説明

擬似立体音響オーディオ信号を取得するための角度依存動作装置または方法

本発明は擬似立体音響への寄与を表す。任意の指向特性のモノラルオーディオ信号は、主軸(1203)と音源(1204)の放出方向とが囲む角度ファイ(1205)、仮想の左開口角アルファ(1206)並びに仮想の右開口角ベータ(1207)並びに(極座標で表された)立体音響化されるモノラル信号の指向特性がパラメータで表され、合目的に伝達時間差(1210,1211)およびレベル補正(1212および1213から誘導)を受ける。この結果、MSマトリクス形成(およびそれによる元のモノラルオーディオ信号の立体音響再生)が可能となるM信号およびS信号が生じる。技術的構成を簡略にしたために小型化できる本発明の主な適用は、回線信号の合目的な立体音響化、モノラル収録された音源の空間的拡散および異なる位置の音源でのモノラル収録の立体音響化である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、オーディオ信号(特に音声変換器信号)およびこの取得、伝送、変換および再生のための装置または方法に関する。
【0002】
一般に、人が耳で分類できる空間情報を表現するか、または連想させるようなシステムが試みられている。これは、人工的な第1反射または人工的な拡散音を付け加えることによる、2つまたはそれ以上の異なる性質をもつ最終信号を再生することによって達成されるか、または人の頭部における音響的な状態をHRTFを用いてシミュレートすることによって達成される。これらの解決の糸口は、特に、モノラルオーディオ信号を、実際の広がりまたは仮想の広がりを耳に伝える信号に移行するために利用される。このような方法を、「擬似立体音響」と呼ぶ。
【0003】
擬似立体音響信号は、従来のステレオ信号に比べて通常十分とは言えない。特に周波数スペクトルの位相を変えて最終信号へ分配する方法などにおいて、心理音響学的理由から、音源の局在化が制限される。同じ理由から、伝達時間差を使用しても通常矛盾した局在化が生じる。同じく心理音響学的理由から、人工的な残響は聴取者に疲労現象を生じさせる。音源を立体的に表現する場合の、このような矛盾を取り除く一連の提案が特にGerzon(下記参照)によってなされている。従来のステレオ信号を表現できるような元の空間的状態は、総合的な適用においても通常再現されない。
【0004】
強度立体音響法のシミュレーションに基づく擬似立体音響は、特に八の字指向性に基づくモノラルオーディオ信号を立体音響化できないという問題を有する。これは、横方向から入る音を再現できないことに因るものである。
【背景技術】
【0005】
US5173944は、遅延時間は異なるが一様に増幅された基本信号を考慮し、この基本信号に重畳する信号を、HRTFを用いて、90°、120°、240°および270°の一定の方位角で観察している。この場合、レベル補正および伝達時間補正は、元の録音位置には関係しない。
【0006】
US6636608は、立体音響化されるモノラル信号の、周波数に関係させて決められた位相のずれを提案しており、この信号は、同じく録音位置に関係せずに、異なる増幅で左のチャンネルでも右のチャンネルでも元のモノラルオーディオ信号に重畳される。
【0007】
すでに述べた文書US5671287(Gerzon)は、Orbanにより提案された(モノラルオーディオ信号から、録音位置に関係せずに周波数に関係して位相がずれる加算信号および差分信号を取得する)方法を改善するもので、この改善は、加算信号および差分信号の構成がわずかに変化した場合の、同じく周波数に関係させた位相のずれまたは、録音位置に関係しない増幅に基づくものである。
【0008】
唯一の欧州特許出願No.06008455.5は、角度ファイに関係する伝達時間差とレベル差とを用いて手動または測定技術により算出された、主軸と音源とが囲む角度ファイの体系的な観察を提案している。もっとも、角度ファイがゼロに等しい場合には、立体音響を矛盾なく再現することは不可能である。
【先行技術文献】
【特許文献】
【0009】
1.米国特許出願公開5173944号明細書
2.米国特許出願公開6636608号明細書
3.米国特許出願公開5671287号明細書
【発明の概要】
【発明が解決しようとする課題】
【0010】
以下に説明された発明は、モノラルで表現された音源を、録音位置を考慮し、明らかに改善して立体音響的に再現するものである。さらに、これまで強度立体音響によるシミュレーションに対して問題であった前述の八の字指向性に対して、信頼出来る立体音響化方法が提供される。さらに、主軸と音源とが囲む角度ファイがゼロに等しい場合にも、立体音響を矛盾なく再現できるようにする。
【課題を解決するための手段】
【0011】
本発明の対象は、以下のように表される。
【0012】
角度ファイに関係する伝達時間差とレベル差とを使用した、主軸と音源とが囲む角度ファイの体系的な観察の(唯一の欧州特許出願No.06008455.5で提案された)技術的解決はMSマトリクス化を含み、この場合、入力信号MおよびS、並びに生じた信号LおよびRに関して以下の関係となる。
【0013】
【数1】

【0014】
典型的なS信号は、これはMS技術に特有であるが、八の字指向性を有しており、この場合、これはM信号に対して90°左へ移動している。S信号のレベルがM信号に対して上昇すると、(MシステムまたはSシステムの重なった指向図形の交点から生じ、Sシステムの八の字指向性のように、M信号の主軸に対して常に対称な)所謂開口角2αは益々小さくなる。
【0015】
第1ステップでは、モノラル信号の主軸と音源とが囲む角度ファイを考慮する配置または方法においても、仮想の開口角2αがパラメータで表される。算出されシミュレートされた側信号は、角度ファイにも仮想の半開口角αにも関係している。
【0016】
第2ステップでは、増幅率は、側信号を合計することで生じる信号にのみ適用される。
【0017】
第3ステップでは、M信号の指向特性を表す角度依存の指向間隔fがパラメータで表される。このことから、任意の指向特性のモノラル信号は、仮想の開口角2αを考慮して立体音響化することができる。
【0018】
発明の開示
本発明は、仮想の開口角α+βをパラメータ表示することにある。ここでアルファは、(立体音響化されるモノラルオーディオ信号の主軸の左側にある)仮想の左開口角を表し、ベータは、(立体音響化されるモノラルオーディオ信号の主軸の右側にある)仮想の右開口角を表し、この場合、α≠βとなり得る。則ち、立体音響化されるモノラルオーディオ信号の主軸に対して非対称な、考えられる仮想の開口角はα+βの、典型的なMSマトリクス化では起こらない場合が考察される。
【0019】
シミュレートされた側信号に対して三角法により算出されたレベル差および伝達時間差は、ファイおよびf以外に、仮想の左開口角アルファまたは仮想の右開口角ベータにも関係し、この場合、音源が主軸の左側に配置される場合には関係式φ≦αとなるはずであり、音源が主軸の右側に配置される場合には関係式φ≦βとなるはずである。アルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される。これは、アルファまたはベータのパラメータ化で計算されたレベル差または伝達時間差が無限大に向け収束するので、技術的に実現不可能なためである。
【0020】
したがって、アルファおよびベータを適切に選択することによって、モノラルオーディオ信号を立体音響的に再現できるようになり、これは、仮想の開口角α+βのパラメータ化を無視する方法より有利な条件を提供する。特に、ファイがゼロに等しい場合の立体音響による矛盾のない解決も可能となる。アルファおよびベータは、上述の条件下で自由に選択されるか、または適切なアルゴリズムによって相応に確定される。
【0021】
角度ファイ、M信号の指向特性を表す角度依存の指向間隔fおよび角度アルファおよびベータに関して、以下の(ファイ、f並びにアルファおよびベータを制限なく選択できるようにするために、シミュレートされた側信号Sを生じる信号S(アルファ)およびS(ベータ)に適用される)遅延時間L(アルファ)、L(ベータ)または増幅率P(アルファ)、P(ベータ)が三角法により判明する。
【0022】
【数2】

【0023】
L(アルファ)またはL(ベータ)の判別式が、P(アルファ)またはP(ベータ)を算出するために直接使用できるという指摘は、本発明の対象を利用する装置または方法に対する簡略化を表すものである。回路図またはアルゴリズムは、このことで明らかに簡略化され、これは、効率が最高の場合の、対応するハードウエアの小型化を意味する。
【0024】
八の字指向性を有するモノラルオーディオ信号の立体音響化の前述の問題に関しては、特に、M信号の八の字指向性を表す、指向角ψに依存する指向間隔f(ψ)=cosψに基づく以下の解決法が導かれる。
【0025】
【数3】

【0026】
本発明の対象に関して、生じるMS信号を、続いて式(1)および(2)によって立体置換しなければならないことは依然として特有である。その結果、典型的なステレオ信号が生じる。
【0027】
背景技術を表す装置および方法論を含めて、その他の点では本発明の対象を用いて、3以上のラウドスピーカを介して立体音響情報を供給する信号が得られる(背景技術に属するサラウンドシステムなど)。
【0028】
本発明の実施形態および適用例を、例示として以下の図に基づいて説明する。
【図面の簡単な説明】
【0029】
【図1】欧州特許出願No.06008455.5の機能原理を示す。
【図2】欧州特許出願No.06008455.5にしたがって、モノラルオーディオ信号を、立体音響化され得るMS信号へ移行する回路を示す。
【図3】図2に示した回路の内部信号を表す。
【図4】カーディオイド指向特性を有するMシステムと八の字指向性を有するSシステムとから構成された、135°に等しい半開口角アルファに関する典型的なMS配置を示す。
【図5】全指向特性を有するMシステムと八の字指向性を有するSシステムとから構成された、90°に等しい半開口角アルファに関する典型的なMS配置を示す。
【図6】カーディオイド指向特性を有するMシステムと八の字指向性を有するSシステムとから構成された、53°に等しい半開口角アルファに関する典型的なMS配置を示す。
【図7】八の字指向性を有するMシステムと八の字指向性を有するSシステムとから構成された、45°に等しい半開口角アルファに関する典型的なMS配置を示す。
【図8】八の字指向性を有するMシステムと八の字指向性を有するSシステムとから構成された、33.5°に等しい半開口角アルファに関する典型的なMS配置を示す。
【図9】仮想の半開口角アルファが共に考慮される、欧州特許出願No.06008455.5の機能原理の拡大を示す。
【図10】仮想の半開口角アルファを考慮して、モノラルオーディオ信号を、立体音響化され得るMS信号へ移行する回路を示す。
【図11】典型的なMS配置で、90°左へ回転した、S信号のための八の字指向性を有する、主軸に対称なシステムの使用に基づいて現れることができない左の仮想開口角アルファと右の仮想開口角ベータとが共に考慮される、全指向特性を有する信号に関する本発明の機能原理を例示として示す。
【図12】カーディオイド指向特性を有する信号に関する本発明の機能原理を例示として示す。
【図13】ハイパーカーディオイド指向特性を有する信号に関する本発明の機能原理を例示として示す。
【図14】八の字指向性を有する信号に関する本発明の機能原理を例示として示す。
【図15】録音角度ファイ、左の仮想開口角アルファ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fを考慮して、モノラルオーディオ信号を、立体音響化され得るMS信号へ移行する、本発明の対象による回路を示す。
【図16】録音角度ファイ、左の仮想開口角アルファおよびM信号の指向特性を表す角度依存の指向間隔fに関して、式
【数4】

がゼロまたはゼロ近傍の要素ではない、図15の回路に対する変形を示す。
【図17】録音角度ファイ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fに関して、式
【数5】

がゼロまたはゼロ近傍の要素ではない、図15の回路に対する更なる変形を示す。
【図18】図19のパラメータt、P(t)を示す。
【図19.1】録音角度ファイ、左の仮想開口角アルファ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fを考慮して、十分に短い間隔[t,ti+1]で、モノラルオーディオ信号を、
【図19.2】録音角度ファイ、左の仮想開口角アルファ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fを考慮して、十分に短い間隔[t,ti+1]で、モノラルオーディオ信号を、立体音響化され得るMS信号へ移行する、本発明の対象の方法のフローチャートを示す。立体音響化され得るMS信号へ移行する、本発明の対象の方法のフローチャートを示す。
【発明を実施するための形態】
【0030】
図1は、全指向特性を有するモノラル信号を立体音響化するための装置または方法の機能原理に関する背景技術を略図で示す。音源101は、全指向特性を有するマイクロホンの位置102で録音され、この場合、主軸103と音源の方位軸104との間は角度ファイ(105)となる。108および109は、合算することでシミュレートされた側信号を生じる2つのシミュレートされた信号のそれぞれの幾何学的位置を示している。シミュレートされた左の信号の、主信号に対する伝達時間差は110で表され、シミュレートされた信号のレベルは、101と112との距離の二乗を掛けて、主信号のレベルから算出される(距離の二乗を用いて引き出された音強度を考慮したレベル補正)。シミュレートされた右の信号の、主信号に対する伝達時間差は111で表され、シミュレートされた信号のレベルは、101と113との距離の二乗を掛けて、主信号のレベルから算出される。
【0031】
入力信号がシミュレートされた左の信号に直接関係する(帰属する)レベルの再重み付けをする場合には、モノラル入力信号を、立体音響化され得るMS信号へ移行する回路に関して、図2の回路図で表される。三角法で算出すると、伝達時間差LおよびL並びに増幅率PおよびPに対して次のようになる。
【0032】
【数6】

【0033】
図3は、内部処理された信号の性質を示す。これに関して、2つのシミュレートされた信号317(遅延時間310を有する)および318(遅延時間311を有する)が主信号316に対向している(ここで、314は時間軸を、315はレベル軸を表す)。最大レベル点302は、式(15)にしたがって最大レベル点312から算出され、最大レベル点313は、式(16)にしたがって算出される。
【0034】
擬似立体音響オーディオ信号を取得するための角度依存で操作される装置または方法を導くために、まず第1に、Mシステムの異なる半開口角2αおよび異なる指向特性に対する典型的なMSマトリクス化が考察される。左へ90°回転したSシステムの、Mシステムの主軸への対称性に基づいて、同じく主軸に対称に配置された開口角2αは、全ての方法に特有であり、この開口角は、MシステムまたはSシステムの重なった指向図形の交点から計算される。
【0035】
したがって、図4などは、カーディオイド指向特性を有するMシステムおよび八の字指向性を有するSシステムから構成された、135°に等しい半開口角アルファ(406)に関する典型的なMS配置を示す。図5は、全指向特性を有するMシステムおよび八の字指向性を有するSシステムから構成された、90°に等しい半開口角アルファ(506)に関する典型的なMS配置を示す。図6は、カーディオイド指向特性を有するMシステムおよび八の字指向性を有するSシステムから構成された、53°に等しい半開口角アルファ(606)に関する典型的なMS配置を示す。図7は、八の字指向性を有するMシステムおよび八の字指向性を有するSシステムから構成された、45°に等しい半開口角アルファ(706)に関する典型的なMS配置を示す。図8は、同じく八の字指向性を有するMシステムおよび八の字指向性を有するSシステムから構成された、33.5°に等しい半開口角アルファ(806)に関する典型的なMS配置を示す。
【0036】
図1から導かれる機能原理の拡大は、図9に示されるように、仮想の半開口角アルファを更に考慮したものである。この場合、音源901は、全指向特性を有するモノラルマイクロホン902により録音され、主軸903と音源の方位軸904との間は角度ファイ(905)となる。仮想の半開口角アルファ(906)が新たに考慮される。このことと、主信号の指向特性とから、シミュレートされた左の信号Sの幾何学的位置908およびシミュレートされた右の信号Sの幾何学的位置909が直接導かれ、これらを合わせるとシミュレートされた側信号が生じる。シミュレートされた左の信号の、主信号に対する伝達時間差は910で表され、シミュレートされた信号のレベルは、901と912との距離の二乗を掛けて、主信号のレベルから算出される(距離の二乗を用いて引き出された音強度を考慮したレベル補正)。シミュレートされた右の信号の、主信号に対する伝達時間差は911で表され、シミュレートされた信号のレベルは、901と913との距離の二乗を掛けて、主信号のレベルから算出される。
【0037】
図10は、仮想の半開口角アルファを考慮してモノラル入力信号を、立体音響化され得るMS信号へ移行する図2の回路に対して修正を少し加えた、付属する回路を提供する。伝達時間差LおよびLまたは増幅率PおよびPに対して以下の関係となる。
【0038】
【数7】

【0039】
本発明の対象の、全指向特性を有する主信号への適用
【0040】
図11は、全指向特性を有するモノラルオーディオ信号に関する、本発明の第1適用例を示す。ここでは、本発明にしたがって仮想の開口角α+βがパラメータ表示され、この場合、アルファは(立体音響化されるモノラルオーディオ信号の主軸の左側にある)仮想の左開口角1106を表し、ベータは(立体音響化されるモノラルオーディオ信号の主軸の右側にある)仮想の右開口角1107を表し、則ち、典型的なMS配置では八の字指向性を有する、左へ90°回転した、主軸に対称なSシステムを使用するために現れない角度である。
【0041】
したがって、本発明の対象は、場合によっては非対称の仮想の開口角α+βの、立体音響化されるモノラルオーディオ信号の主軸への観察に結びつく。
【0042】
詳しく観察すると、この配置は、全指向特性を有するマイクロホン1102により録音される音源1101から構成され、この場合、マイクロホン主軸1103と音源の方位軸1104との間は角度ファイ(1105)となる。さらに、仮想の左開口角アルファ(1106)並びに仮想の右開口角ベータ(1107)がパラメータ表示され、この場合、音源が主軸の左側に配置される場合には関係式φ≦αとなるはずであり、音源が主軸の右側に配置される場合には関係式φ≦βとなるはずである。アルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0043】
アルファは、主信号の指向特性と共に、シミュレートされた左の信号S(アルファ)の幾何学的位置1108をここで正確に決め、ベータは、主信号の指向特性と共に、シミュレートされた右の信号S(ベータ)の幾何学的位置1109を正確に決め、これらを合わせるとシミュレートされた側信号が生じる。シミュレートされた左の信号の、主信号に対する伝達時間差L(アルファ)は1110で表され、シミュレートされた信号のレベルP(アルファ)は、1101と1112との距離の二乗を掛けて、主信号のレベルから算出される(距離の二乗を用いて引き出された音強度を考慮したレベル補正)。シミュレートされた右の信号の、主信号に対する伝達時間差L(ベータ)は1111で表され、シミュレートされた信号のレベルP(ベータ)は、1101と1113との距離の二乗を掛けて、主信号のレベルから算出される。
【0044】
したがって、以下の(ファイ、アルファおよびベータを制限無く選択できるようにするために、シミュレートされた側信号Sを生じる信号S(アルファ)およびS(ベータ)に適用される)遅延時間L(アルファ)、L(ベータ)または増幅率P(アルファ)、P(ベータ)が三角法により判明する。
【0045】
【数8】

【0046】
本発明の対象の、カーディオイド指向特性を有する主信号への適用(図12)
【0047】
ここで観察された配置は、カーディオイド指向特性を有するモノラルマイクロホン1202により録音される音源1201から構成され、この場合、マイクロホン主軸1203と音源の方位軸1204との間は角度ファイ(1205)となる。さらに、仮想の左開口角アルファ(1206)並びに仮想の右開口角ベータ(1207)がパラメータ表示され、この場合、ここでも音源が主軸の左側に配置される場合には関係式φ≦αとなるはずであり、音源が主軸の右側に配置される場合には関係式φ≦βとなるはずである。さらに、ここでもアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0048】
アルファは、ここでも主信号の指向特性と共に、シミュレートされた左の信号S(アルファ)の幾何学的位置1208を正確に決め、ベータは、同じくここで観察された指向特性と共に、シミュレートされた右の信号S(ベータ)の幾何学的位置1209を正確に決め、これらを合わせるとシミュレートされた側信号が生じる。シミュレートされた左の信号の、主信号に対する伝達時間差L(アルファ)は1210で表され、シミュレートされた信号のレベルP(アルファ)は、1201と1212との距離の二乗を掛けて、主信号のレベルから算出される(距離の二乗を用いて引き出された音強度を考慮したレベル補正)。シミュレートされた右の信号の、主信号に対する伝達時間差L(ベータ)は1211で表され、シミュレートされた信号のレベルP(ベータ)は、1201と1213との距離の二乗を掛けて、主信号のレベルから算出される。
【0049】
ここでも以下の(ファイ、アルファおよびベータを指向特性に関して制限無く選択できるようにするために、シミュレートされた側信号Sを生じる信号S(アルファ)およびS(ベータ)に適用される)遅延時間L(アルファ)、L(ベータ)または増幅率P(アルファ)、P(ベータ)が、M信号のカーディオイド指向特性を表す、指向角度ψに依存する指向間隔
【0050】
【数9】

【0051】
を考慮して、三角法により判明する。
【0052】
【数10】

【0053】
本発明の対象の、ハイパーカーディオイド特性を有する信号への適用(図13)
【0054】
この配置は、ハイパーカーディオイド指向特性を有するモノラルマイクロホン1302により録音される音源1301から構成され、この場合、マイクロホン主軸1303と音源の方位軸1304との間は角度ファイ(1305)となる。さらに、新たに仮想の左開口角アルファ(1306)並びに仮想の右開口角ベータ(1307)がパラメータ表示され、この場合、ここでも音源が主軸の左側に配置される場合には関係式φ≦αとなるはずであり、音源が主軸の右側に配置される場合には関係式φ≦βとなるはずである。ここでもアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0055】
アルファは、ここでも主信号のハイパーカーディオイド特性と共に、シミュレートされた左の信号S(アルファ)の幾何学的位置1308を正確に決め、ベータは、ハイパーカーディオイド指向特性と共に、シミュレートされた左の信号S(ベータ)の幾何学的位置1309を正確に決め、これらを合わせるとシミュレートされた側信号が生じる。シミュレートされた左の信号の、主信号に対する伝達時間差L(アルファ)は1310で表され、シミュレートされた信号のレベルP(アルファ)は、1301と1312との距離の二乗を掛けて、主信号のレベルから算出される(距離の二乗を用いて引き出された音強度を考慮したレベル補正)。シミュレートされた右の信号の、主信号に対する伝達時間差L(ベータ)は1311で表され、シミュレートされた信号のレベルP(ベータ)は、1301と1313との距離の二乗を掛けて、主信号のレベルから算出される。
【0056】
遅延時間L(アルファ)、L(ベータ)または増幅率P(アルファ)、P(ベータ)は、M信号のハイパーカーディオイド指向特性を表す、指向角度ψに依存する指向間隔
【0057】
【数11】

【0058】
(但し、nは値1.5と仮定)を考慮して、三角法により算出される(ここで、ファイ、アルファおよびベータを指向特性に関して制限無く選択できるようにするために、増幅率は、シミュレートされた側信号Sを生じる信号S(アルファ)およびS(ベータ)に適用される)。
【0059】
【数12】

【0060】
本発明の対象の、カーディオイド特性の更なる特殊形を有する信号への適用
【0061】
立体音響化される入力信号がカーディオイド特性の特殊形を有する場合に、対応する伝達時間差L(アルファ)およびL(ベータ)または増幅率P(アルファ)およびP(ベータ)は、式(29)〜(32)から容易に算出される。この場合、nは0≦n≦2となる。
【0062】
nを値1と仮定すると、典型的なカーディオイド指向特性を有する入力信号に関する増幅率または伝達時間差が生じ、値0に対しては、全指向特性を有する入力信号に関するものが生じ、値2に対しては、典型的な八の字指向性を有する入力信号に関するものが生じる。nを値1.25と仮定すると、ハイパーカーディオイド特性を有する入力信号に関する伝達時間差または増幅率が生じる。
【0063】
式(28a)を指向間隔fに適用すると、組立式(29)〜(32)が導かれ、したがって、これは特に有利であると実証される。M信号に関して考えられるほぼ全ての指向特性を極座標ではっきり表すために、さらにパラメータnが確定される(周波数が急に増加した場合に、それ(28a)を表そうとしたものとは異なる極座標を有する棍棒型特性を除く)。
【0064】
本発明の対象の、八の字指向性を有する信号への適用
【0065】
図14は、八の字指向性を有する入力信号に関する適用事例を表しており、これは、すでに先に幾度も議論されたが、再度詳しく示す。この配置は、八の字指向性を有するモノラルマイクロホン1402により録音される音源1401から構成され、その場合に、マイクロホン主軸1403と音源の方位軸1404との間は角度ファイ(1405)となる。さらに、仮想の左開口角アルファ(1406)並びに仮想の右開口角ベータ(1407)がパラメータ表示され、この場合、音源が主軸の左側に配置される場合には関係式φ≦αとなるはずであり、音源が主軸の右側に配置される場合には関係式φ≦βとなるはずである。さらに、同じくアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が同じく無限大に向け収束するので技術的に実現不可能なため)。
【0066】
アルファは、主信号の八の字指向性と共に、シミュレートされた左の信号S(アルファ)の幾何学的位置1408を正確に決め、ベータは、八の字指向性と共に、シミュレートされた右の信号S(ベータ)の幾何学的位置1409を正確に決め、これらを合わせるとシミュレートされた側信号が生じる。シミュレートされた左の信号の、主信号に対する伝達時間差L(アルファ)は1410で表され、シミュレートされた信号のレベルP(アルファ)は、1401と1412との距離の二乗を掛けて、主信号のレベルから算出される(距離の二乗を用いて引き出された音強度を考慮したレベル補正)。シミュレートされた右の信号の、主信号に対する伝達時間差L(ベータ)は1411で表され、シミュレートされた信号のレベルP(ベータ)は、1401と1413との距離の二乗を掛けて、主信号のレベルから算出される。遅延時間L(アルファ)、L(ベータ)または増幅率P(アルファ)、P(ベータ)に関する付属の組立式は、nが2に等しい場合には、方程式(7)〜(10)または方程式(29)〜(32)から判明する(ここで、ファイ、アルファおよびベータを指向特性に関して制限なく選択できるようにするために、増幅率は、シミュレートされた側信号Sを生じる信号S(アルファ)およびS(ベータ)に適用される)。
【0067】
本発明の対象の、モノラル信号を立体音響化するための回路への適用
【0068】
図15は、入力信号の指向特性を一般化する、本発明の対象により回路を示し、この回路は、録音角度ファイ、左の仮想開口角アルファ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fを考慮して、モノラルオーディオ信号を、立体音響化され得るMS信号へ移行する。伝達時間差L(アルファ)およびL(ベータ)または増幅率P(アルファ)およびP(ベータ)に関して、ここでは式(3)〜(6)が代入される。この場合、入力信号は直接M信号として使用される。S信号は、遅延時間L(アルファ)だけ遅延され、続いて増幅率P(アルファ)だけ増幅される入力信号と、遅延時間L(ベータ)だけ遅延され、続いて増幅率P(ベータ)だけ増幅される更なる信号とから加算される。繰り返しになるが、ψ>0の場合は関係式ψ≦αとなるはずであり、ψ<0の場合は関係式|ψ|≦βとなるはずである。同じくアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0069】
軽い制限のもとで等価値信号を供給する回路の誘導
【0070】
増幅率を再重み付けする場合に、図16の形の、軽く制限された動作回路が図15から誘導される。この場合、この制限は、録音角度ファイ、左の仮想開口角アルファおよびM信号の指向特性を表す角度依存の指向間隔fに関して、式
【0071】
【数13】

【0072】
がゼロまたはゼロ近傍の要素ではないはずである。図16に挙げられた伝達時間差L(アルファ)およびL(ベータ)は、この場合、方程式(3)および(4)を直接表し、増幅率P‘およびP(ベータ)‘に関しては、関係式
【0073】
【数14】

【0074】
となる。さらにψ>0の場合は関係式ψ≦αとなるはずであり、ψ<0の場合は関係式|ψ|≦βとなるはずである。繰り返しになるが、ここでもアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が一部無限大に向け収束するので技術的に実現不可能なため)。
【0075】
増幅率の再重み付けを変える場合の図15からの第2の誘導で、図17の形の、同じく軽く制限された動作回路が生じ、この場合、録音角度ファイ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fに関して、式
【0076】
【数15】

【0077】
がゼロまたはゼロ近傍の要素ではないはずである。図17に挙げられた伝達時間差L(アルファ)およびL(ベータ)は、ここでもまた式(3)および(4)を表し、しかしながら増幅率P“およびP(アルファ)‘に関しては、関係式
【0078】
【数16】

【0079】
となる。ここでもψ>0の場合は関係式ψ≦αとなるはずであり、ψ<0の場合は関係式|ψ|≦βとなるはずである。同じくアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0080】
本発明の対象の、モノラル信号を立体音響化するための計算方法への適用
【0081】
モノラル入力信号は、図18の形の座標系を用いて計算により表すことができ、この場合、1814は時間軸であり、1815はレベル軸である。1819は時点tを表し、1820はtと関連するレベル点P(t)を表す。十分に小さい間隔[t、ti+1]、則ち十分なサンプリング速度では、音響事象を十分な精度で表現することができる。
【0082】
図19は、本発明の対象による方法の付属のフローチャートを示す。この方法は、録音角度ファイ、左の仮想開口角アルファ、右の仮想開口角ベータおよびM信号の指向特性を表す角度依存の指向間隔fを考慮して、十分に小さい間隔[t、ti+1]で、(伝達時間差L(アルファ)または伝達時間差L(ベータ)がゼロに等しくないという簡略化した仮定のもとに)モノラルオーディオ信号を、立体音響化され得るMS信号へ移行する。
【0083】
伝達時間差L(アルファ)およびL(ベータ)または増幅率P(アルファ)およびP(ベータ)に関して、さらにここでも方程式(3)〜(6)が適用される。
【0084】
(配列[M(t)]の)M信号並びに(配列[S(t)]の)S信号を計算する場合に、この信号は、遅延時間L(アルファ)だけ遅延され、続いて増幅率P(アルファ)だけ増幅される入力信号と、実際に遅延時間L(ベータ)だけ遅延され、続いて増幅率P(ベータ)だけ増幅される入力信号を表す更なる信号とから実際に加算される。このアルゴリズムは、アルファおよびベータの許容できない値を除外する必要がある。一般にこのようなアルゴリズムに関して、ψ>0の場合は関係式ψ≦αとなるはずであり、ψ<0の場合は関係式|ψ|≦βとなるはずである。同じくアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0085】
軽い制限下で等価値信号を供給する2つの計算方法の誘導
【0086】
方法1:(33)がゼロまたはゼロ近傍の要素ではないことがアルゴリズムで保証されている場合には、十分に小さい間隔[t、ti+1]で、図16に準拠して、図19に類似の計算方法をモノラル入力信号に適用することができ、もっともこの場合、(配列[M(t)]の)M信号は、指数(34)だけ増幅されて見える。(配列[S(t)]の)S信号は、実際に遅延時間L(アルファ)(式(3)参照)だけ遅延された(配列[P(t)]の)入力信号を、実際に遅延時間L(ベータ)(式(4)参照)だけ遅延され、続いて増幅率P(ベータ)‘(式(35)参照)だけ増幅された(再び配列[P(t)]の)入力信号と加算した結果を表す。このアルゴリズムは、アルファおよびベータの許容できない値を除外する必要がある。ψ>0の場合は関係式ψ≦αとなるはずであり、ψ<0の場合は関係式|ψ|≦βとなるはずである。同じくアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0087】
方法2:(36)がゼロまたはゼロ近傍の要素ではないことがアルゴリズムで保証されている場合には、同じく十分に小さい間隔[t、ti+1]で、図17に準拠して、図19に類似の計算方法をモノラル入力信号に適用することができ、もっともこの場合、(配列[M(t)]の)M信号は、指数(37)だけ増幅されて見える。(配列[S(t)]の)S信号は、実際に遅延時間L(アルファ)(式(3)参照)だけ遅延され、続いて増幅率P(アルファ)‘(式(38)参照)だけ増幅された(配列[P(t)]の)入力信号を、実際に遅延時間L(ベータ)(式(4)参照)だけ遅延された(再び配列[P(t)]の)入力信号と加算した結果を表す。このアルゴリズムは、アルファおよびベータの許容できない値を除外する必要がある。ψ>0の場合は関係式ψ≦αとなるはずであり、ψ<0の場合は関係式|ψ|≦βとなるはずである。同じくアルファおよびベータに関しては、いずれにしてもゼロまたはゼロ近傍は除外される(アルファまたはベータのパラメータ化で三角法により計算されたレベル差または伝達時間差が無限大に向け収束するので技術的に実現不可能なため)。
【0088】
総じて付言すると、記述された装置および方法は、それぞれ入力信号が増幅され、続いて遅延が行われることも当然認められる。
【産業上の利用可能性】
【0089】
特定の角度ファイで録音された音源の空間的な分配は、特に回線信号に対して大きな実質的意味をもつ。自動車またはインターネット電話方式などで使用される自由通話装置では、放出されたモノラル信号は、実際の通話状況として相応に感じられず、相手が「偏在している」ように思われる。しかしながら、背景技術に属する測定技術方法を用いて、角度ファイが算出されるか、または(入力信号の指向図形の最大値と最小値とをアルゴリズムにより観察することによって可能な)極座標が関数補間される場合と、続いて仮想の左開口角アルファおよび仮想の右開口角ベータが、アルゴリズムまたは手動で録音位置および聴取位置に適合される場合には、図15の形の(小型化可能な!)回路を使用し、続いてMSマトリクス化する場合に、通常の条件下で通話状況を著しく顧慮した立体音響信号が作り出される。
【0090】
同様のことが、モノラル録音を用いて行われ、この場合、その音源が立体音響的に再現される。
【0091】
信号技術方式で隔離された、立体映像内の音源の集束方向が明確過ぎると感じられる場合には、同じく、本発明の対象を使用してこの集束方向を徐々に分散させることができる。
【0092】
本発明の対象にしたがって配置または方法を実行する前の、(例えば背景技術に属し、コームフィルタの使用に関係する、迅速なフーリエ変換(FFT)に基づいた、考えられ得る方法を含む、入力信号の指向特性を表す極座標を変えることによって個々に可能な)入力信号の指向特性を作り出すことで、事情によっては結果をさらに改善するか、または入力信号の指向特性を規格化することができる。
【0093】
本発明は、信号区間を補足して多次元的に観察する場合に、決定的な寄与を可能にする。したがって、その適用は上述の例に限定されるものではない。


【特許請求の範囲】
【請求項1】
モノラル信号を立体音響化するための装置であって、
(a)手動で、又は、測定技術により算出された、音源とマイクロホン主軸とが取り囲む、角度ファイの評価であって、
(aa)任意に、またはアルゴリズムにより算出され、前記マイクロホンの主軸の左側に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、かつ、前記角度ファイが正の場合に、前記角度ファイが角度アルファより小さいかまたはこれに等しいという条件を満足する仮想の開口角度アルファと、
(bb)任意に、またはアルゴリズムにより算出され、前記マイクロホンの主軸の右側に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、かつ、前記角度ファイが負の場合に、前記角度ファイの値が角度ベータより小さいかまたはこれに等しいという条件を満足する仮想の開口角度ベータと、
(cc)手動で、又は、測定技術により算出された極座標で表すことができる立体音響化されるモノラル信号の指向特性と、
を組み合わせた、角度ファイの評価を評価し、
(b)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する増幅率P(アルファ)の計算と、
(c)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する増幅率P(ベータ)の計算と、
(d)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する遅延時間L(アルファ)の計算と、
(e)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する遅延時間L(ベータ)の計算と、
(f)主信号として、前記立体音響化されるモノラル信号の直接使用と、
(g)前記立体音響化されるモノラル信号の、前記遅延時間L(アルファ)だけの遅延および前記遅延信号の、前記増幅率P(アルファ)だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(アルファ)だけの増幅および前記増幅信号の、前記遅延時間L(アルファ)だけの遅延と、
(h)前記立体音響化されるモノラル信号の、前記遅延時間L(ベータ)だけの遅延および前記遅延信号の、前記増幅率P(ベータ)だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(ベータ)だけの増幅および前記増幅信号の、前記遅延時間L(ベータ)だけの遅延と、
(i)側信号を取得するための、(g)および(h)で得られる信号の加算と、
(j)主信号および側信号の、ステレオ信号への立体変換と
を特徴とする、装置。
(図15)
【請求項2】
モノラル信号を立体音響化するための方法であって、
(a)手動で、又は、測定技術により算出された、音源とマイクロホンの主軸とが取り囲む、角度ファイの評価であって、
(aa)任意に、またはアルゴリズムにより算出され、前記マイクロホン主軸の左に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが正の場合に、前記角度ファイが角度アルファより小さいかまたはこれに等しいという条件を満足する仮想の開口角度アルファと、
(bb)任意に、またはアルゴリズムにより算出され、前記マイクロホンの主軸の右に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが負の場合に、前記角度ファイの値が角度ベータより小さいかまたはこれに等しいという条件を満足する仮想の開口角度ベータと、
(cc)手動で、又は、測定技術により算出された、極座標で表すことができる、立体音響化されるモノラル信号の指向特性と
を組み合わせた、角度ファイの評価と、
(b)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する増幅率P(アルファ)の計算と、
(c)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する増幅率P(ベータ)の計算と、
(d)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する遅延時間L(アルファ)の計算と、
(e)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する遅延時間L(ベータ)の計算と、
(f)前記立体音響化されるモノラル信号の、主信号としての直接使用と、
(g)前記立体音響化されるモノラル信号の、前記遅延時間L(アルファ)だけの遅延および前記遅延信号の、前記増幅率P(アルファ)だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(アルファ)だけの増幅および前記増幅信号の、前記遅延時間L(アルファ)だけの遅延と、
(h)前記立体音響化されるモノラル信号の、前記遅延時間L(ベータ)だけの遅延および前記遅延信号の、前記増幅率P(ベータ)だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(ベータ)だけの増幅および前記増幅信号の、前記遅延時間L(ベータ)だけの遅延と、
(i)側信号を取得するための、(g)および(h)で得られる信号の加算と、
(j)主信号および側信号の、ステレオ信号への立体変換と
を特徴とする、方法。
(図19.1および19.2)
【請求項3】
(a)角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した増幅率P(アルファ)と、
(b)角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した増幅率P(ベータ)と、
(c)負の角度アルファの指向間隔を、2倍にしたサインアルファで除算し、(a)で記述された増幅率P(アルファ)の平方根を加算した遅延時間L(アルファ)と、
(d)負の角度ベータの指向間隔を、2倍にしたサインベータで除算し、(b)で記述された増幅率P(ベータ)の平方根を加算した遅延時間L(ベータ)と
を特徴とする、請求項1記載のモノラル信号を立体音響化するための装置。
【請求項4】
(a)角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した増幅率P(アルファ)と、
(b)角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した増幅率P(ベータ)と、
(c)負の角度アルファの指向間隔を、2倍にしたサインアルファで除算し、(a)で記述された増幅率P(アルファ)の平方根を加算した遅延時間L(アルファ)と、
(d)負の角度ベータの指向間隔を、2倍にしたサインベータで除算し、(b)で記述された増幅率P(ベータ)の平方根を加算した遅延時間L(ベータ)と
を特徴とする、請求項2記載のモノラル信号を立体音響化するための方法。
【請求項5】
請求項1にしたがってモノラル信号から得られるステレオ信号と等価値のステレオ信号を取得する装置であって、
(a)手動で、又は、測定技術により算出された、音源とマイクロホンの主軸とが取り囲む、角度ファイの評価であって、
(aa)任意に、またはアルゴリズムにより算出され、前記マイクロホン主軸の左に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが正の場合に、前記角度ファイが角度アルファより小さいかまたはこれに等しいという条件を満足する仮想の開口角度アルファと、
(bb)任意に、またはアルゴリズムにより決定され、前記マイクロホン主軸の右に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが負の場合に、前記角度ファイの値が角度ベータより小さいかまたはこれに等しいという条件を満足する仮想の開口角度ベータと、
(cc)極座標で表すことができる、手動で、または測定技術により算出された、立体音響化されるモノラル信号の指向特性と、
(dd)4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算する、角度アルファの指向間隔の2乗が、ゼロ近傍の要素またはゼロではないという条件を満たすことと
を組み合わせた、角度ファイの評価と、
(b)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P‘の計算と、
(c)前記角度ファイ、前記角度アルファ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する増幅率P(ベータ)‘の計算と、
(d)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する遅延時間L(アルファ)の計算と、
(e)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に依存する遅延時間L(ベータ)の計算と、
(f)主信号を取得するための、前記立体音響化されるモノラル信号の、前記増幅率P‘だけの増幅と、
(g)前記立体音響化されるモノラル信号の、前記遅延時間L(アルファ)だけの遅延と、
(h)前記立体音響化されるモノラル信号の、前記遅延時間L(ベータ)だけの遅延および前記遅延信号の、前記増幅率P(ベータ)‘だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(ベータ)‘だけの増幅および前記増幅信号の、前記遅延時間L(ベータ)だけの遅延と、
(i)側信号を取得するための、(g)および(h)で得られる信号の加算と、
(j)主信号および側信号の、ステレオ信号への立体変換と
を特徴とする、装置。
(図16)
【請求項6】
請求項2によってモノラル信号から得られる立体音響信号と等価値の立体音響信号を取得する方法であって、
(a)手動で、または測定技術により算出された、音源とマイクロホンの主軸とが取り囲む、角度ファイの評価であって、
(aa)任意に、またはアルゴリズムにより確定され、前記マイクロホン主軸の左に隣接し、ゼロ近傍の要素またはゼロではなく、前記角度ファイが正の場合に、前記角度ファイが角度アルファより小さいかまたはこれに等しいという条件を満足する仮想の開口角アルファと、
(bb)任意に、またはアルゴリズムにより確定され、前記マイクロホン主軸の右に隣接し、ゼロ近傍の要素またはゼロではなく、前記角度ファイが負の場合に、前記角度ファイの値が角度ベータより小さいかまたはこれに等しいという条件を満足する仮想の開口角ベータと、
(cc)極座標で表すことができる、手動で、または測定技術により確定された、立体音響化されるモノラル信号の指向特性と、
(dd)4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算する、角度アルファの指向間隔の2乗が、ゼロ近傍の要素またはゼロではないという条件を満たすことと
を組み合わせた、角度ファイの評価と、
(b)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P‘の計算と、
(c)前記角度ファイ、前記角度アルファ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P(ベータ)‘の計算と、
(d)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する遅延時間L(アルファ)の計算と、
(e)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する遅延時間L(ベータ)の計算と、
(f)主信号を取得するための、前記立体音響化されるモノラル信号の、前記増幅率P‘だけの増幅と、
(g)前記立体音響化されるモノラル信号の、前記遅延時間L(アルファ)だけの遅延と、
(h)前記立体音響化されるモノラル信号の、前記遅延時間L(ベータ)だけの遅延および前記遅延信号の、前記増幅率P(ベータ)‘だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(ベータ)‘だけの増幅および前記増幅信号の、前記遅延時間L(ベータ)だけの遅延と、
(i)側信号を取得するための、(g)および(h)で得られる信号の加算と、
(j)主信号および側信号の、ステレオ信号への立体変換と
を特徴とする、方法。
【請求項7】
(a)角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した解の逆数に等しい増幅率P‘と、
(b)(a)で記述された増幅率P‘と、請求項3(b)で記述された増幅率P(ベータ)との積に等しい増幅率P(ベータ)‘と、
(c)負の角度アルファの指向間隔を、2倍にしたサインアルファで除算したものと、角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した解の平方根とを加算した遅延時間L(アルファ)と、
(d)負の角度ベータの指向間隔を、2倍にしたサインベータで除算したものと、角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した解の平方根とを加算した遅延時間L(ベータ)と
を特徴とする、請求項5記載のモノラル信号を立体音響化するための装置。
【請求項8】
(a)角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した解の逆数に等しい増幅率P‘と、
(b)(a)で記述された増幅率P‘と、請求項3(b)で記述された増幅率P(ベータ)との積に等しい増幅率P(ベータ)‘と、
(c)負の角度アルファの指向間隔を、2倍にしたサインアルファで除算したものと、角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した解の平方根とを加算した遅延時間L(アルファ)と、
(d)負の角度ベータの指向間隔を、2倍にしたサインベータで除算したものと、角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した解の平方根とを加算した遅延時間L(ベータ)と
を特徴とする、請求項6記載のモノラル信号を立体音響化するための方法。
【請求項9】
請求項1にしたがってモノラル信号から得られる立体音響信号と等価値の立体音響信号を取得する装置であって、
(a)手動で、又は、測定技術により算出された、音源とマイクロホンの主軸とが取り囲む、角度ファイの評価であって、
(aa)任意に、またはアルゴリズムにより算出され、前記マイクロホンの主軸の左に隣接し設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが正の場合に、前記角度ファイが角度アルファより小さいかまたはこれに等しいという条件を満足する仮想の開口角度アルファと、
(bb)任意に、またはアルゴリズムにより算出され、前記マイクロホンの主軸の右に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが負の場合に、前記角度ファイの値が角度ベータより小さいかまたはこれに等しいという条件を満足する仮想の開口角ベータと、
(cc)極座標で表すことができる、手動で、又は、測定技術により算出された、立体音響化されるモノラル信号の指向特性と、
(dd)4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算する、角度ベータの指向間隔の2乗が、ゼロ近傍の要素またはゼロではないという条件を満たすことと
を組み合わせた、角度ファイの評価と、
(b)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P“の計算と、
(c)前記角度ファイ、前記角度アルファ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P(アルファ)‘の計算と、
(d)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する遅延時間L(アルファ)の計算と、
(e)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する遅延時間L(ベータ)の計算と、
(f)主信号を取得するための、前記立体音響化されるモノラル信号の、前記増幅率P“だけの増幅と、
(g)前記立体音響化されるモノラル信号の、前記遅延時間L(アルファ)だけの遅延および前記遅延信号の、前記増幅率P(アルファ)‘だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(アルファ)‘だけの増幅および前記増幅信号の、前記遅延時間L(アルファ)だけの遅延と、
(h)前記立体音響化されるモノラル信号の、前記遅延時間L(ベータ)だけの遅延と、
(i)側信号を取得するための、(g)および(h)で得られる信号の加算と、
(j)主信号および側信号の、ステレオ信号への立体変換と
を特徴とする、装置。
(図17)
【請求項10】
請求項2によってモノラル信号から得られる立体音響信号と等価値の立体音響信号を取得する方法であって、
(a)手動で、又は、測定技術により算出された、音源とマイクロホンの主軸とが取り囲む、角度ファイの評価であって、
(aa)任意に、またはアルゴリズムにより算出され、前記マイクロホン主軸の左に隣接して設けられ、ゼロ近傍の要素またはゼロではなく、前記角度ファイが正の場合に、前記角度ファイが角度アルファより小さいかまたはこれに等しいという条件を満足する仮想の開口角アルファと、
(bb)任意に、またはアルゴリズムにより確定され、前記マイクロホン主軸の右に隣接し、ゼロ近傍の要素またはゼロではなく、前記角度ファイが負の場合に、前記角度ファイの値が角度ベータより小さいかまたはこれに等しいという条件を満足する仮想の開口角ベータと、
(cc)極座標で表すことができる、手動で、または測定技術により算出された、立体音響化されるモノラル信号の指向特性と、
(dd)4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算する、角度ベータの指向間隔の2乗が、ゼロ近傍の要素またはゼロではないという条件を満たすことと
を組み合わせた、角度ファイの評価と、
(b)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P“の計算と、
(c)前記角度ファイ、前記角度アルファ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する増幅率P(アルファ)‘の計算と、
(d)前記角度ファイ、前記角度アルファ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する遅延時間L(アルファ)の計算と、
(e)前記角度ファイ、前記角度ベータ並びに(極座標で表すことができる)前記立体音響化されるモノラル信号の指向特性に関係する遅延時間L(ベータ)の計算と、
(f)主信号を取得するための、前記立体音響化されるモノラル信号の、前記増幅率P“だけの増幅と、
(g)前記立体音響化されるモノラル信号の、前記遅延時間L(アルファ)だけの遅延および前記遅延信号の、前記増幅率P(アルファ)‘だけの増幅、または代替で、前記立体音響化されるモノラル信号の、前記増幅率P(アルファ)‘だけの増幅および前記増幅信号の、前記遅延時間L(アルファ)だけの遅延と、
(h)前記立体音響化されるモノラル信号の、前記遅延時間L(ベータ)だけの遅延と、
(i)側信号を取得するための、(g)および(h)で得られる信号の加算と、
(j)主信号および側信号の、ステレオ信号への立体変換と
を特徴とする、方法。
【請求項11】
(a)角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した解の逆数に等しい増幅率P“と、
(b)(a)で記述された増幅率P“と、請求項3(a)で記述された増幅率P(アルファ)との積に等しい増幅率P(アルファ)‘と、
(c)負の角度アルファの指向間隔を、2倍にしたサインアルファで除算したものと、角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した解の平方根とを加算した遅延時間L(アルファ)と、
(d)負の角度ベータの指向間隔を、2倍にしたサインベータで除算したものと、角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した解の平方根とを加算した遅延時間L(ベータ)と
を特徴とする、請求項9記載のモノラル信号を立体音響化するための装置。
【請求項12】
(a)角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した解の逆数に等しい増幅率P“と、
(b)(a)で記述された増幅率P“と、請求項3(a)で記述された増幅率P(アルファ)との積に等しい増幅率P(アルファ)‘と、
(c)負の角度アルファの指向間隔を、2倍にしたサインアルファで除算したものと、角度アルファの指向間隔の2乗を、4を乗算したサイン2乗アルファで除算し、角度ファイの指向間隔の2乗を加算して、サインアルファで除算した角度アルファの指向間隔と角度ファイの指向間隔とサインファイとの積を減算した解の平方根とを加算した遅延時間L(アルファ)と、
(d)負の角度ベータの指向間隔を、2倍にしたサインベータで除算したものと、角度ベータの指向間隔の2乗を、4を乗算したサイン2乗ベータで除算し、角度ファイの指向間隔の2乗を加算して、サインベータで除算した角度ベータの指向間隔と角度ファイの指向間隔とサインファイとの積を加算した解の平方根とを加算した遅延時間L(ベータ)と
を特徴とする、請求項10記載のモノラル信号を立体音響化するための方法。
【請求項13】
それぞれ得られたステレオ信号を、2以上のラウドスピーカにより再生される立体音響信号へさらに変換することを特徴とする、請求項1または請求項3または請求項5または請求項7または請求項9または請求項11記載の更なる装置。
【請求項14】
それぞれ得られたステレオ信号を、2以上のラウドスピーカにより再生される立体音響信号へさらに変換することを特徴とする、請求項2または請求項4または請求項6または請求項8または請求項10または請求項12記載の更なる方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19.1】
image rotate

【図19.2】
image rotate


【公表番号】特表2011−521551(P2011−521551A)
【公表日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2011−508825(P2011−508825)
【出願日】平成21年5月12日(2009.5.12)
【国際出願番号】PCT/EP2009/003339
【国際公開番号】WO2009/138205
【国際公開日】平成21年11月19日(2009.11.19)
【出願人】(510300393)ストーミングスイス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング (3)
【Fターム(参考)】