説明

撮像システム並びにこれに用いる画像処理装置、画像処理方法および画像処理プログラム

【課題】撮像位置の異なる複数の低解像度画像から高解像度画像を生成する画像処理装置において、超解像処理における無駄な位置合わせ処理を抑制することにより計算コストを低減する。
【解決手段】画像処理装置2は、低解像度画像を撮像位置に基づきシフトキャンセルしてシフトキャンセル画像を生成するシフトキャンセル部102と、シフトキャンセル画像と基準画像との比較により、低解像度画像における動きを検出する動き検出部103と、シフトキャンセル画像を基準画像と位置合わせして位置合わせ画像を生成する位置合わせ処理部106と、再構成処理により高解像度画像を生成する再構成処理部107とを備え、位置合わせ処理部は、所定の処理対象領域について、動きを検出した場合には、第1の範囲の動き検出に基づき位置合わせを実行する一方、動きを検出しなかった場合には、より小さい第2の範囲の動き検出に基づき位置合わせを実行する構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像素子の受光面上で結像する光像と撮像素子とを相対的に微小変位させながら撮像を行う、いわゆる画素ずらしによって取得した複数の原画像から超解像処理により高解像度画像を生成するのに適した撮像システム並びにこれに用いる画像処理装置、画像処理方法および画像処理プログラムに関する。
【背景技術】
【0002】
撮像装置には画素がマトリクス状に配置された2次元イメージセンサが採用されており、この2次元イメージセンサでは、解像度が画素の大きさや画素数に依存する。一方、撮像素子の受光面上で結像する光像と撮像素子とを相対的に微小変位させながら撮像を行う、いわゆる画素ずらしによって取得した複数の原画像から、撮像素子の本来の解像度より高い解像度の画像を生成する手法が従来から知られている。
【0003】
このような画素ずらしによる高解像度化の手法においては、光像と撮像素子とを相対的に微小変位させるシフト機構(以下、「光学的シフト機構」という。なお、「光学的シフト」を「画素ずらし」と同義に用いる場合がある。)が必要であり、例えば、ピエゾ素子などからなるアクチュエータで撮像素子を微小変位させる技術が知られている(特許文献1参照)。
【0004】
また、撮像光学系と撮像素子との間に撮像光学系の光軸に対して傾斜するように平行平板を配置し、この平行平板を光軸周りに回転させて、撮像素子の受光面上の光像の位置をずらす技術が存在する(特許文献2参照)。
【0005】
また、画素ずらしによって取得した複数の原画像から高解像度画像を生成する画像処理法として、低解像度画像の画素値を高解像度画像の画素にマッピングするイメージシフト処理や、ML(Maximum-likelihood)法、MAP(Maximum A Posterior)法や、POCS(Projection On to Convex Sets)法などを用いた超解像処理の技術が知られている(特許文献1参照)。超解像処理の技術では、処理に用いる低解像度の原画像の枚数を増やし、撮像位置が微小に異なる原画像を多数用いることで、得られる高解像度画像の品質(実質的な解像度)を向上させることができる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−306492号公報
【特許文献2】特開2000−125170号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上記特許文献1では、液晶表示パネルの画面等の静止した状態にあるものを被写体としているが、撮像装置を監視カメラ等に適用する場合には、被写体(例えば、人物や自動車等)が移動する場合がある。一般的な超解像処理では、手ぶれ等により撮像位置が不規則に変化することを利用し、撮像によって得られた複数のフレーム画像から基準画像と他のフレーム画像とを高解像度空間で高精度にマッチングさせる、いわゆる「位置合わせ処理」が行なわれている。
【0008】
しかしながら、この位置合わせ処理は、上述のような光学的シフトによって生じる既知の被写体の移動も、被写体自体が移動して生じる本来的に予測できない被写体の移動も区別されることなく実施されるため、膨大な繰り返し演算によって多くの無駄な演算処理が発生し、計算コストが嵩むという問題があった。
【0009】
特に、上記位置合わせ処理において、光学的シフトによって生じる被写体の移動を考慮する場合には、回転時の振動やセンサ出力のバラツキ等に起因する光学的シフトの誤差を考慮する必要がある。
【0010】
本発明は、このような従来技術の課題を鑑みて案出されたものであり、光学的シフトの誤差が生じ得る場合でも、超解像処理における位置合わせ処理を効率的に実施することにより、計算コストを低減することを可能とした撮像システム並びにこれに用いる画像処理装置、画像処理方法および画像処理プログラムを提供することを主目的とする。
【課題を解決するための手段】
【0011】
本発明の撮像装置は、撮像素子と当該撮像素子の受光面上で結像する光像との相対的な円運動を行わせることにより撮像された複数の低解像度画像を取得し、これら撮像位置の異なる複数の低解像度画像から高解像度画像を生成する画像処理装置であって、前記低解像度画像の撮像位置の情報に基づき、当該低解像度画像の位置を基準となる基準低解像度画像の位置に一致させたシフトキャンセル画像を生成するシフトキャンセル部と、前記シフトキャンセル画像と前記基準低解像度画像との比較により、前記低解像度画像における動きを検出する動き検出部と、前記動き検出の結果に基づき、前記シフトキャンセル画像を前記基準低解像度画像と位置合わせすることにより、位置合わせ画像を生成する位置合わせ処理部と、前記位置合わせ画像を用いて再構成処理を実施することによって高解像度画像を生成する再構成処理部とを備え、前記位置合わせ処理部は、前記シフトキャンセル画像の所定の処理対象領域について、前記動き検出部で動きを検出した場合には、第1の範囲の動き検出に基づき前記位置合わせを実行し、一方、前記動き検出部で動きを検出しなかった場合には、前記第1の範囲よりも小さい第2の範囲の動き検出に基づき前記位置合わせを実行する構成とする。
【発明の効果】
【0012】
このように本発明によれば、撮像位置の情報に基づき低解像度空間においてシフトキャンセル画像を生成すると共に、動き検出部で基準となる低解像度画像とシフトキャンセル画像の間で動きを検出しなかった場合には、動きを検出した場合よりも狭い探索範囲での動き検出に基づき位置合わせを実行する構成としたため、光学的シフトによる光像のシフト位置に誤差が生じ得る場合でも、超解像処理における位置合わせ処理を効率的に実施することにより、計算コストを低減することが可能となるという優れた効果を奏する。
【図面の簡単な説明】
【0013】
【図1】本発明の第1実施形態に係るネットワークカメラシステムの全体構成図
【図2】第1実施形態に係る撮像装置及び画像処理装置の概略構成を示すブロック図
【図3】第1実施形態に係る撮像装置及び画像処理装置における処理状況を示す模式図
【図4】第1実施形態に係る撮像装置の撮像部を示す断面図
【図5】第1実施形態に係る光学的シフト機構の分解斜視図
【図6】第1実施形態に係る光学的シフト機構の斜視図
【図7】第1実施形態に係る光学的シフト機構の平面図
【図8】第1実施形態に係る光学的シフト機構の要部断面図
【図9】第1実施形態に係る撮像素子への光の入射状況を示す断面図
【図10】第1実施形態に係る光学的シフト機構におけるシフト制御部14の構成図
【図11】第1実施形態に係る原点センサ65および径方向磁気センサ39によるマーカ66および着磁部68の検出結果を示す図
【図12】第1実施形態に係るシフト制御部14による位置検出方法の説明図
【図13】第1実施形態に係る光像に対する画素の相対的な円運動の状況を示す模式図
【図14】第1実施形態に係る撮像周期と円運動周期との比率の一例での撮像基準位置の状況を示す模式図
【図15】第1実施形態に係る画像処理装置2における超解像処理部24の機能ブロック図
【図16】第1実施形態に係る超解像処理部24による超解像処理の流れを示すフロー図
【図17】第1実施形態に係る超解像処理における撮像画像の処理の一例を示す説明図
【図18】第1実施形態に係る超解像処理における各フレーム画像の処理を示すブロック図
【図19】第2実施形態に係る超解像処理部24の機能ブロック図
【図20】第2実施形態に係る超解像処理における撮像画像の処理の一例を示す説明図
【図21a】第3実施形態に係る光像に対する画素の相対的な円運動において生じる撮像位置の位置ずれを示す説明図
【図21b】第3実施形態に係る光像に対する画素の相対的な円運動において生じる撮像位置の位置ずれを示す説明図
【図22】第3実施形態に係る超解像処理部24の機能ブロック図
【図23】第3実施形態に超解像処理部24による超解像処理の流れを示すフロー図
【発明を実施するための形態】
【0014】
上記課題を解決するためになされた第1の発明は、撮像素子と当該撮像素子の受光面上で結像する光像との相対的な円運動を行わせることにより撮像された複数の低解像度画像を取得し、これら撮像位置の異なる複数の低解像度画像から高解像度画像を生成する画像処理装置であって、前記低解像度画像の撮像位置の情報に基づき、当該低解像度画像の位置を基準となる基準低解像度画像の位置に一致させたシフトキャンセル画像を生成するシフトキャンセル部と、前記シフトキャンセル画像と前記基準低解像度画像との比較により、前記低解像度画像における動きを検出する動き検出部と、前記動き検出の結果に基づき、前記シフトキャンセル画像を前記基準低解像度画像と位置合わせすることにより、位置合わせ画像を生成する位置合わせ処理部と、前記位置合わせ画像を用いて再構成処理を実施することによって高解像度画像を生成する再構成処理部とを備え、前記位置合わせ処理部は、前記シフトキャンセル画像の所定の処理対象領域について、前記動き検出部で動きを検出した場合には、第1の範囲の動き検出に基づき前記位置合わせを実行し、一方、前記動き検出部で動きを検出しなかった場合には、前記第1の範囲よりも小さい第2の範囲の動き検出に基づき前記位置合わせを実行する構成とする。
【0015】
これによると、撮像位置の情報に基づき低解像度空間においてシフトキャンセル画像を生成すると共に、動き検出部で基準となる低解像度画像とシフトキャンセル画像の間で動きを検出しなかった場合には、動きを検出した場合よりも狭い探索範囲での動き検出に基づき位置合わせを実行する構成としたため、光学的シフトによる光像のシフト位置に誤差が生じ得る場合でも、超解像処理における位置合わせ処理を効率的に実施することにより、計算コストを低減することが可能となる。
【0016】
また、第2の発明は、前記低解像度画像において前記処理対象領域となり得る範囲を指定する範囲指定部を更に備えた構成とする。
【0017】
これによると、超解像処理が必要な範囲を予め指定することにより、超解像処理における無駄な位置合わせ処理を効果的に抑制することができる。
【0018】
また、第3の発明は、前記動き検出部は、前記シフトキャンセル画像について動きの有無を判定する第1検出部と、前記第1検出部が動き有りと判定した場合に、前記シフトキャンセル画像について前記第1の範囲で動きベクトルを検出する第2検出部と、前記第1検出部が動きなしと判定した場合に、前記シフトキャンセル画像について前記第2の範囲で動きベクトル検出する第3検出部とを有する構成とする。
【0019】
これによると、第1検出部で動きを検出しなかった場合には、第3検出部による動きベクトルの検出をより狭い探索範囲で効率的に実行することが可能となり、計算コストを低減することができる。
【0020】
また、第4の発明は、前記シフトキャンセル部は、前記低解像度画像を画素単位でシフトさせて前記シフトキャンセル画像を生成することを特徴とする構成とする。
【0021】
これによると、シフトキャンセル画像を精度良く生成することができる。
【0022】
また、第5の発明は、上記第1から第4の発明のいずれかに係る画像処理装置と、前記低解像度画像を撮像する撮像装置とを備えた撮像システムであって、前記撮像装置は、被写体からの光を光電変換して画素信号を出力する撮像素子と、前記被写体からの光を前記撮像素子に導く光学系と、前記撮像素子の受光面上で結像する光像と前記撮像素子との相対的な円運動を行わせる光学的シフト機構と、前記光学的シフト機構による円運動を指定の周期で行わせるシフト制御部と、前記撮像素子の前記撮像位置の情報を取得する位置情報取得部とを備えた構成とする。
【0023】
また、第6の発明は、撮像素子と当該撮像素子の受光面上で結像する光像との相対的な円運動を行わせることにより撮像された複数の低解像度画像を取得し、これら撮像位置の異なる複数の低解像度画像から高解像度画像を生成する画像処理方法であって、前記低解像度画像の撮像位置の情報に基づき、当該低解像度画像の位置を基準となる基準低解像度画像の位置に一致させたシフトキャンセル画像を生成するシフトキャンセル生成ステップと、前記シフトキャンセル画像と前記基準低解像度画像との比較により、前記低解像度画像における動きを検出する動き検出ステップと、前記動き検出の結果に基づき、前記シフトキャンセル画像を前記基準低解像度画像と位置合わせすることにより、位置合わせ画像を生成する位置合わせ処理ステップと、前記位置合わせ画像を用いて再構成処理を実施することによって高解像度画像を生成する再構成処理ステップとを有し、前記位置合わせ処理ステップは、前記シフトキャンセル画像の所定の処理対象領域について、前記動き検出部で動きを検出した場合には、第1の範囲の動き検出に基づき前記位置合わせを実行し、一方、前記動き検出部で動きを検出しなかった場合には、前記第1の範囲よりも小さい第2の範囲の動き検出に基づき前記位置合わせを実行する構成とする。
【0024】
また、第7の発明は、画像処理装置を制御することにより、上記第6の発明に係る画像処理方法を実行する画像処理プログラムである。
【0025】
以下、本発明の実施の形態について図面を参照しながら説明する。以下の説明では、用語「軸方向」は光軸方向(図4中の上下方向に相当)を示す共に、用語「径方向」は光軸と直交する方向(図4中の左右方向に相当)を示すものとする。径方向は、光軸を中心とした360゜内の任意の角度を取り得る。
【0026】
(第1実施形態)
図1は、本発明の第1実施形態に係るネットワークカメラシステムの全体構成図である。図1に示すように、本発明が適用される撮像システムとしてのネットワークカメラシステムは、少なくとも1台の撮像装置(ここでは、ネットワークカメラ)1と、画像処理装置2とで構成される。撮像装置1と画像処理装置2とは、インターネット3を介して接続され、撮像装置1で生成した撮像データが、例えば遠隔地に存する画像処理装置2に送信されて、画像処理装置2で映像が表示される。また、撮像装置1を制御する各種のコマンド信号が画像処理装置2から撮像装置1に送信される。
【0027】
なお、撮像データは、例えばTCP(UDP)/IPといった、いわゆるインターネットプロトコルを利用して撮像装置から画像処理装置に送信されるが、撮像データを、例えば暗号化、カプセル化してVPN(Vertual Private Network)を利用して送信してもよく、専用回線によって撮像装置1と画像処理装置2が1対1の関係で接続される、いわゆるCCTV(Closed Circuit TV)と称されるネットワークカメラシステムとしてもよい。
【0028】
図2は、図1に示した撮像装置及び画像処理装置の概略構成を示すブロック図である。図2に示すように、撮像装置1は、撮像部11と、画像処理部12と、データ圧縮送信部13と、シフト制御部14とを備えている。撮像部11は、被写体からの光を光電変換してアナログの画素信号を出力する撮像素子31を備えている。この撮像素子31は、2次元CMOSイメージセンサである。撮像素子31は、例えばQuad VGA(1280×960画素)の画素構成を備え、センササイズは1/3インチ、隣接画素との間隔である画素ピッチLは主走査方向、副走査方向ともに3.75μmである。なお、これに替えて2次元CCDイメージセンサを撮像素子31に用いてもよい。
【0029】
撮像素子31から出力されるアナログ信号はA/D変換器32でディジタル信号に変換され、このディジタル信号は画像処理部12に入力され、ここで色補正、デモザイク処理、階調補正(γ補正)、YC分離処理等を施されて画像データに変換される。この画像データは、データ圧縮送信部13において例えばH.264やMPEG4等の圧縮処理を施された上で画像処理装置2に送信される。
【0030】
また、撮像部11は、後に詳述するが、撮像素子31の受光面上で結像する光像と撮像素子31とを相対的に微小変位させる光学的シフト機構35を備えている。光学的シフト機構35には、光像を微小変位させる光学部材(図4中の符号51参照)を磁力により回転駆動する磁気回転駆動部36と、光学部材の径方向および軸方向の位置をそれぞれ制御する位置制御部38と、光学部材の径方向および軸方向の位置をそれぞれ検出する径方向磁気センサ39および軸方向磁気センサ40とを備えている。
【0031】
光学的シフト機構35は、シフト制御部14により制御される。光学的シフト機構35の回転部分にはここでは図示しない着磁部が設けられており、両磁気センサ39、40は着磁部の位置情報を検出してシフト制御部14に出力する。シフト制御部14は、この位置情報に基づいて磁気回転駆動部36を制御して光学部材を回転させると共に、位置制御部38を制御して光学部材を所定の位置に保持する。
【0032】
画像処理装置2は、データ受信復号部21と、表示部22と、記憶部23と、超解像処理部24と、周期設定部25と、入力部26とを備えている。なお、この画像処理装置2は、パソコンやワークステーション等の情報処理装置に所要のアプリケーションソフトウェアを導入することで構成される他、CCTVレコーダなど専用の装置であってもよい。
【0033】
画像処理装置2では、撮像装置1から送信された圧縮画像データが、データ受信復号部21にて受信されて復号された後、RGBの画像データに変換されて、リアルタイムにディスプレイ等からなる表示部22に表示される。さらに、RGBの画像データは、ハードディスクドライブ装置等からなる記憶部23に送られて、ここに一時的に蓄積され、必要に応じて記憶部23から読み出して表示部22で再生することができる。
【0034】
また、例えば交通事故の検証の用途等で高解像度画像の必要が生じた場合には、記憶部23から画像データを読み出して超解像処理部24にて超解像処理を施して高解像度画像(静止画像)を生成し、その高解像度画像を表示部22に表示させることができる。
【0035】
また、入力部26は、後に詳述するが、ユーザからの撮像周期の入力を受け付けて、これを周期設定部25に送る。周期設定部25は、入力部26から送られてきた撮像周期に基づいて円運動周期を決定し、円運動周期に関するコマンド信号を撮像装置1に送信する。撮像装置1のシフト制御部14は、円運動周期に関するコマンド信号に基づいて、光学的シフト機構35を動作させることにより、指定された円運動周期に対応する回転速度で光学部材を回転駆動する。
【0036】
また、周期設定部25は、駆動回路33に対して撮像タイミングに関する情報を送信し、これにより、駆動回路33のタイミングジェネレータ(図示せず)は制御用の同期パルスを所定間隔で発生する。この同期パルスは、撮像素子31に出力され、これにより、撮像素子31の電荷蓄積期間(電子シャッタ期間)の始期および終期が決定される。また、同期パルスは、シフト制御部14にも出力され、これにより、シフト制御部14では、撮像素子31が実際に露光されている期間を把握することができる。
【0037】
図3は、撮像装置1及び画像処理装置2における処理状況を示す模式図である。図3に示すように、撮像素子31は駆動回路33によって駆動され、駆動回路33が生成するタイミング信号に応じて一定の周期(以下、撮像周期)で撮像(サンプリング)が行われる。例えばフレームレートを30frame/secとして1秒あたり30枚のフレーム画像を生成する場合、撮像周期は30ms程度に設定される。
【0038】
画像処理装置2の超解像処理部24では、時間的に連続する複数のフレーム画像から高解像度画像を生成する超解像処理が行われる。この超解像処理では、まず、記憶部23に蓄積されたフレーム画像がコマ送りで静止画として表示される。そして、その中からユーザにより基準画像(基準低解像度画像)が指定されると、その基準画像となるフレーム画像とその前後の複数のフレーム画像が記憶部23から読み出されて超解像処理部24に送られて超解像処理が行われる。
【0039】
超解像処理としては、例えば、ML(Maximum-likelihood)法、MAP(Maximum A Posterior)法や、POCS(Projection On to Convex Sets)法などが採用され、アプリケーションソフトウェアをCPUで実行することで実現される。一般に超解像処理は演算量が多いため、処理の一部をGPU(Graphics Processing Unit)や、専用ハードウェアを用いて行うようにしてもよい。
【0040】
ここで、ML法とは、高解像度画像から推定された低解像度画像の画素値と、実際に観測された画素値との二乗誤差を評価関数とし、この評価関数を最小化するような高解像度画像を推定画像とする方法である。つまり、ML法とは、最尤推定の原理に基づく超解像処理方法である。また、MAP法とは、二乗誤差に高解像度画像の確率情報を付加した評価関数を最小化するような高解像度画像を推定する方法である。つまり、MAP法とは、高解像度画像に対するある先見情報を利用して、事後確率を最大化する最適化問題として高解像度画像を推定する超解像処理方法である。POCS法とは、高解像度画像と低解像度画像との画素値に関して連立方程式を作成し、その方程式を逐次的に解くことにより、高解像度画像を得る超解像処理方法である。
【0041】
これらの超解像処理は、まず、高解像度画像を仮定し、そして仮定した高解像度画像から、カメラモデルから得られる点広がり関数(PSF関数)に基づき、低解像度画像の画素について、その画素値を推定し、その推定値と観測された画素値(観測値)との差が小さくなるような高解像度画像を探索するという処理を有している。そのため、これらの超解像処理は、再構成型超解像処理と呼ばれている。
【0042】
さて、ここで高解像度画像を探索する処理は、低解像度画像として得られた画素が高解像度画像においてどの位置に対応するのかを探索するものであり、いわゆる「位置合わせ(レジストレーション)」と呼ばれる処理である。一般に超解像処理では、複数の低解像度画像間の画素位置の変化が不明であっても高解像度化を可能とするため、着目画素の周囲に対して広範囲に位置合わせ処理を繰り返し実行する。このため計算コストが極めて大きくなることが知られている。一方、後に詳しく説明するように、本発明では光学的シフト機構35によってシフトされた画素の位置は既知であり、そして、その既知の位置で各フレーム画像、すなわち低解像度画像を撮像するようにしたため、少なくとも静止している被写体については、光学的シフトによって位置合わせ処理の多くを省略することが可能となり、計算コストを大幅に削減することができる。
【0043】
なお、時間的に連続する複数のフレーム間に及ぶ画像情報を利用する超解像処理は、特にフレーム間再構成型超解像処理と呼称されることもある。一方で、1つのフレーム内で再構成型超解像処理を行う場合は、フレーム内再構成型超解像と呼称される。本実施形態では、フレーム間再構成型超解像を採用している。
【0044】
なお、ここでは、画像処理装置2において超解像処理によって高解像度化された静止画像を再生するものとしているが、画像処理装置2の処理能力が十分に高ければ、超解像処理で得られた高解像度画像をフレーム画像として動画を再生することも可能である。
【0045】
図4は、図2に示した撮像装置1の撮像部11を示す断面図であり、図5は、図4に示した撮像装置1の光学的シフト機構35の分解斜視図であり、図6は、光学的シフト機構35の斜視図であり、図7は、光学的シフト機構35の平面図であり、図8は、光学的シフト機構の要部断面図である。なお、図5では、説明の便宜上、光学カプセル(カプセル部材)50の内部に収容される各部材(光学部材51等)を外部に取り出した態様で示している。また、図5および図6では、図7に示す回転駆動コイル81を省略してある。
【0046】
図4に示すように、撮像装置1の撮像部11は、撮像素子31が設けられたセンサモジュール41と、被写体(図示せず)からの光を撮像素子31の受光面31a上で結像させるレンズユニット(光学系)42と、撮像素子31の受光面31a上で結像される光像を光軸Cに対して垂直な方向に変位させる光学的シフト機構35とを有している。レンズユニット42はレンズホルダ45を介して基板46に支持されている。センサモジュール41及び光学的シフト機構35も基板46に支持されている。なお、基板46には、必要に応じてその他電気部品等が搭載される。
【0047】
光学的シフト機構35は、例えば透明樹脂あるいは硝材から形成された光学カプセル50と、この光学カプセル50に収容された光学部材51とを主として備える。光学カプセル50の内部には、空気よりも高い屈折率を有する液体(流体)52が封入されている。また、液体52の屈折率は、後述する平行平板53の屈折率よりも小さく設定されている。
【0048】
光学部材51は、略円板状を呈しており、その中央部にはレンズユニット42の光軸Cに対して所定角度傾斜した平行平板53が設けられている。平行平板53は、光学ガラスやアクリル樹脂等の材料から形成することができる。また、光学部材51の外周側には、その外周部を支持する円環状のバックヨーク54と、バックヨーク54の外周部に取り付けられた円環状の径側マグネット55と、バックヨーク54における光学部材51の光入射側および光出射側の部位(ここでは、バックヨーク54の上下面)にそれぞれ固定された上マグネット(第1軸側マグネット)56および下マグネット(第2軸側マグネット)57が設けられている。上マグネット56および下マグネット57は、共に同一径の円環状を呈している。これら各部材54〜57は、光軸Cを中心として同軸的に配置されており、液体52が充填された光学カプセル50内に光学部材51と共に収容されている。
【0049】
光学カプセル50は、上下方向に重ね合わされた2つの部材50a、50bから構成され、これにより、液体52が封入される密閉空間が形成されている。光学カプセル50は、中央がくびれた断面を呈しており、光軸Cを中心とした円板状の空間を画成する中央部60と、この中央部60の外周側に連なると共に、矩形断面を有する円環状の空間を画成する円環部61とを有している。中央部60には平行平板53が収容される一方、上下方向に拡幅された円環部61には、光学部材51の外周部およびバックヨーク54等が収容されている。ここで、光学カプセル50の内面と光学部材51の表面との間隔は0.5mmに設定されている。なお、光学カプセル50は、少なくとも中央部60における光軸C周辺の光路部分(レンズユニット42からの入射光が通過する領域)が上述のような透明材料で形成されていればよい。
【0050】
ここで、光学カプセル50(中央部60)が配置されるレンズユニット42とセンサモジュール41との間の間隔Dは、通常は非常に狭く(例えば、約3mm)、撮影範囲が広角になるのに応じてさらに狭くなる。しかしながら、光学部材51(平行平板53)のみを光路に配置するようにすれば、間隔Dが狭いにも拘わらず支障なく装置を構成することができる。
【0051】
また、光学カプセル50の中央部60の上面60aはレンズユニット42の下面42aに当接しており、これにより、光学カプセル50とレンズユニット42との間の光路(厳密には、入射光が通過する空間)が密閉される。さらに、円環部61の下面61aは基板46の上面46aに当接しており、これにより、光学カプセル50とセンサモジュール41との間の光路(すなわち、光学カプセル50、センサモジュール41および基板46で画成される空間V)が密閉されている。このような構成により、レンズユニット42から撮像素子31までの光路中への塵埃等の侵入に起因する画質の劣化を防止することができる。なお、上記のように光路を密閉する方法としては、撮像素子31をモールドされたイメージセンサそのものとして捉えるならば、光学カプセル50をイメージセンサに直接当接させる構成としてもよい。
【0052】
なお、光学カプセル50の光路に対応する部分以外を不透明(例えば、黒色)としてもよい。このようにすることで、撮像素子31に不要な光が入る、いわゆる迷光を遮断することができる。
【0053】
本実施形態では、液体52として不凍液(ポリピレングリコールと水との混合物)を用いている。液体52が水を含む場合、磁性体(例えば、鉄系の材料)で形成されたバックヨーク54には錆が生じ得る。これを防止するため、バックヨーク54の表面には樹脂コーティングが施されている。なお、不凍液は水系である必要性はなく、例えば、透明なシリコンオイルを採用してもよい。この場合は径側マグネット55等に錆が生じるおそれはなく、樹脂コーティングといった防錆処理は不要となる。また、撮像装置1の設置環境が室内に限定されるような場合は、必ずしも不凍液を用いる必要はない。また、磁気特性は若干劣るが、バックヨーク54を例えばSUS316等の非磁性金属材料や樹脂等で形成することにより、錆の発生を抑えることもできる。
【0054】
図5に示すように、光学的シフト機構35において、光学カプセル50の周辺には、径側マグネット55に磁力を作用させることによって光学部材51及び径側マグネット55を流体以外と非接触状態、即ちこれらを光学カプセル50の内壁と非接触で回転させる6つの磁気回転駆動部36と、径側マグネット55、上マグネット56、及び下マグネット57にそれぞれ磁力を作用させることにより、光学部材51の径方向および軸方向の位置を正規位置(平行平板53が光学カプセル50に接触することなく回転可能な定位置)に保持する3つの位置制御部38(以下、各々を区別する必要がある場合には、図7に示すように位置制御部38a、38b、38cと称する。)とが設けられている。このように光学部材51の径側マグネット55、上マグネット56、及び下マグネット57はいずれも永久磁石であり、これらに磁力を作用させる位置制御部38に電磁石を採用しているが、これによって光学カプセル50内部には一切の信号線が引き込まれず、光学カプセル50の密閉性を高めることを可能としている。
【0055】
後に詳述するように、光学部材51の回転駆動および径方向の位置制御は、図6に示す位置検出部としての3つの径方向磁気センサ39(以下、各々を区別する必要がある場合には、図7に示すように径方向磁気センサ39a、39b、39cと称する。)の出力する情報に基づいて行われる。また、光学部材51の軸方向の位置制御は、図6に示す位置検出部としての軸方向磁気センサ40が出力する情報に基づいて行われる。
【0056】
このような構成により、光学部材51は、液体52を満たした光学カプセル50内で非接触状態で回転する。この磁力を利用した構成は、いわゆるベアリングレスモータの構成に準ずるものであり、摺動部が全く存在せず、光学的シフト機構35は極めて低振動で駆動され、かつ長寿命を達成することができる。
【0057】
また、図6に示すように、光学カプセル50の周辺には、光学部材51の回転に伴う原点位置を定期的に検出する原点センサ65が設けられている。原点センサ65は、反射型フォトセンサ(フォトリフレクタ)からなり、径側マグネット55の上部に設けられたマーカ66(図4参照)を検出する。原点センサ65としては、反射型フォトセンサに限らず、他の光学センサを含む周知のセンサを用いることができる。この原点センサ65の出力と、径方向磁気センサ39の出力とによって検出される径側マグネット55の着磁部68(図7参照)の磁極位置によって、光軸Cに対して傾斜した平行平板53による光のシフト方向を確実に把握することができる。
【0058】
マーカ66は、図4に示すように、光学カプセル50を挟んで原点センサ65と対向するように配置される。マーカ66は、平行平板53の傾斜方向の延長線上に配置され、矢印Aで示すように、平行平板53に入射した光はマーカ66が付されている方向にシフトする。したがって、原点センサ65により、平行平板53による入射光のシフト方向(すなわち、光学部材51の回転位置)を検出することができる。マーカ66は、光学的に識別されるものであり、例えば、径側マグネット55にマグネットと異なる色で印刷されていてもよいし、マグネットの表面粗さを変えて結果的に異なる反射率が得られるようにされていてもよい。原点センサ65は、マーカ66と径側マグネット55との反射率の違いを利用してマーカ66を検出する。
【0059】
光学部材51の回転方向において、平行平板53の傾斜方向と回転方向におけるマーカ66の位置との関係を予め把握しておくことにより、マーカ66を検出したタイミングで平行平板53の方向(すなわち、光学的シフトの方向)が検出できる。つまり、マーカ66検出時に平行平板53の回転角度を知ることができるため、光学的シフトがなされる方向を特定することが可能である。ここで、平行平板53による光学的シフト量は、光軸に対する平行平板53の角度に依存するが、この角度は軸方向磁気センサ40で検出され、図8に示す磁気回路で一定になるように制御される。また、バックヨーク54を含む回転体が回転することで、コマの回転と同様にジャイロ効果により軸ブレは小さく抑えられるから、光軸に対する平行平板53の角度(すなわち、光学的シフト量)は略一定となる。したがって、平行平板53の回転角度から光学的シフトによる光像ずれの座標を算出することができる。
【0060】
ところで、図2に示した超解像処理部24にて実施される超解像処理では、撮像位置をサブミクロンオーダ(例えば、画素ピッチLは5.6μmとして、これを超解像処理で4×4倍に拡大する場合、新たに生成される画素ピッチLは5.6/4=1.4μmとなり、サブミクロンオーダの変位が必要となる)で決定することができれば、いわゆる「位置合わせ処理」の演算コストを大幅に低減できることが知られている。本発明に係る撮像装置及びネットワークカメラシステムでは、上記のような原点センサ65を採用し、駆動回路33が生成するタイミング信号(同期パルス)に応じて撮像素子31で撮像が行われたときの光像のシフト位置が決定されるため、超解像処理の演算コストを低減することができる。つまり、本発明によれば、画像のシフト位置を確実に把握できるため、上述の高解像度画像の探索量が減少し、光学的シフトの撮像対象のうち静止部分についての超解像処理の演算コストが大幅に減少する。
【0061】
図7に示すように、径側マグネット55は、その周方向に沿って交互にN極及びS極に着磁された16の磁極からなる着磁部68を備えている。径側マグネット55は、微小な磁性体粒子を分散混合したポリフェニレンサルファイド樹脂(PPS)によって形成された、いわゆるプラスチックマグネットであり、これにより、水を含む液体52中にあっても吸水および膨潤が防止される。ここでは、磁性体粒子としてネオジムを採用している。磁力が極めて大きいネオジム磁石は、大きな駆動トルクを得ることができるため、低温時に液体52の粘性が大きくなった場合等に有効である。一方、ネオジムは水によって酸化されて錆を生じ得るため、径側マグネット55は、その表面が樹脂材料でコーティングされ、液体52との接触が防止されている。なお、上マグネット56、下マグネット57も同様にネオジム磁性体粒子を分散混合したPPSで形成され、これらにも樹脂コーティングが施されている。径側マグネット55、上マグネット56、下マグネット57として用いる磁性体粒子としては、ネオジムに限らず、例えば、フェライトやサマリウムコバルト等を用いることもできる。
【0062】
磁気回転駆動部36は、電磁鋼帯を複数積層してなるステータコア80と、ステータコア80に巻回された導線からなる回転駆動コイル81とによって構成されている。略U字状をなすステータコア80は、両端が光学カプセル50の外壁に当接した状態でその外周面に沿って等間隔に配置されており、また、光学カプセル50を介して径側マグネット55の着磁部68に対向配置されている。これにより、光学的シフト機構35は、いわゆるインナロータ型の3相モータ(本実施形態では、12スロット16ポール)と同様の構成を有する。磁気回転駆動部36は、回転駆動コイル81に電流を流すことで生じる磁界によって着磁部68に作用する引力および斥力により、着磁部68を所定の方向に回転させる。これにより、バックヨーク54と光学部材51(平行平板53)とが光軸C周りに回転する。
【0063】
径方向磁気センサ39a、39b、39cは、ホール素子からなり、光学カプセル50の外壁に当接した状態でその外周面に沿って周方向に等間隔で配置されており、それぞれは、隣接する2つの磁気回転駆動部36の間に位置する。このような径方向磁気センサ39a、39b、39cの配置により、光学部材51の径方向の変位量を精度良く検出することができる。径方向磁気センサ39としてホール素子を用いることで、光学カプセル50内の光学部材51の位置を約1μmの精度で検出することができる。より高い精度が必要となる場合はホール素子に替えて光位置センサ(PSD:Position Sensitive Detector)を用いてもよい。PSDを用いることで位置検出精度は0.1μm程度まで改善される。
【0064】
なお、位置検出手段としてホール素子を用いた場合の検出精度が1μmである点と、上述した「撮像位置をサブミクロンオーダで決定する」という点は矛盾するものではない。本実施形態の光学的シフト機構35において、光学部材51(平行平板53)は、単に入射光を平行シフトさせるパワーしか有さず、光像のシフト位置はもっぱら光学部材51の回転角度によって決定される。光学部材51が光軸方向や径方向に対して平行に変位しても、平行平板53によるシフト位置は全く影響を受けず、影響を受けるとすれば、光学部材51の光軸Cに対する傾斜角が変動する場合である。本実施形態では、後に詳細に説明するように傾斜角変動による影響を小さくしており、結果的に検出精度が1μm程度であっても、サブミクロンオーダの精度でシフト位置が決定される。
【0065】
図7に示した12スロット16ポールの構成では、光学カプセル50の外周部には、隣接する磁気回転駆動部36の間に6つの空間が生じることになる。したがって、これらの空間に、3つの径方向磁気センサ39a、39b、39cを、それぞれ3つの位置制御部38a、38b、38cと光軸Cを中心として180度回転した位置に配置することができる。これにより、光学カプセル50の外側のスペースを有効利用して装置の小型化を実現しつつ、光学部材51の径方向の位置制御を容易に行うことが可能となる。
【0066】
径方向磁気センサ39は、径側マグネット55の着磁部68から生じた磁力を検出することで、着磁部68の磁極(N極とS極)の位置情報を出力する。より詳細には、径方向磁気センサ39は、自身に対して径側マグネット55のN極とS極の1組が相対移動すると、これを1周期とする正弦波を位置情報としてシフト制御部14(図2参照)に出力する。シフト制御部14は、この位相情報を処理することで、光学部材51の回転速度を計算する。すなわち、径方向磁気センサ39及びシフト制御部14は、光学部材51の回転位置検出部及び回転速度検出部として機能する。
【0067】
このような回転速度の検出方法に替えて、例えば、光学部材51又は径側マグネット55の外周部(着磁部等)にマーキングを施し、これを光学式センサ(フォトリフレクタ)で検出するようにしてもよい。その場合、白黒のマーキングとすれば、比較的狭ピッチで描けるため、より高いサンプリングレートで回転角速度の検出が可能となる。
【0068】
軸方向磁気センサ40は、光学カプセル50の上面外壁に当接して位置制御部38の近傍に配置されている。軸方向磁気センサ40は、図4中に2点鎖線で示すように、光学カプセル50を介して上マグネット56に対向するように配置されているが、場合によっては、下マグネット57に対向するように軸方向磁気センサ40を配置してもよい。軸方向磁気センサ40は、上マグネット56から生じる磁力の大きさを検出することにより、上マグネット56が取り付けられたバックヨーク54(すなわち、光学部材51)の軸方向の位置情報を出力する。この位置情報に基づき、シフト制御部14(図2参照)は、軸方向位置制御コイル71(図8参照)に流す電流を制御し、光学部材51の軸方向の位置制御を行う。
【0069】
図8に示すように、位置制御部38は、電磁鋼帯を複数積層した略E形を呈するステータコア70と、ステータコア70の下側端部において上方(光軸方向に平行な方向)に突出する突部70aに捲回された軸方向位置制御コイル71と、ステータコア70の中間部において側方(光軸方向に垂直な方向)に突出する突部70bに捲回された径方向位置制御コイル72とを有している。突部70aおよび突部70bの先端は、光学カプセル50の下面および外周面にそれぞれ当接した状態にある。
【0070】
軸方向位置制御コイル71によって突部70aに形成される電磁石74は、下マグネット57に対して作用する磁力を発生する軸方向磁力発生手段として機能し、光学部材51の軸方向の位置制御に用いられる。また、径方向位置制御コイル72によって突部70bに形成される電磁石75は、径側マグネット55に対して作用する磁力を発生する径方向磁力発生手段として機能し、光学部材51の径方向の位置制御に用いられる。
【0071】
また、ステータコア70の上側端部には、光学カプセル50を挟んで突部70aと対向配置された下方(光軸方向に平行な方向)に突出する突部70cが設けられている。突部70cは、永久磁石76の一部として形成されており、その先端が光学カプセル50の上面に当接した状態にある。永久磁石76は、上マグネット56に対して作用する磁力を発生する軸方向磁力発生手段として機能し、対向する下方の電磁石74と協働し、光学部材51の軸方向の位置制御に用いられる。この場合、永久磁石76と上マグネット56とは同磁極(ここでは、共にN極)であり、これらの間には斥力が作用する。なお、永久磁石76としてはネオジム磁石を採用しているが、下方の電磁石74による磁力とのバランスを考慮して、他の磁石(例えば、フェライト磁石等)を用いてもよい。
【0072】
突部70bは、ステータコア70の上部と下部とを連結する連結部材77の一部として形成されている。連結部材77は、電磁石74、電磁石75、及び永久磁石76の間に磁気的な相互作用が生じないようにするために、非磁性体(例えば、樹脂、セラミック等)から形成されている。
【0073】
なお、本実施形態では、位置制御部38は、光学部材51の径方向および軸方向の位置を制御する手段として機能するが、径方向の位置を制御する位置制御部と軸方向の位置を制御する位置制御部とをそれぞれ個別に設けた構成も可能である。
【0074】
軸方向の位置制御においては、軸方向位置制御コイル71に電流を流すことにより電磁石74が励磁され、互いに同磁極(ここでは、S極)の電磁石74と下マグネット57との間に斥力が生じる。この斥力の大きさを、光学カプセル50を挟んで電磁石74とは反対側に位置する永久磁石76と上マグネット56との間に作用する斥力との釣り合わせることにより、光学部材51の軸方向位置が正規位置に保持される。
【0075】
一方、電磁石74が励磁されない場合には、光学部材51には永久磁石76からの斥力が作用して光学部材51は下方に移動し、かつ下マグネット57と無通電状態のステータコア間の引力によって(すなわち、下マグネット57の下端が光学カプセル50に当接した状態)で固定される。このように、撮像装置に電源を投入していない場合(例えば、撮像装置の運搬等の際)には、光学部材51が確実に固定されるため、平行平板53の破損を防止することができる。この場合、光学部材51(平行平板53)は、上記固定状態においても、破損防止等の観点から光学カプセル50に接触しないことが好ましい。したがって、光学部材51が図8に示す正規位置にある場合には、下マグネット57と光学カプセル50との間隔d1は、光学部材51と光学カプセル50との間隔d2よりも小さくなるように設定される。
【0076】
なお、光学的シフト機構35では、永久磁石76と上マグネット56との間ならびに電磁石74と下マグネット57との間にそれぞれ引力を作用させて、それらを釣り合わせる構成も可能である。しかしながら、上述のように斥力を作用させることで、初期起動時等に上マグネット56または下マグネット57による磁力(吸着力)の影響により、光学部材51に摩擦力が生じて装置が起動できなくなる等のトラブルを防止できるという利点がある。
【0077】
また、径方向の位置制御においては、径方向位置制御コイル72に電流を流すことにより電磁石75が励磁され、径側マグネット55との間に斥力が生じる。この斥力は、図7に示す位置制御部38a、38b、38cの配置により、径側マグネット55の周囲の三方向から作用し、それらを釣り合わせることにより、光学部材51の径方向位置が定位置に保持される。
【0078】
上記光学的シフト機構35では、図7に示したように、位置制御部38aと径方向磁気センサ39a、位置制御部38bと径方向磁気センサ39b、並びに位置制御部38cと径方向磁気センサ39cは、それぞれ互いに光軸Cを中心として180゜回転した位置に配置されている。そして、位置制御部38a、38b、38cの径方向位置制御コイル72(図8参照)は、それぞれ径方向磁気センサ39a、39b、39cが検出した位置情報に基づき駆動される。つまり、各置制御部38a、38b、38cの径方向位置制御コイル72は、それぞれ光学カプセル50を挟んで対向する位置で検出された位置情報に基づき駆動される。このような構成により、径方向磁気センサ39の出力の増大が、対応する位置制御部38と光学部材51(径側マグネット55)との離間距離の増大に直接的に関連づけられ、位置制御の処理が容易となる。
【0079】
また、上記光学的シフト機構35では、図6および図7に示したように、磁気回転駆動部36、径方向磁気センサ39、軸方向磁気センサ40、及び位置制御部38を、それぞれ光学カプセル50の外面に当接させている。このように、光学部材51の回転駆動制御および位置制御に必要な構成要素を光学カプセル50に当接させて配置する。これにより、光学カプセル50自体の寸法精度を良好に管理すれば、各構成要素の位置関係(すなわち、距離関係)を極めて高精度に定めることが可能となり、高い制御性能を実現することができる。ここでは、好適な例として、回転駆動制御および位置制御に必要な全ての構成要素が光学カプセル50に当接する構成としたが、これに限らず、それら構成要素の一部が光学カプセル50に当接する構成も可能である。
【0080】
また、上記光学的シフト機構35では、光学部材51を回転させるために、いわゆる3相モータに準ずる構成を適用した例を示したが、これを単相モータに準ずる構成を適用しても同様の効果を得ることができる。
【0081】
図9は、撮像素子への光の入射状況を示す断面図であり、図9(A)は入射した光の光路が最も右側にシフトした状態を示し、図9(B)は図9(A)の状態から平行平板53が180゜回転した状態を示している。なお、図9(B)の状態から、平行平板がさらに180゜回転すると、図9(A)の状態に復帰する。
【0082】
図9に示すように、光学部材51の平行平板53は、レンズユニット42の光軸Cに対して傾斜しているため、レンズユニット42を経て入射する光を屈折させ、撮像素子31の受光面に入射する光の位置が平行平板53の回転位置に応じて変化し、光学的シフト機構35により光学部材51を回転させると、撮像素子31の受光面上で結像する光像が、光学部材51の回転速度に応じた周期(円運動周期)で円を描くように移動し、これにより撮像素子31に対して光像を相対的に微小変位させることができる。
【0083】
図10は、図4に示した光学的シフト機構35におけるシフト制御部14の構成図である。以下では、シフト制御部14による光学部材51の回転駆動制御及び位置制御について、図10と図7とを併用して説明する。
【0084】
まず、光学部材51の回転駆動制御に関して説明する。光学部材51の径側マグネット55には、図7に示したように、16極(8対のN極及びS極)の着磁部68が設けられており、着磁部68が発生する磁気は周方向に120°間隔で配置された3つの径方向磁気センサ39により検出される。この径方向磁気センサ39の検出出力(アナログ信号)は、コンパレータ91aに入力されるが、その入力前に、図示しない増幅器及びアナログオフセット回路によって、その信号レベルが接地レベルに対して±に変化するようアナログ的にシフトされる。そして、コンパレータ91aは、このアナログ信号のゼロクロスを検出するとFG信号(パルス信号)を出力する。このFG信号は、割り込み信号(IRQ)として演算処理部92に入力される。上述のように径方向磁気センサ39は3系統あるから、演算処理部92はそれぞれのセンサについてゼロクロスに基づく割り込み信号を受け取る。また、原点センサ65の検出出力は、コンパレータ(CMP)91bにおいて所定のレベルと比較されることにより2値化されたパルス信号に変換された後、割り込み信号(IRQ)として演算処理部92に出力される。さらに、駆動回路33から出力される同期パルスは、シフト制御部14の演算処理部92に対して割り込み信号(IRQ)として入力される。
【0085】
ここで、着磁部68の各磁極の間隔は同一に設定されているため、磁極間の距離は既知である。そこで、この距離をシフト制御部14に設けられた高速カウンタで計数したパルス間(例えば、隣接するゼロクロスの間隔)の時間で除算すれば速度算出値Vnが得られる。つまり、本実施形態では演算処理部92は、速度算出部としても機能し、径方向磁気センサ39の出力に基づいて光学部材51の回転速度を算出する。このような構成により、径方向磁気センサ39で光学部材51の速度検出と位置検出とを行うことが可能となり、装置の低コスト化が図れる。
【0086】
ここで、演算処理部92における処理の詳細について説明する。演算処理部92は、演算処理を実行するCPU93と、CPU93の処理に必要なプログラムを記憶するROM94と、CPU93がプログラムを実行する際のワークエリアとして機能するRAM95とを有する。演算処理部92では、算出された光学部材51の回転速度に基づきPI制御(比例積分制御)を行うことにより、光学部材51を等角速度で回転させる。光学部材51が等速で回転するときのFGパルスの間隔(時間)は既知であるため、これを速度理論値Vr(設定された角速度、即ち速度目標値)として、当該速度理論値Vrに対する速度算出値Vnの誤差δVを次式のように算出する。
δV=Vr−Vn
【0087】
なお、速度理論値Vrおよび速度算出値Vnは、本来は実数であるが、CPU93による演算を高速化するために、例えば、予め16bitの整数値として正規化することができる。PI制御のうち比例項であるP項は、δVに適切なゲインGpを乗じて次式のように算出する。
P=Gp×δV
【0088】
ここで、ゲインが無限大であれば、P項のみを用いて速度制御が可能となるが、一般にゲインは有限であり、このとき速度オフセットを生じることから、誤差δVを積分し、これに適切なゲインGiを乗じて積分項であるI(Integral)項を次式のように算出する。
I=Gi×Σ(δV)
【0089】
このP+Iがいわゆる速度指令値であり、CPU93は速度指令値をパルス幅変調器(PWM)96に送出する。この速度指令値に基づき、パルス幅変調器96は所定周期におけるONデューティ比を算出し、このデューティ比に基づきパルス幅変調された信号(PWM信号)が3相ドライバ97に出力される。3相ドライバ97は、内部に3系統のプッシュプル型のトランジスタ回路98を備え、シフト制御部14から出力されたPWM信号に基づきスター結線された各回転駆動コイル81に流す電流を制御して回転駆動を行う。ここで、各回転駆動コイル81から取り出されたコモン信号は3相ドライバ97に入力され、各プッシュプル型のトランジスタ回路98の相励磁(ON/OFF)が制御される。この相励磁の切り替えによって光学的シフト機構の回転が制御される。なお、この電流の制御には、パルス幅変調器96の替わりに周知の電圧調整器を用いてもよい。いずれの構成を採用したとしても、速度理論値Vrとして用いる速度目標値を変更することによって、光学部材51を複数の異なる一定の角速度で回転させることが可能である。これによって周期設定部25(図2参照)から指示された円運動周期で回転駆動制御が実行される。
【0090】
次に、光学部材51の位置制御について説明する。上述のように、光学部材51の位置検出は、3つの軸方向磁気センサ40と、FG信号(速度情報)の入力源を兼ねる3つの径方向磁気センサ39とで行われる。これらのセンサ群は、上マグネット56および径側マグネット55に設けられた着磁部の磁気をそれぞれ検出する。この検出値は、A/D変換器101a、101bによってディジタル信号へ変換される。各A/D変換器101a、101bの出力は8bitであり、演算処理部92のCPU93は合計8×3×2bitの位置情報信号を受け取る。
【0091】
そして、CPU93は、取得した位置情報信号に基づき理論値(光学部材51が正規位置にある場合の径方向磁気センサ39および軸方向磁気センサ40との位置関係(既知の値))とのずれを修正する修正値を計算し、この修正値(ディジタル信号)をD/A変換器102a、102bに送出する。D/A変換器102a、102bにおいてディジタル信号がアナログ信号に変換される。このアナログ信号に基づき、径方向駆動用ドライバ99及び軸方向駆動用ドライバ100は、それぞれ径方向位置制御コイル72および軸方向位置制御コイル71を駆動し、光学カプセル50内の光学部材51の位置を制御する。
【0092】
なお、本実施形態では、径方向磁気センサ39および軸方向磁気センサ40の出力は直接的に距離情報を示す。したがって、PI制御のうちI項についてのみ演算を行えばよい。
【0093】
次に、上述の回転駆動制御及び位置制御における光学部材の回転位置の検出方法の詳細について説明する。図11は、原点センサ65および径方向磁気センサ39によるマーカ66および着磁部68の検出結果を示す図であり、図12は、図11の検出結果に基づくシフト制御部14による位置検出方法の詳細を示す説明図である。図12では、横軸の経過時間tに対する原点センサ出力、高速カウンタ値およびゼロクロスカウント値の変化が示されている。
【0094】
着磁部68(図7参照)では、16極の磁力が各径方向磁気センサ39a〜39cによって図11に示すような正弦波として検出されるように着磁パターンが設定されている。そして、コンパレータ91a(図10参照)は、これら各径方向磁気センサ39a〜39cの検出出力において、磁極がN極からS極(或いはS極からN極)に変化する際のゼロクロス(図11中に○印で示す)を検出するとFG信号(パルス信号)を出力し、このFG信号は、割り込み信号(以下、「ゼロクロス割り込み信号」という。)として演算処理部92に入力される。
【0095】
ゼロクロスは、光学部材51(図7参照)の1回転あたり16回検出される。例えば、定速回転する光学部材51の回転周期を225msとした場合、1つの径方向磁気センサ39は225/16=14.0625ms周期でゼロクロスを検出することになる。また、着磁部68の各磁極の間隔は同一(すなわち、周方向に22.5°の間隔)に設定されているため、図11に示すように、各径方向磁気センサ39の検出出力は、位相が1/3周期ずつずれたものとなる。したがって、3つの径方向磁気センサ39a〜39cは、全体として光学部材51が1回転する(225ms)ごとに48(16×3)個のゼロクロスを検出し、その検出周期の理論値は4.6875ms(225ms/48)となる。ここで、各ゼロクロス間の変位角度は、7.5°(360°/48)である。
【0096】
また、原点センサ65(図10参照)では、図11に示すように、225ms周期でパルス信号を出力し、このパルス信号の立ち上がりエッジが、演算処理部92のCPU93(図10参照)に対する割り込み信号(IRQ)として機能する。
【0097】
CPU93では、上記ゼロクロスを検出することにより、光学部材51の7.5°の回転を認識できるが、本実施形態では、図12に示すように、ゼロクロス間の経過時間をCPU93に内蔵された16bitの高速カウンタで計数することにより、より高精度に光学部材51の回転位置を検出している。
【0098】
図12において、CPU93は、原点センサ65の出力に基づく割り込み信号(IRQ1)の直後に、ゼロクロス割り込み信号(IRQ2)を検出すると、プログラム変数であるゼロクロスカウント値を0にリセットする。その後、CPU93は、ゼロクロス割り込み信号(IRQ3,IRQ4等)を検出する度にゼロクロスカウント値をカウントアップし、ゼロクロスカウント値が47まで到達すると、次のコンパレータ91aの割り込み信号(ここでは、IRQ2)の検出時にゼロクロスカウント値を0にリセットする。つまり、ゼロクロスカウント値は、0〜47の間で周期的にリセットとカウントアップが繰り返される。CPU93は、このゼロクロスカウント値の値をモニタすることにより、光学部材51の回転角度(回転位置)をより高精度に把握することができる。
【0099】
ゼロクロス割り込み信号(図12中のIRQ1〜IRQ4等)は、高速カウンタに対しては直接的にリセットパルスとして機能する。つまり、高速カウンタは、各ゼロクロス割り込み信号により、カウント値が0にリセットされ、再びカウントアップを繰り返す。ここで、高速カウンタのカウントクロックを例えば1MHzとし、ゼロクロス割り込み信号の周期を4.6875msとすると、隣接するゼロクロス割り込み信号の間に4687(4.6875×10−3×10)のカウントが行われる。すなわち、高速カウンタのカウント値は理論値として0〜4687をとる。
【0100】
また、シフト制御部14(図10参照)では、図12において、電荷蓄積期間の開始(または終了)を指示する割り込み信号(IRQ5)を駆動回路33から受信する。図12では、IRQ5が発生した時のゼロクロスカウント値は1であり、このとき、CPU93が取得した高速カウンタの値が2100であるとすると、光学部材51の回転角度θrotは、10.86°((1+2100/4687)×7.5°)となる。なお、ここでは、電荷蓄積期間の開始時点における光学部材51の回転角度を検出しているが、電荷蓄積が行われている間も光学部材51は回転を続けている。この回転速度は一定かつ既知であるから、例えば、電荷蓄積期間に応じて電荷蓄積期間の開始と終了の中間時点の回転位置を求めて、これを代表値として用いてもよい。
【0101】
上述のように、光学的シフトが行われる方向は、原点センサ65によるマーカ66の検出位置が基準となっているが、図12に示すように、原点センサ65の出力とゼロクロスが発生するタイミングにはオフセット(時間差)が存在する。このようなオフセットを意図的に設けることで、原点センサ65に基づく割り込み(IRQ1)とゼロクロスによる割り込み(IRQ2)との競合を回避している。
【0102】
一方で、このオフセットを考慮しないと光学部材51の正確な回転位置は算出できない。つまり、上記回転角度θrotは、原点センサ65がマーカ66を検出した後に発生した最初のゼロクロス(IRQ2)から電荷蓄積期間の開始までに光学部材51が回転した角度を表すものであるから、実際に光学的シフトが行われるのは、θrotにオフセットによる角度を加算したものとなる。ただし、ゼロクロスカウント値が47の場合には、オフセットを考慮することで回転角度が360°を超える場合があるが、この場合には、計算結果から360°を減算すればよい。
【0103】
なお、上記オフセットによる角度は、予め原点センサ65によるマーカ66の検出から最初のゼロクロス(径方向磁気センサ39cの出力を処理して得られたゼロクロス)の検出までの時間差(例えば、2ms)を実測しておくことにより、光学部材の理論的な回転周期(ここでは、225ms)から、3.2°(2/225×360°)と計算することができる。
【0104】
また、場合によっては、原点センサ65の出力を高速カウンタのリセットパルスとして用いることができ、その場合、次のゼロクロス割り込み信号をCPU93が有するインプットキャプチャ機能におけるイベント情報として利用して、オフセットの値を更新することも可能である。このオフセット更新処理は、例えば、撮像装置の電源投入時や所定期間内の温度変化が大きいような場合に行うとよい。
【0105】
光学的シフト機構35(図2参照)による光学的シフトは、撮像素子31の撮像面上において光像が円弧を描くようにして行われるが、この円弧の半径(以下、「シフト半径」という。)は平行平板53の傾斜角度によって一意に定まる。したがって、上記のように回転角度θrotを高精度に計測可能としたことで、単純な三角関数の演算によって、光学的シフトが行われる位置情報(光学的シフトによりシフトされた光像のX、Y座標位置)を高精度に算出することが可能となる。位置情報は、具体的には、超解像処理によって得るべき高解像度空間における画素(ピクセル)よりも細かい、いわゆるサブピクセルの精度で算出される。取得した光学的シフトの位置情報は、上述のように、シフト制御部14から画像処理装置2の記憶部23に送出され、撮像したフレーム画像と関連付けられて保存される。なお、図2では、シフト位置情報を画像データとは分離したルートで記憶部23に伝送しているが、例えば、シフト位置情報をシフト制御部14から画像処理部12に送出し、画像処理部12において画像データにパッキングして伝送するようにしてもよい。
【0106】
このように、ゼロクロスを検出することによって、光学部材51の相対的な回転位置(回転角度)を検出することができる。本実施形態のように、液体中に回転体を磁気保持するような構成では、径方向磁気センサ39と径側マグネット55の距離の変化に応じて、回転体側の磁極と磁気センサ間の距離が変化する蓋然性が高い。しかしながら、光学部材51の回転位置検出にゼロクロスを採用したため、径方向磁気センサ39と径側マグネット55の距離の影響を受けにくい(すなわち、磁極が切り替わる部分では距離変動の影響を受けにくい)という利点がある。
【0107】
図13は、光像に対する画素の相対的な円運動の状況を示す模式図である。ここでは、撮像装置の光学的シフト機構においてシフト半径rを撮像素子31の画素ピッチと同じ大きさに設定した例を示す。光像に対する画素の相対的な円運動は、図9に示したように、固定された撮像素子31の画素に対して光像が変位するものであるが、ここでは、便宜上、画素に対する光像の相対的な移動を、静止した光像に対して撮像素子31の画素が移動するように図示する。さらに、各画素は、光を受光する所定のサイズの受光領域を有するが、以下の説明では、便宜上、各画素の中心位置(画素中心)のみを図13中に実線で示された複数の直線の交点として図示する。
【0108】
図13において、X軸は主走査方向、Y軸は副走査方向をそれぞれ示す。また、図中に実線で示されたX軸方向およびY軸方向における複数の直線は、それぞれ画素ピッチの間隔で配置されている。さらに、図中に破線で示されたX軸およびY軸方向における複数の直線は、上述した超解像処理における高解像度空間の画素を示すためのものであり、ここで、高解像度空間の画素は、画素ピッチを主走査および副走査をともに4分割したサブピクセル(すなわち、4×4倍の超解像処理を行う場合)として規定されている。なお、4×4倍の超解像処理で得られる有利な効果は、これよりも分割数が小さい場合(例えば、画素ピッチLを3分割、即ち3×3倍の超解像)であっても、同様に得られる。
【0109】
撮像素子31は、入射光のうちR(Red)成分を受光するR画素と、B(Blue)成分を受光するB画素と、G(Green)成分を受光するG画素の各画素がいわゆるベイヤ配列に基づいて配列された、いわゆる単板式のカラー撮像素子である。このベイヤ配列では、G画素が全画素数の1/2の画素数で千鳥状(チェッカフラッグ状)に配置され、R画素及びB画素が各全画素数の1/4ずつの画素数でG画素の配置位置を除く位置に分散配置されている。
【0110】
なお、シフト半径rは、平行平板53における光路部分の厚みおよび傾斜角度ならびにポリピレングリコール濃度を調整することによって変更することができる。例えば、シフト半径rを画素ピッチと同一とした場合、平行平板53の厚みは0.1mm、傾斜角度は傾斜角度=20°、ポリピレングリコール濃度は60wt%(60wt%(PGと水の混合比が6:4であり、屈折率は約1.38)となる。
【0111】
図13中に実線の円で示すように、各画素(例えば、G画素)の画素中心は、各黒丸(●)を回転中心として画素ピッチと同じ大きさの半径を有する円軌道を描いて運動する。ここでは、光像に対する画素の相対的な円運動を1方向に一定速度で連続して行わせながら撮像が行われる。図13中に○印で示した撮像基準位置P1〜P15は撮像のタイミングを示すものであり、これら少しずつずれた各撮像基準位置において1枚のフレーム画像が順次生成される。特に、ここでは、円軌道を移動する画素(例えば、G画素)の中心位置を撮像基準位置(実質的な撮像位置)として示しており、各撮像基準位置で電荷蓄積が開始され、直後の撮像基準位置の手前で電荷蓄積が完了して画素信号が出力される。
【0112】
この円運動の回転速度は上述したPI制御によって安定して保たれ、平行平板53(図9等参照)の回転位置の基準は上述した原点センサ65(図6参照)によって管理され、また平行平板53の傾斜角変動のシフト幅(シフト位置)に対する影響は小さく抑えられているから、各タイミングで撮像されるフレーム画像の撮像位置(すなわち、撮像素子と光像との相対位置)は極めて高精度に把握されることとなる。
【0113】
以降、図10、図2を併用して説明する。
【0114】
上述の撮像位置に関する情報(以下、単に「位置情報」という。)は径方向磁気センサ39及び原点センサ65の出力に基づき演算処理部92で逐次生成され(いずれも図10参照)、演算処理部92を含むシフト制御部(位置情報取得部)14から記憶部23へ出力され、撮像部11から出力されたフレーム単位の画像データと関連づけて記憶される。そして超解像処理の過程で、位置情報は超解像処理部24で参照され、この際に位置合わせ処理が簡略化される(いずれも図2参照)。
【0115】
なお、超解像処理で適切な高解像化を行うには、全ての画素における撮像タイミングは均一とすることが望ましく、本実施形態では各画素ライン間で電荷蓄積タイミングに時間差が生じないグローバルシャッタ方式を採用した。
【0116】
また、画素が1回の円運動を行う間に数多くの撮像(サンプリング)を行うことで、超解像処理で得られる高解像度画像の品質を高めることができ、特にここでは、円運動周期を撮像周期の非整数倍に設定する。このようにすると、円運動を繰り返すことで、多数の異なる位置での撮像が可能となるため、撮像位置が微小に異なる画像を多数生成することができるので、超解像処理で得られる高解像度画像の品質を向上させることができる。これに対して、円運動周期を撮像周期の整数倍とすると、円運動を繰り返しても撮像基準位置に変化がなく、1回の円運動で設定可能な撮像基準位置の数に限定される。
【0117】
以下、円運動周期と撮像周期との比率を具体的に定めて、撮像基準位置の例について図14を用いて説明する。図14は、撮像周期と円運動周期との比率の一例での撮像基準位置の状況を示す模式図である。なお、図14では、画素ピッチを1として図示している。
【0118】
図14に示す例では、円運動周期を撮像周期の7.5倍に設定している。ここで、撮像周期を例えば30ms(約30frame/s)とすると、円運動周期は225msとなる(=30ms×7.5)。この場合、円運動の2回目で撮像基準位置が原位置に復帰し、円運動が2回行われる間に15回の撮像(サンプリング)が行われる。各撮像基準位置は48°(=360°/7.5)の相対角度をもって離間している。なお、超解像効果は画像にブレ(積分効果)があると抑制されるため、撮像素子31における電荷蓄積期間(シャッタ速度)の選定は重要である。この観点からすれば、シャッタ速度は可能な限り高速にすべきである。しかし、一方でシャッタ速度を高速にすると感度不足となりやすいため、被写体の光量に応じてシャッタ速度優先でゲインを補償するのが望ましい。本実施形態ではシャッタ速度を1/250sec(4ms)に設定している。撮像周期=30msに対してシャッタ速度をこの程度にすると、超解像処理における画像のブレによる悪影響は目視上観測されなかった。
【0119】
円運動の1回目では、図14(A)に示すように、撮像基準位置P1〜P8で撮像が行われ、円運動の2回目では、図14(B)に示すように、撮像基準位置P9〜P15で撮像が行われ、各撮像基準位置P9〜P15は、円運動の1回目における隣り合う撮像基準位置(例えばP1とP2)の中間位置となる。円運動の1回目と2回目とを合わせると、図14(C)に示すように、各撮像基準位置P1〜P15が24°の相対角度をもって離間する。
【0120】
ここで、円運動の1回目の撮像基準位置P1〜P8での撮像で得られた8枚の画像に基づいて超解像処理を行う第1の処理モードと、円運動の1回目と2回目とを合わせた撮像基準位置P1〜P15での撮像で得られた15枚の画像に基づいて超解像処理を行う第2の処理モードとの2つの処理モードを選択することができる。
【0121】
第1の処理モードでは、本来の1画素の範囲内に、X軸、Y軸の両方向で位置の異なる2つの撮像基準位置が設定されるため、X軸、Y軸のそれぞれの方向について撮像素子31の本来の解像度のほぼ2倍の解像度で高解像度化を行うことができる。一方、第2の処理モードでは、本来の1画素の範囲内に、X軸、Y軸の両方向で位置の異なる4つの撮像基準位置が設定されるため、X軸、Y軸のそれぞれの方向について撮像素子31の本来の解像度のほぼ4倍の解像度で高解像度化を行うことができる。
【0122】
特に、この第2の処理モードでは、円運動の2回目で設定される撮像基準位置P9〜P15の各々が、円運動の1回目で設定される撮像基準位置P1〜P8の互いに隣り合うもの同士の中心位置になり、撮像基準位置が偏ることなく均等に分散された状態となるため、超解像処理との適合性に優れた画像を生成することができる。
【0123】
また、撮像装置1で撮像が行われている最中に撮像装置1で超解像処理を行うことも可能であり、この場合、第2の処理モードでは、円運動が2回行われて15枚の画像が揃う度に1回の超解像処理を行えばよい。
【0124】
一方、第1の処理モードでは、撮像基準位置を順次シフトさせながら8枚の画像が揃う度に超解像処理を行うとよい。具体的には、1回目で、撮像基準位置P1〜P8での撮像で得られた8枚の画像を用いて超解像処理を行い、2回目で、撮像基準位置P9〜P15、P1での撮像で得られた8枚の画像を用いて超解像処理を行い、以降、3回目では撮像基準位置P2〜P9、4回目では撮像基準位置P10〜P15、P1、P2というように撮像基準位置を1つずつずらすようにする。
【0125】
このように2つの処理モードを設定することができ、両モードでは、円運動周期(光学的シフト機構35の回転速度)や撮像周期を変化させる必要がないため、制御が容易である。
【0126】
なお、各モードでの超解像処理に用いる最初の画像は原位置P1の撮像で得られた画像に限定する必要がなく、第1の処理モードでは、任意の位置から1回の円運動が行われる間に撮像された8枚の画像を用いて超解像処理を行い、第2の処理モードでは、任意の位置から2回の円運動が行われる間に撮像された15枚の画像を用いて超解像処理を行うようにしてもよい。
【0127】
このような処理は、図3に示したように、画像処理装置2の記憶部23に蓄積されたフレーム画像を用いて超解像処理を行う場合にも、また撮像装置1での撮像の最中に超解像処理を行う場合にも適用することができ、特に後者の場合には、処理モードの切り替えに伴って撮像開始位置を原位置P1に戻す操作が必要でないため、直ちに処理モードを切り替えて解像度が異なる高解像度画像を生成することが可能になる。
【0128】
図2に示したように、撮像周期は、画像処理装置2において入力部26を用いてユーザにより指定され、周期設定部25にて、指定された撮像周期に基づいて円運動周期が決定され、ここで決定された円運動周期に関するコマンド信号が撮像装置1に送信される。撮像装置1のシフト制御部14では、画像処理装置2から取得した円運動周期に関するコマンド信号に基づいて、指定された円運動周期に対応する回転速度で光学的シフト機構35を動作させる。
【0129】
また、ユーザは処理モード(第1の処理モードと第2の処理モード)を指定することができ、図3に示したように、画像処理装置2の記憶部23に蓄積されたフレーム画像を用いて超解像処理を行う場合には、基準画像と共に処理モードをユーザに指定させ、ここで指定された処理モードに応じた数のフレーム画像を、基準画像として指定されたフレーム画像を基準にして読み出して超解像処理を行わせればよい。
【0130】
なお、上記円運動周期は、適宜変更することが可能である。例えば、円運動周期を撮像周期の7.2倍に設定することにより、円運動の5回目で撮像基準位置が原位置に復帰し、円運動が5回行われる間に36回の撮像(サンプリング)が行われる構成も可能である。その場合、各撮像基準位置は50°(=360°/7.2)の相対角度をもって離間する。
【0131】
次に、図15〜図18を参照して、上記第1実施形態に係る画像処理装置2において、所定の被写体について、光学的シフトにより撮像位置の異なる複数の低解像度画像から1枚の高解像画像を生成するための超解像処理について説明する。
【0132】
図15は図2の画像処理装置2における超解像処理部24の機能ブロック図であり、図16は超解像処理部24による超解像処理の流れを示すフロー図であり、図17は超解像処理における撮像画像の処理の一例を示す説明図であり、図18は、超解像処理における各フレーム画像の処理を示すブロック図である。
【0133】
図16において、まず、範囲指定部101(図15参照)は、撮像画像において超解像処理が必要となるユーザが指定した範囲(指定範囲)を設定する(S101)。ユーザは、入力部26(図2参照)から予めこの指定範囲を入力することができる。
【0134】
次に、シフトキャンセル部102(図15参照)は、記憶部23から連続的に撮像された一連の低解像度画像とこれら各画像に対応する位置情報(撮像位置の座標。上述したように、高解像度空間における画素の位置より細かい精度を持つ)とを取得し、上記指定範囲について、低解像度空間においてシフトキャンセル処理を実施する(S102)。
【0135】
シフトキャンセル処理とは、撮像画像に対して上述した光学的シフト機構35によって付与された光学的シフトの影響(即ち画像の移動)をキャンセル、即ちシフト位置をもとに戻す処理を意味する。但し、シフトキャンセルは上述のように低解像度空間における画素単位に行われるから、光学的シフトが低解像度空間におけるピクセルサイズより小さい範囲で行われた場合等は、シフトキャンセル処理によって画像がシフト前の状態に完全に戻る訳ではない。
【0136】
ここで、シフトキャンセル部102は、例えば、図17に示すように、低解像度画像として、高解像度化したい基準画像となるシフト位置情報(0,0)を有する撮像画像と、この基準画像に対して光学的シフトにより位置(X軸、Y軸)が異なる複数の低解像度画像(ここでは、基準画像から下方にシフトしたシフト位置情報(0,1)有する撮像画像と、基準画像から左方にシフトしたシフト位置情報(1,0)有する撮像画像と、基準画像から下方及び左方にシフトしたシフト位置情報(1,1)有する撮像画像との3枚)とを取得する。そして、シフトキャンセル部102は、基準画像を除く各撮像画像に対して、位置情報に基づき光学的シフトを解消するシフトキャンセル処理を行うことにより、撮像画像(図17中では、建物等の静止部分)の位置を基準画像の位置(光学的シフトの基準位置)と一致させたシフトキャンセル画像をそれぞれ生成する。この場合、シフトキャンセル部102は、低解像度画像を複数の画素または1画素単位でシフトさせてシフトキャンセル画像を生成することができる。
【0137】
なお、説明を簡単にするために、図17には光学的シフトは上下左右に行われている例を示しているが、上述したシフト機構による円運動であっても、考え方は全く同じである。
【0138】
次に、動き検出部103(図15参照)は、シフトキャンセル部102からシフトキャンセル画像を取得すると、第1検出部104により、各シフトキャンセル画について基準画像に対して静止・動き判定を実施する(S103)。ここで、第1検出部104は、1または複数の画素からなる着目する画素ブロック(処理対象領域)における画素の平均輝度変化(基準画像との差分)が所定量を越えた場合に当該画素ブロック内で被写体に動きがあったと判定する。このように平均的な値を参照する理由は、上述のようにシフトキャンセル処理によって、画像がシフト前の状態に完全に戻らない場合があり(なお、光学的シフトを円形とした場合、円運動は複数の角度ベクトルを含むため、通常、シフトキャンセル処理によって、シフト前の状態に戻る場合は殆どない)、誤判定の原因となるからである。
【0139】
動き検出部103は、動きありと判定すると(S104;Yes)、第2検出部105により、各シフトキャンセル画において動きベクトルを検出する(S105)。ここで、動きベクトルの検出方法としては、例えば、POC(Phase Only Correlation:位相限定相関法)、ブロックマッチング法および勾配法等を用いることができる。これらは公知の手法であるため詳細な説明は省略するが、例えば、POCについては特許第3035654号公報、ブロックマッチング法については特開2001−195597号公報、勾配法については特公平5−40513号公報をそれぞれ参照されたい。
【0140】
次に、位置合わせ処理部106(図15参照)は、第2検出部105から動きベクトルの情報を取得すると、基準画像との位置合わせをするための位置合わせ処理を実施する(S106)。すなわち、位置合わせ処理部106は、各シフトキャンセル画像において動いた部分(図17では、建物の前を左から右へ走行する自動車の部分)ついて、高解像度画像空間上おいて基準画像の対応部分と一致するように上記動きベクトルに基づき公知の動き補償を実施し、当該動いた部分についての位置合わせ画像を生成する。なお、これらの処理は着目する画素ブロック単位に行われる。そして、図15において、選択部111は、その位置合わせ画像を再構成処理部107に送出する。
【0141】
一方、ステップS104において、着目する画素ブロックが動きなし(No)と判定された場合、ステップS105、S106は省略される。そして、図15において、選択部111は、上記位置合わせ画像の代わりに、記憶部23からの低解像度画像を再構成処理部107に送出する。
【0142】
その後、再構成処理部107(図15参照)は、動きのある部分の位置合わせ画像および、静止部分の低解像度画像と撮像位置情報を用いて再構成処理を実行し、高解像度画像を生成する(S107)。より詳細には、再構成処理部107は、高解像度推定処理部108により、公知の手法で複数枚の低解像度画像の各画素について高解像度空間の画素(サブピクセル)への当てはめを行う。特に、着目する画素ブロックに動きがない場合、当該画素ブロックには光学的シフトのみが作用しているため、低解像度画像は撮像位置の情報が高解像度空間のサブピクセル精度で既知であるから、再構成処理部107は、取得した低解像度画像と撮像位置情報に基づき、当該画素ブロックの画素を、高解像度空間に直接的に当てはめることができる。
【0143】
さらに、高解像度推定処理部108にて、必要に応じて不足領域についての補間処理(例えば、距離に応じた重み付け補間)を行う。
【0144】
次に、逆フィルタ(Inverse Filter)109により、公知の手法で生成された劣化関数の逆関数で画像を復元する。
【0145】
なお、図15に示す機能はハードウェア又はハードウェアとソフトウェアの結合又はソフトウェア(画像処理プログラム)によって実現することができる。そして着目する画素ブロックにおいて動きがない場合は、ステップS105、S106を容易に省略することができ、高速化が図られ、超解像処理における計算コストが大幅に低減される。
【0146】
上述のような超解像処理は、図18に示すように、複数(ここでは、N枚)の低解像度画像に対し、順次実行される。図18は、N枚の低解像度画像それぞれについて同一部分を占める画素ブロックに対して、並列に動き検出及び位置合わせ処理を行なう状況を示しているが、このような構成を用いた場合でも、着目する画素ブロックに動きがない場合、動き検出部103に該当する処理及び位置合わせ処理部106に該当する処理を容易に省略することができ、高速化が図られ、計算コストの低減が達成される。
【0147】
(第2実施形態)
次に、図19、図20及び上述の図16を併せて参照して、本発明の第2実施形態に係るネットワークカメラシステムについて説明する。第2実施形態では、以下で特に言及する事項を除いて上述の第1実施形態の場合と同様とする。また、図19、図20では、第1実施形態と同様の構成要素については同一の符号を付してある。
【0148】
図19は第2実施形態に係る超解像処理部24の機能ブロック図であり、図20は第2実施形態に係る超解像処理における撮像画像の処理の一例を示す説明図である。
【0149】
第2実施形態における超解像処理は、図16中に2点鎖線で示すように、ステップS107の再構成処理において、低解像度画像の代わりにシフトキャンセル画像を用いる点において、第1実施形態の場合とは異なる。位置合わせ処理部106は、図20に示すように、各シフトキャンセル画像の動きのある部分ついて、基準画像の対応部分と一致するように上記動きベクトルに基づき動き補償を実施し、位置合わせ画像を生成する(S106)そして、図16中のステップS104において、着目する画素ブロックが動きなし(No)と判定された場合、図19において、選択部111は、上記位置合わせ画像の代わりに、シフトキャンセル部102からのシフトキャンセル画像を再構成処理部107に送出する。この場合、第1実施形態における低解像度画像の場合とは、位置情報の有する意味が若干異なる。
【0150】
即ち、第1実施形態における低解像度画像の「位置情報」は、撮像された画像の高解像度空間における絶対的な座標を意味するが、第2実施形態におけるシフトキャンセル画像の「位置情報」は、低解像度空間の1画素内の相対的な位置情報を意味する。もっとも、第1実施形態と第2実施形態との間で「位置情報」の表現形式は同じでよく、各形態で「位置情報」をどのように解釈するかの違いでしかない。
【0151】
以上述べてきたように、第1実施形態と第2実施形態においては、撮像位置の情報に基づき低解像度空間において光学的シフト機構による光学シフトをキャンセルするシフトキャンセル画像を生成すると共に、動き検出部で、基準となる低解像度画像とシフトキャンセル画像の間で動きを検出しなかった場合には、低解像度画像またはシフトキャンセル画像(いずれも撮像位置が既知)を用いて高解像度空間における再構成処理を実行する構成としている。
【0152】
(第3実施形態)
次に、図21a,b〜図23を参照して、本発明の第3実施形態に係るネットワークカメラシステムについて説明する。第3実施形態では、以下で特に言及する事項を除いて上述の第1実施形態の場合と同様とする。また、図21〜図23では、第1実施形態と同様の構成要素については同一の符号を付してある。
【0153】
図21a,bは光像に対する画素の相対的な円運動において生じる撮像位置の位置ずれを示す説明図であり、図22は第3実施形態に係る超解像処理部24の機能ブロック図であり、図23は第3実施形態に係る超解像処理部24による超解像処理の流れを示すフロー図である。
【0154】
図13、図14について上述したように、各撮像基準位置は、所定のシフト半径の円軌道上に位置するのが理想である。例えば図21aは光学的シフト機構35のシフト半径として約3.8画素、30フレーム/秒で、シフト機構一周あたり64画像を撮像するように、シフト機構の回転速度を調整して得た撮像位置の軌跡を示している。光学的シフト機構35を駆動し続けても、撮像位置の座標には全く変化がみられず、高度な繰り返し再現性を備えている。部品精度を適切に管理して光学的シフト機構を設計・作成し、更にフィードバック制御の変数等を最適化することで、現実に図21aに示す特性を得ることが可能であり、この程度の性能を備えるならば、第1実施形態、第2実施形態で説明したように、光学的シフト機構35から得られた撮像位置の情報に基づき、位置合わせ処理(図16のステップS105,S106)を省略することができる。
【0155】
しかしながら、例えば光学的シフト機構35を低コストで作成したような場合は、図21bに示すように撮像位置の軌跡(図中に◆印で示す)には、回転時における光学的シフト機構35の構成要素の振動や、径方向磁気センサ39の出力のバラツキや経時変化等によって位置ずれ(光学的シフトの誤差)が生じる場合がある。例えば、図21bにおいて、光学部材51が原点センサ基準位置Poから角度θだけ回転した場合、シフト制御部14は円軌道上の位置Ppを撮像位置として出力するが、実際に画像から判断された撮像位置は位置Prとなる。
【0156】
このような実際の撮像位置の誤差について発明者らが鋭意調査したところ、シフト制御部14が出力する撮像位置(撮像基準位置)と、実際に画像から判断された撮像位置との間には明らかな空間的相関があり、発生する誤差は高解像度空間における所定の範囲内に収まることがわかった。つまり、撮像位置の位置ずれが生じた場合でも、発生する誤差の範囲(ここでは、高解像度空間における1画素幅の範囲W)に探索範囲を限定した位置合わせ処理を行うことにより、演算量を大幅に低減することができることが分かった。
【0157】
図23において、動き検出部103(図22参照)が動きありと判定すると(S104;Yes)、第2検出部105により、各シフトキャンセル画について所定の探索範囲(第1の範囲)で動きベクトルを検出し(S105)、更に、第1位置合わせ処理部106(図22参照)は、第1実施形態の場合と同様に位置合わせ処理を実施し、位置合わせ画像を生成する(S106)。
【0158】
一方、ステップS104において、着目する画素ブロックが動きなし(No)と判定された場合、第3検出部121(図22参照)は、記憶部23からの位置情報に基づいて動きベクトルを検出する(S108)。このとき、第3検出部121の探索範囲(第2の範囲)は、高解像度空間における1画素(サブピクセル)幅の範囲内に設定され、第2検出部105の探索範囲(例えば、高解像度空間における100画素以上)に比べて小さい。そして、第2位置合わせ処理部122(図22参照)は、第3検出部121が検出した動きベクトルに基づき動き補償を実施し、当該動いた部分についての位置合わせ画像を生成する(S109)
【0159】
この場合、選択部111は、第1検出部104が、第1検出部104が動きありと判定すると(S104;Yes)、第1位置合わせ処理部106で動き補償を行った位置合わせ画像を再構成処理部107に出力する一方、動きなしと判定すると(S104;No)、第2位置合わせ処理部122で動き補償を行った位置合わせ画像を再構成処理部107に出力する。
【0160】
本発明について実施例を含む特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。なお、上記実施形態に示した本発明に係る撮像装置の各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。
【産業上の利用可能性】
【0161】
本発明に係る撮像システム並びにこれに用いる画像処理装置、画像処理方法および画像処理プログラムは、光学的シフトの誤差が生じ得る場合でも、超解像処理における無駄な位置合わせ処理を抑制することにより、計算コストを低減することを可能とし、撮像素子の受光面上で結像する光像と撮像素子とを相対的に微小変位させながら撮像を行う、いわゆる画素ずらしによって取得した複数の低解像度画像から超解像処理により高解像度画像を生成するのに適した撮像システム並びにこれに用いる画像処理装置、画像処理方法および画像処理プログラムとして有用である。
【符号の説明】
【0162】
1 撮像装置
2 画像処理装置
11 撮像部
12 画像処理部
14 シフト制御部(位置情報取得部)
31 撮像素子
35 光学的シフト機構
36 磁気回転駆動部
38 位置制御部
39 径方向磁気センサ
40 軸方向磁気センサ
41 センサモジュール
42 レンズユニット(光学系)
50 光学カプセル
51 光学部材
52 液体(流体)
53 平行平板
54 バックヨーク
55 径側マグネット
56 上マグネット
57 下マグネット
65 原点センサ
72 位置制御コイル
75 電磁石
76 永久磁石
77 連結部材
102 シフトキャンセル部
103 動き検出部
106 (第1)位置合わせ処理部
107 再構成処理部
122 第2位置合わせ処理部
C 光軸

【特許請求の範囲】
【請求項1】
撮像素子と当該撮像素子の受光面上で結像する光像との相対的な円運動を行わせることにより撮像された複数の低解像度画像を取得し、これら撮像位置の異なる複数の低解像度画像から高解像度画像を生成する画像処理装置であって、
前記低解像度画像の撮像位置の情報に基づき、当該低解像度画像の位置を基準となる基準低解像度画像の位置に一致させたシフトキャンセル画像を生成するシフトキャンセル部と、
前記シフトキャンセル画像と前記基準低解像度画像との比較により、前記低解像度画像における動きを検出する動き検出部と、
前記動き検出の結果に基づき、前記シフトキャンセル画像を前記基準低解像度画像と位置合わせすることにより、位置合わせ画像を生成する位置合わせ処理部と、
前記位置合わせ画像を用いて再構成処理を実施することによって高解像度画像を生成する再構成処理部と
を備え、
前記位置合わせ処理部は、前記シフトキャンセル画像の所定の処理対象領域について、前記動き検出部で動きを検出した場合には、第1の範囲の動き検出に基づき前記位置合わせを実行し、一方、前記動き検出部で動きを検出しなかった場合には、前記第1の範囲よりも小さい第2の範囲の動き検出に基づき前記位置合わせを実行することを特徴とする画像処理装置。
【請求項2】
前記低解像度画像において前記処理対象領域となり得る範囲を指定する領域指定部を更に備えたことを特徴とする請求項1に記載の画像処理装置。
【請求項3】
前記動き検出部は、
前記シフトキャンセル画像について動きの有無を判定する第1検出部と、
前記第1検出部が動き有りと判定した場合に、前記シフトキャンセル画像について前記第1の範囲で動きベクトルを検出する第2検出部と、
前記第1検出部が動きなしと判定した場合に、前記シフトキャンセル画像について前記第2の範囲で動きベクトル検出する第3検出部と
を有することを特徴とする請求項1または請求項2に記載の画像処理装置。
【請求項4】
前記シフトキャンセル部は、前記低解像度画像を画素単位でシフトさせて前記シフトキャンセル画像を生成することを特徴とする請求項1から請求項3のいずれかに記載の画像処理装置。
【請求項5】
請求項1から請求項4のいずれかに記載の画像処理装置と、前記低解像度画像を撮像する撮像装置とを備えた撮像システムであって、
前記撮像装置は、
被写体からの光を光電変換して画素信号を出力する撮像素子と、
前記被写体からの光を前記撮像素子に導く光学系と、
前記撮像素子の受光面上で結像する光像と前記撮像素子との相対的な円運動を行わせる光学的シフト機構と、
前記光学的シフト機構による円運動を指定の周期で行わせるシフト制御部と、
前記撮像素子の前記撮像位置の情報を取得する位置情報取得部と
を備えたことを特徴とする撮像システム。
【請求項6】
撮像素子と当該撮像素子の受光面上で結像する光像との相対的な円運動を行わせることにより撮像された複数の低解像度画像を取得し、これら撮像位置の異なる複数の低解像度画像から高解像度画像を生成する画像処理方法であって、
前記低解像度画像の撮像位置の情報に基づき、当該低解像度画像の位置を基準となる基準低解像度画像の位置に一致させたシフトキャンセル画像を生成するシフトキャンセル生成ステップと、
前記シフトキャンセル画像と前記基準低解像度画像との比較により、前記低解像度画像における動きを検出する動き検出ステップと、
前記動き検出の結果に基づき、前記シフトキャンセル画像を前記基準低解像度画像と位置合わせすることにより、位置合わせ画像を生成する位置合わせ処理ステップと、
前記位置合わせ画像を用いて再構成処理を実施することによって高解像度画像を生成する再構成処理ステップと
を有し、
前記位置合わせ処理ステップは、前記シフトキャンセル画像の所定の処理対象領域について、前記動き検出部で動きを検出した場合には、第1の範囲の動き検出に基づき前記位置合わせを実行し、一方、前記動き検出部で動きを検出しなかった場合には、前記第1の範囲よりも小さい第2の範囲の動き検出に基づき前記位置合わせを実行することを特徴とする画像処理方法。
【請求項7】
画像処理装置を制御することにより、請求項6に記載の画像処理方法を実行する画像処理プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21a】
image rotate

【図21b】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2012−129614(P2012−129614A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2010−277048(P2010−277048)
【出願日】平成22年12月13日(2010.12.13)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】