいて、発明者らは、応力を付与した試験片のノイズ抵抗の測定値及び(6)式から(7)式が成立することを見出した。
(酸化皮膜内の電位勾配によって生じる腐食の速度)=(酸化皮膜が破壊されたときの腐食速度)−(酸化皮膜が破壊されていないときの腐食速度) ……(7)
さらに、発明者らは、ボイド移動速度が律速となっているので、酸化皮膜内の電位勾配によって生じる腐食の速度とボイド移動速度との間に(8)式の関係が成立することを新
たに見出した。
ボイド移動速度(Jm’)∝酸化皮膜内の電位勾配によって生じる腐食の速度 …(8)
このため、図5のように、予めボイド移動速度Jm’とSCCの発生時間tの相関を得ておけば、単位時間あたりのSCC発生確率Pは、(9)式を用いて求める
P=1/t ……(9)
ことができる。図5において、特性Aは見掛けのボイド移動速度Jm’とSCC発生確率との関係を示しており、特性Bは見掛けのボイド移動速度Jm’とSCC発生時間との関係を示している。特性Bは、(4)式のボイド移動速度Jmを(3)式に代入して得られる見掛けのボイド移動速度Jm’とSCC発生時間tとの関係を表している。したがって、特性Bを用いて見掛けのボイド移動速度Jm’とSCC発生時間tを求めることは、(8)式で求めた見掛けのボイド移動速度Jm’を(4)式に代入してボイド移動速度Jmを求め、このボイド移動速度Jmを(3)式に代入してSCC発生時間tを求めることと等価である。特性Aを用いてSCC発生確率を求めることは、(8)式、(4)式、(3)式及び(9)式の演算を順次行ったことになる。
なお、ボイド移動速度Jmは、酸化皮膜の中をカチオン空孔が移動する速度で、構造部材の材料が決まれば定数として与えることができる。ボイド移動速度Jm’は、構造部材に接する水の不純物濃度、およびECPによって変化したボイド移動速度Jmであって、実環境での実際のカチオン空孔が移動する速度である。ボイド移動速度Jmを求めるためには腐食電位および不純物濃度を同時に測定する必要があるが、腐食電位および不純物濃度の同時測定は困難である。このため、測定したボイド移動速度Jm’を(4)式に代入することによって用いることによってボイド移動速度Jmが容易に求められる。
【0038】
本発明は、発明者らによって行われた上記の検討の結果に基づいて成されたものである。本発明の実施例を以下に説明する。
【実施例1】
【0039】
本発明の好適な一実施例である応力腐食割れ監視方法を、図6〜図9を用いて以下に説明する。本実施例は、沸騰水型原子力発電プラント(以下、BWRプラントという)に適用した例である。
【0040】
BWRプラントの概略の構成を図6により説明する。BWRプラントは、給水系、原子炉11、再循環系、主蒸気系、タービン14、復水器15及び原子炉浄化系を備える。原子炉11は、原子炉圧力容器9(RPVという)を有し、炉心23がRPV9内に配置されている。複数の燃料集合体(図示せず)が炉心23内に装荷されている。給水系は復水器15とRPV9を連絡する給水配管10を有する。主蒸気系は、RPV9とタービン14を連絡する主蒸気配管13を有する。再循環系は、RPV9に連絡される再循環系配管12、及び再循環系配管12に設けられた再循環ポンプ24を有する。RPV9及び再循環系は原子炉格納容器32内に設置されている。復水器15はオフガス系17に接続されている。原子炉浄化系は、再循環系配管12と給水配管10に接続される浄化系配管16、及び浄化系配管16に設けられた浄化装置(図示せず)を有する。
【0041】
RPV9内の冷却水(炉水)は、炉心23内で燃料集合体に含まれる核燃料物質の核分裂によって発生する熱で加熱され、一部が蒸気になる。この蒸気は、RPV9から排出されて主蒸気配管13を通ってタービン14に供給され、タービン14を回転させる。タービン14に連結された発電機が回転されて電力が発生する。タービン14から排出された蒸気は、復水器15で凝縮されて水になる。この凝縮水である給水が、給水配管10を通ってRPV9に供給される。水素注入装置27が給水配管10に接続されている。水素が、水素注入装置27から給水配管10内を流れる給水に注入され、給水と共にRPV9内に導かれる。炉水はこの水素を含んでいる。
【0042】
蒸気にならなかった大部分の炉水は、RPV9内に設置された気水分離器(図示せず)によって蒸気から分離される。分離された炉水は、RPV9と炉心23の間に形成されるダウンカマ25内を下降して、再循環系配管12内に流入する。再循環ポンプ24は、この炉水を昇圧する。昇圧された炉水は、ダウンカマ25内に設置されたジェットポンプ(図示せず)内に噴出され、ダウンカマ25内の炉水をジェットポンプ内に吸い込む。ジェットポンプから吐出された炉水は、炉心23に供給される。給水配管10によって導かれた水素を含む給水は、ダウンカマ25内で気水分離器によって分離された炉水とダウンカマ25内で混合される。再循環系配管12内に流入した炉水の一部は、浄化系配管16に導かれ、浄化系配管16に設けられた浄化装置によって浄化される。この浄化装置から排出された炉水は、浄化系配管16及び給水配管10を通ってRPV9内に戻される。RPV9の底部に接続されたボトムドレン配管19が炉浄化系配管16に接続される。サンプリング配管21が炉浄化系配管16に、サンプリング配管22がボトムドレン配管19に、サンプリング配管26が給水配管10にそれぞれ接続される。また、サンプリング配管28が主蒸気配管13に接続される。
【0043】
バルク炉水の水質を測定する水質測定装置20aがサンプリング配管21に接続される。水質測定装置20bはサンプリング配管22に接続されている。給水の水質を測定する水質測定装置20dがサンプリング配管26に接続される。蒸気中の酸素濃度、水素濃度及び導電率を測定する測定装置30がサンプリング配管28に接続される。
【0044】
応力腐食割れ監視装置(以下、SCC監視装置と称する)18aは炉心23(例えば、RPV9内で炉心23を取り囲む図示されていない炉心シュラウド)に設置される。SCC監視装置18bは再循環系配管12に、SCC監視装置18cはボトムドレン配管19に、及びSCC監視装置18dはサンプリング配管21にそれぞれ設置される。SCC監視装置18a〜18dは設置された位置での炉水の腐食電位を測定する。
【0045】
水素注入装置27から給水配管10内を流れる給水に水素を注入する際に、前述の特開2005−43051号公報に記述されているように、ヒドラジンを給水に注入しても良い。水素注入時における炉水の水質の変化は、水質測定装置20a及び20bによりオンラインで測定される。SCC監視装置18a,18b,18c,18dを用いて、水素注入時における炉水のECPの変化を測定する。SCC監視装置18aは、炉心23内あるいはその近傍に位置する構造部材が置かれた腐食環境、すなわち、その構造部材に接する炉水の腐食電位を測定する。SCC監視装置18bは、再循環系配管12内の腐食環境、すなわち、再循環系配管12の内面に接する炉水の腐食電位を計測する。SCC監視装置18cは、RPV9内の下部領域の腐食環境、すなわち、ボトムドレン配管19の内面に接する炉水の腐食電位を計測する。SCC監視装置18dは、浄化系配管16内の腐食環境、すなわち、浄化系配管16の内面に接する炉水(再循環系配管12及びボトムドレン配管19で導かれた各炉水が混合された状態)の腐食電位を計測する。水素注入装置27から給水への水素の注入量は、各SCC監視装置で計測される各部位での腐食環境(炉水の腐食電位)が応力腐食割れの発生確率の設定値以下に低減するように、制御される。注入した水素の余剰分はオフガス系17において再結合器(図示せず)により酸素と再結合されて水になる。
【0046】
SCC監視装置18a〜18dの詳細な構造を、図7及び図8を用いて説明する。SCC監視装置18は、電極1a,1b,2、エレクトロメータ5、無抵抗電流計6、ローパスフィルタ4a,4b及びパーソナルコンピュータ(信号処理装置)8を有している。電極1a,1bは、BWRプラントの構造部材と同じ材料、例えばSUS316Lで構成されている。電極2は、応力が付与されており、例えばSUS316Lで構成されている。板状の電極2は、電気的に絶縁されている保持部材31に形成された凹部32内に、曲面を形成するように曲げられて設置されている(図8参照)。曲げられた電極2は、保持部材31の両端部にそれぞれ形成された一対の突起部31a,31bに接触しているので、曲げ応力が付与されて歪みが発生している。電極2は応力が付与された電極である。電極1a,1bには応力が付与されていない。電気ケーブル3aが電極1aに接続され、電気ケーブル3bが電極1aに接続される。電気ケーブル3cが電極2に接続されている。電気ケーブル3a,3b,3cは、マグネシア及びサファイアなどの無機物によって絶縁された芯線がステンレス外套管に内包されているMI(ミネラル・インシュレーテッド)ケーブルを使用する。電極1a,1bは電極2と向かい合うように配置されており、束ねられた電気ケーブル3a,3b,3cが固定バンド29a,29bによって固定冶具28に固定される。電極1a,1b,2は、それぞれ互いに接触してはいなく、上記のように固定冶具28に取り付けられる。固定冶具28はSCC監視装置18a〜18dのそれぞれの設置箇所における各構造部材に別々に取り付けられる。SCC監視装置18a〜18dのそれぞれの電極1a,1b,2は、該当する位置で炉水と接触している。電極2に応力を付与する他の方法としては、Cリング、Uベント、ダブルUベント、WOL、スエリングチューブなどがある。
【0047】
応力が発生している電極2は、BWRプラントの構造部材(例えば、炉心シュラウド)を模擬している。電極2の表面には酸化皮膜が形成されている。
【0048】
BWRプラントでは、構造部材の材料として、SUS316Lのほか、SUS304、SUS304の炭素量を減らしたSUS304L、SUS316Lに強度を高めるために窒素を添加したSUS316NG(NG:原子力用)が使用されている。これらの材料を用いて上記の各電極を構成することが可能である。例えば、炉心シュラウドであればSUS304L,SUS316Lなどを使用し、再循環系配管12であればSUS304、SUS316NGを使用する。このため、SCC監視装置18aの各電極は炉心シュラウドの材料(SUS304L,SUS316Lなど)によって作成される。SCC監視装置18bの各電極は再循環系配管12の材料(SUS304、SUS316NGなど)によって作成される。
【0049】
同様に、ニッケル基合金で電極を作ることも可能である。原子炉圧力容器9の底部(炉底部という)は高強度が必要なためAlloy600が使用されている。このため、炉底部の監視に用いられるSCC監視装置の各電極として、Alloy600で作成された電極が用いられる。炉底部の溶接部および肉盛部には溶接金属としてAlloy182およびAlloy82が使用されている。炉底部の溶接部および肉盛部の監視に用いられるSCC監視装置の各電極としては、それらのニッケル基合金で製作された電極が適している。
【0050】
電気ケーブル3a,3cは、電位ノイズを測定するエレクトロメータ(電位ノイズ測定装置)5に接続される。エレクトロメータ5は電気ケーブル3dによってローパスフィルタ4aに接続される。電気ケーブル3fがローパスフィルタ4aとアナログ/ディジタル変換器(以後、A/D変換器と称する)7を接続する。電気ケーブル3b,3cは、電流ノイズを測定する無抵抗電流計(電流ノイズ測定装置)6に接続される。無抵抗電流計6は電気ケーブル3eによってローパスフィルタ4bに接続される。ローパスフィルタ4bは電気ケーブル3gによってA/D変換器7に接続される。A/D変換器7は電気ケーブル3hによってパーソナルコンピュータ8に接続される。
【0051】
SCC監視装置18a〜18dを用いた応力腐食割れ監視方法の一例を、SCC監視装置18aを用いた例を代表にして以下に説明する。SCC監視装置18aの固定冶具28は、炉心23を取り囲む炉心シュラウドに取り付けられ、電極1a,1b,2は炉心23内を流れる炉水に接触している。SCC監視装置18aのエレクトロメータ5、無抵抗電流計6、ローパスフィルタ4a,4b、A/D変換器7及びパーソナルコンピュータ8は、RPV9の外に配置される。パーソナルコンピュータ8は原子炉格納容器32の外でオペレータがアクセスできる中央制御室に置くことが望ましい。パーソナルコンピュータ(信号処理装置)8BWRプラントの運転時において、炉水は、前述したように、ジェットポンプから炉心23内に供給される。
【0052】
炉水が介在する電極1aと電極2の間に発生する電圧信号がエレクトロメータ5に入力される。エレクトロメータ5は、この電圧信号に基づいて電位ノイズを測定する。ローパスフィルタ4aは、エレクトロメータ5から入力した電位ノイズの信号のうち第1設定周波数以下の低周波数成分を選択して通過させる。この低周波数成分の電位ノイズが、A/D変換器7に入力される。A/D変換器7は、低周波数成分の電位ノイズをディジタル信号に変換する。電位ノイズのディジタル信号(以下、電位ディジタル信号と称する)がパーソナルコンピュータ8に入力される。炉水が介在する電極1bと電極2の間に流れる電流信号が無抵抗電流計6に入力される。無抵抗電流計6は、入力した電流信号を用いて電流ノイズを計測する。計測された電流ノイズを入力したローパスフィルタ4bは、第2設定周波数以下の電流ノイズを出力する。この電流ノイズは、A/D変換器7で電流ノイズのディジタル信号(以下、電流ディジタル信号と称する)に変換する。このディジタル信号も、パーソナルコンピュータ8に入力される。
【0053】
入力された電位ディジタル信号及び電流ディジタル信号は、パーソナルコンピュータ8の記憶装置(図示せず)に記憶される。パーソナルコンピュータ8は、(5)式、(6)式、(7)式及び(8)式の演算を行う。ノイズ抵抗は、(5)式に基づいて電位ディジタル信号を電流ディジタル信号で割ることによって算出される。電極2の表面の酸化皮膜が破壊されていない場合、すなわち、電極2に応力腐食割れが発生していない場合における腐食速度が、(6)式に基づいて算出される。電極2の表面の酸化皮膜が破壊されていない状態で得られた電位ディジタル信号及び電流ディジタル信号に基づいて求められた第1ノイズ抵抗を(6)式に代入することによって、酸化皮膜が破壊されていない状態での腐食速度(第1腐食速度と称する)が求められる。また、電極2に応力腐食割れが発生した場合には、電極2の酸化皮膜が破壊された状態になる。この状態で得られた電位ディジタル信号及び電流ディジタル信号に基づいて求められた第2ノイズ抵抗を(6)式に代入することによって、酸化皮膜が破壊された状態での腐食速度(第2腐食速度と称する)が求められる。酸化皮膜内の電位勾配によって生じる腐食の速度(第3腐食速度と称する)は、第1腐食速度及び第2腐食速度のそれぞれの値を(7)式に代入することに求められる。電極2に応力腐食割れが発生しない場合には、第2腐食速度を算出することができない。この場合には、(7)式に代入する第2腐食速度の値はゼロになる。得られた第3腐食速度、及び(8)式の関係から、ボイド移動速度Jm’を求めることができる。
【0054】
パーソナルコンピュータ8の記憶装置は、図5に示す特性Aの情報を記憶している。図5に記載されていないが、歪み速度dε/dtをパラメータにした複数の特性Aの情報が、その記憶装置に記憶されている。特性Aの情報は、種々の腐食環境の条件下での炉水を模擬した各冷却水に浸漬させたSCC監視装置18で測定した抵抗ノイズを基に推定されるボイド移動速度Jm’とSCC発生確率の相関を事前に実験で求めることによって、作成される。
【0055】
パーソナルコンピュータ8は、得られた歪み速度dε/dtを基に記憶装置に記憶されている複数の特性Aの情報から該当する特性Aの情報を選択し、求められたボイド移動速度Jm’及び選択された特性Aの情報に基づいてSCC発生確率を求める。パラメータである歪み速度dε/dtに対応した特性Aを選択するためには、該当する歪み速度dε/dtを知る必要がある。実際のBWRプラントの歪速度dε/dtは測定できない。このため、予めSCCの監視対象箇所における構造部材の応力解析によってBWRプラントの運転状態(定常運転時(定格出力運転時)および過渡運転時(起動・停止操作時))の各歪速度dε/dtを算出し、算出された各歪速度dε/dtをパーソナルコンピュータ8のメモリに記憶しておく。パーソナルコンピュータ8は、上記した該当する特性Aを選択する際に、BWRプラントの運転状態の情報に基づいて該当する歪速度dε/dtを選択するのである。
【0056】
求められたSCC発生確率の情報は、パーソナルコンピュータ8に接続される表示装置(図示せず)に表示される。オペレータは、表示装置に表示されたSCC発生確率を見ることによって対象となる構造部材のSCC発生確率を知ることができる。電極1a,1b及び2は、BWRプラントの構造部材(例えば、炉心シュラウド)と同じ材料で構成されているので、その構造部材が炉水から受ける影響と同じ影響を受ける。このため、電極1a,1b及び2の出力信号から得られた電位ノイズ及び電流ノイズを用いて算出されたノイズ抵抗は、実質的に、SCC監視装置18が設置された近傍のBWRプラントの構造部材(SCC監視装置18aの場合には炉心シュラウド)に対するものとなる。なお、電極2に付与する応力は、SCC監視装置18が設置された近傍のBWRプラントの構造部材で発生する応力と実質的に同じにする。すなわち、電極2に付与する応力は、電極2のサイズ、ヤング率およびたわみ量を調整することによってBWRプラントの実機の構造部材に生じる応力と一致させるようにしている。
【0057】
本実施例によれば、ECP、及び炉水中の不純物の影響が重畳したときにおける構造部材のSCC発生確率が、SCC監視装置18を用いることによってその構造部材の近傍で測定することができる。
【0058】
従来は、ECP、及び原子炉外で測定される炉水の不純物濃度(または炉水導電率)を考慮してSCC発生確率を求めていた(図9(A)参照)。したがって、あるECPにおけるSCC発生確率を求めるには炉水の不純物濃度のレベルを知る必要があった。しかし、高温水中では不純物イオンの解離度が室温での測定値と異なり、また、炉水のサンプリングの途中で不純物イオンの濃度がサンプリング配管の内面への吸着などによって変化する可能性がある。このため、従来は、BWRプラントの炉水と接する構造部材が炉水から受ける影響を精度良く把握することは困難であった。
【0059】
これに対し、本実施例は、炉水と接する構造部材で生じる、腐食電位の増加に起因したボイド移動速度の増大、及び炉水に含まれる不純物の濃度の増大によって酸化皮膜から炉水への金属イオンの溶出が加速されることに起因したボイド移動速度の増大が重畳された状態(図9(B)参照)を、構造部材の近傍に配置したSCC監視装置18の電極2で再現することができる。電極2は、応力が付与されて、構造部材の近傍の炉水と接している。このSCC監視装置18は、上記の重畳された状態におけるその構造部材のノイズ抵抗を測定することができる。本実施例は、得られたノイズ抵抗を基に求められたボイド移動速度Jm’及び図5に示す特性Aを用いてBWRプラントの炉水と接する構造部材のSCC発生確率を精度良く求めることができる。なお、図9(B)の特性は図5の特性Aと同じである。
【0060】
SCC監視装置18cのボトムドレン配管19への取り付け状態を、図10を用いて説明する。ボトムドレン配管19の、SCC監視装置18cの設置箇所に、分岐部31を設ける。分岐部31を封鎖する蓋30が、分岐部31の端部に設けられたフランジ(図示せず)に取り付けられる。SCC監視装置18cの固定冶具28が、蓋30の内側面に取り付けられている。固定冶具28に固定された電極1a,1b及び2に接続された電気ケーブル3a〜3cは、蓋30を貫通して外部に取り出されている。蓋30の電気ケーブル3a〜3cの貫通部は、炉水が外部に漏洩しないように耐圧を保持できるシールが施されている。このようなSCC監視装置18cのボトムドレン配管19への取り付け構造は、SCC監視装置18bの再循環系配管12への取り付け構造としても利用できる。SCC監視装置18aは、炉心シュラウド以外に、炉心23内で燃料集合体間に配置された中性子計装管(図示なし)に取り付けることも可能である。
【0061】
本実施例は、水素注入装置27から注入された水素を含む炉水が接する構造部材のSCC発生確率を、ボイド移動速度を用いて精度良く求めることができるので、水素注入によるBWRプラントの構造部材のSCC抑制効果を精度良く評価することができる。
【0062】
本実施例は、電極1a,1b及び2がBWRプラントの構造部材と同じ材料で構成されているので、BWRプラントの構造材が炉水から受ける影響と同じ影響を電極1a,1b及び2が受ける。このため、SCC監視装置18で求められたSCC発生確率は、そのプラントの構造部材における真のSCC発生確率と実質的に同じになる。
【0063】
SCC監視装置18b〜18dによっても、SCC監視装置18aと同様に、該当する箇所でのSCC発生確率を精度良く求めることができる。
【0064】
本実施例は、電気化学ノイズ(電流ノイズ、電位ノイズ及びノイズ抵抗)を用いて、酸化皮膜のボイド移動率を測定することができるので、SCC監視対象の構造部材の位置における、腐食電位および不純物濃度がボイド移動率に及ぼす影響の重畳効果を反映して、その構造部材のSCC発生確率を精度良く求めることができる。電気化学ノイズに基づいてSCC発生確率を得ることによって、原子炉の各部位でのリスク評価(発生確率×影響度)が可能となり、メンテナンスの順位付けが可能となる。このため、最適なメンテナンス工事計画が立てられ、BWRプラントの安全性が著しく向上する。また、従来の維持基準ではき裂の発生時間を運転開始からの時間で計算する必要があったが、発生の潜伏期間を考慮することができると、き裂長さで評価した余寿命を従来よりも長く想定することができ、合理的な保守性のもとでBWRプラントの運転管理が行える。
【0065】
電極2の表面の酸化皮膜が破壊されていないとき(例えば、連続して酸化皮膜が存在するとき)、及びその参加皮膜が破壊されているとき(例えば、酸化皮膜が存在しないとき)における各腐食速度を用いて、電極2のボイド移動速度を求めることによって、炉水に接する構造部材の酸化皮膜がECP及び不純物によって破壊される速度を把握することができる。このため、SCCの進展の度合いをすることができる。
【図面の簡単な説明】
【0066】
【図1】硫酸イオンを含む炉水の導電率をパラメータとし、腐食電位と構造部材のSCC感受性との関係を示す特性図である。
【図2】炉水の導電率をパラメータとし、腐食電位と構造部材のSCC感受性との関係の実験結果及び解析結果を示す特性図である。
【図3】点欠陥モデルを示す説明図である。
【図4】SCCの有無によるノイズ抵抗の変化を示す説明図である。
【図5】ボイド移動速度と、SCC発生時間及びSCC発生確率との相関を示す特性図である。
【図6】本発明の一実施例である応力腐食割れ監視装置をBWRプラントに適用した例を示す説明図である。
【図7】図6に示す応力腐食割れ監視装置の詳細構成図である。
【図8】図7に示す応力腐食割れ監視装置の電極部の詳細構成図である。
【図9】SCC発生確率を求める概念を示し、(A)は従来例でのSCC発生確率を求める概念を示す説明図であり、(B)は図6に示す実施例でのSCC発生確率を求める概念を示す説明図である。
【図10】応力腐食割れ監視装置の電極部をBWRプラントのボトムドレン配管に設置した状態を示す説明図である。
【符号の説明】
【0067】
1a,1b,2…電極、3a〜3h…電気ケーブル、5…エレクトロメータ、6…無抵抗電流計、8…パーソナルコンピュータ、9…原子炉圧力容器、10…給水配管、11…原子炉、12…再循環系配管、13…主蒸気配管、16…浄化系配管、18a,18b,18c,18d…応力腐食割れ監視装置、19…ボトムドレン配管、23…炉心、27…水素注入装置、28…固定冶具、29a,29b…固定バンド、30…蓋、31…分岐部。

【特許請求の範囲】
【請求項1】
プラントを構成する水と接する構造部材の応力腐食割れを監視する方法において、前記水中に複数の電極を配置し、これらの前記電極の出力に基づいて、前記電極のボイド移動速度を求め、求められた前記ボイド移動速度、及び前記ボイド移動速度と応力腐食割れ発生確率の相関情報を用いて、前記構造部材の応力腐食割れ発生確率を求めることを特徴とする応力腐食割れ監視方法。
【請求項2】
プラントを構成する水と接する構造部材の応力腐食割れを監視する方法において、前記水中に複数の電極を配置し、これらの前記電極のうち応力が付与された第1電極と応力が付与されない第2電極との間に生じる電圧、及び前記第1電極と応力が付与されていない第3電極の間を流れる電流に基づいて、前記第1電極のボイド移動速度を求め、求められた前記ボイド移動速度、及び前記ボイド移動速度と応力腐食割れ発生確率の相関情報を用いて、前記構造部材の応力腐食割れ発生確率を求めることを特徴とする応力腐食割れ監視方法。
【請求項3】
前記構造部材と同じ材料で構成されている前記複数の電極を用いる請求項1または請求項2に記載の応力腐食割れ監視方法。
【請求項4】
前記電圧に基づいて前記第1電極の電位ノイズを求め、前記電流に基づいて前記第1電極の電流ノイズを求め、前記電位ノイズ及び前記電流ノイズを用いてノイズ抵抗を求め、前記ノイズ抵抗に基づいて前記第1電極の前記ボイド移動速度を求める請求項2に記載の応力腐食割れ監視方法。
【請求項5】
前記第1電極の前記ボイド移動速度は、前記第1電極表面の酸化皮膜が破壊されている第1状態での第1の前記ノイズ抵抗を基に算出された第1腐食速度、及び前記第1電極表面の酸化皮膜が破壊されていない第2状態での第2の前記ノイズ抵抗を基に算出された第2腐食速度を用いて求められる請求項4に記載の応力腐食割れ監視方法。
【請求項6】
前記複数の電極が浸漬される前記水は注入された水素を含んでいる請求項1ないし請求項5のいずれか1項に記載の応力腐食割れ監視方法。
【請求項7】
前記構造部材は、オーステナイト系ステンレス鋼及びニッケル基合金のいずれかで構成されている請求項1ないし請求項6のいずれか1項に記載の応力腐食割れ監視方法。
【請求項8】
前記プラントは沸騰水型原子力プラントである請求項1または請求項2に記載の応力腐食割れ監視方法。
【請求項9】
監視対象である構造部材と接する水に浸漬される複数の電極と、これらの電極から出力される複数の信号に基づいて前記電極のボイド移動速度を求め、求められた前記ボイド移動速度、及び前記ボイド移動速度と応力腐食割れ発生確率の相関情報を用いて、前記構造部材の応力腐食割れ発生確率を求める信号処理装置とを備えたことを特徴とする応力腐食割れ監視装置。
【請求項10】
監視対象である構造部材と接する水に浸漬される複数の電極であって、応力が付与された第1電極、及び応力が付与されない第2電極及び第3電極と、前記第1電極と前記第2電極との間に生じる電圧、及び前記第1電極と前記第3電極の間を流れる電流に基づいて、前記第1電極のボイド移動速度を求め、求められた前記ボイド移動速度、及び前記ボイド移動速度と応力腐食割れ発生確率の相関情報を用いて、前記構造部材の応力腐食割れ発生確率を求める信号処理装置とを備えたことを特徴とする応力腐食割れ監視装置。
【請求項11】
監視対象である構造部材と接する水に浸漬される複数の電極であって、応力が付与された第1電極、及び応力が付与されない第2電極及び第3電極と、
前記第1電極と前記第2電極との間に生じる電圧に基づいて電位ノイズを測定する電位ノイズ測定装置と、
前記第1電極と前記第3電極の間を流れる電流に基づいて電流ノイズを測定する電流ノイズ測定装置と、
前記電位ノイズ及び前記電流ノイズに基づいて、前記第1電極のボイド移動速度を求め、求められた前記ボイド移動速度、及び前記ボイド移動速度と応力腐食割れ発生確率の相関情報を用いて、前記構造部材の応力腐食割れ発生確率を求める信号処理装置とを備えたことを特徴とする応力腐食割れ監視装置。
【請求項12】
前記信号処理装置は、前記電位ノイズ及び前記電流ノイズに基づいてノイズ抵抗を求め、前記第1電極表面の酸化皮膜が破壊されている第1状態での第1の前記ノイズ抵抗を基に第1腐食速度を求め、前記第1電極表面の酸化皮膜が破壊されていない第2状態での第2の前記ノイズ抵抗を基に第2腐食速度を求め、前記第1電極の前記ボイド移動速度を、前記第1腐食速度及び前期第2腐食速度を用いて求める請求項11に記載の応力腐食割れ監視装置。
【請求項13】
前記複数の電極は、前記構造部材と同じ材料で構成されている請求項9ないし請求項12のいずれか1項に記載の応力腐食割れ監視装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate