説明

改良された集電体と絶縁体を有する燃料電池スタック

燃料電池スタック(10)は集電体(30)に隣接して固定された端電池(12)を有する反応部(20)を備える。集電体(30)は端電池(12)の顕熱を超えない顕熱と、100μΩcmを超えない電気抵抗率とを有する。絶縁体(40)は集電体(30)に隣接して固定され、0.500W/(mK)を超えない熱伝導率を有する。集電体(30)の低い顕熱と絶縁体(40)の低い伝熱速度によって、熱が端電池(12)から急速に出て行かないために、端電池(12)が急速に加熱する結果となり、それにより凝固点下の条件での始動の間の端電池(12)内の生成水の凝固と蓄積を回避することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、輸送車両、携帯型発電設備での使用に適した、あるいは据置き型発電設備として適した燃料電池スタックに配列された燃料電池に関し、本発明は特に、スタックの端電池と比較して低い顕熱を有する集電体と絶縁体を有し、その絶縁体の両端にわたる全伝熱速度は、凝固点下の条件からの始動の間における端電池による熱発生速度を下回る、燃料電池スタックに関する。
【背景技術】
【0002】
燃料電池は周知であり、還元性及び酸化反応性流体から電気エネルギーを生成して、宇宙機搭載用途、輸送車両、又は建物のオン・サイト発電機などの電気装置に電力を供給するために共通して使用されている。複数の平坦な燃料電池が、通常、電気絶縁フレーム構造体で周囲を囲まれた電池スタックとして配列され、このフレーム構造体は、燃料電池発電設備の一部として、還元性流体、酸化剤流体、冷媒流体及び生成物流体の流れを方向付けるマニホルドを画定する。個々の独立した燃料電池は、概して、電解質で隔離された空気極と燃料極を備える。燃料電池は又周知のように、水輸送板又はセパレータ板を具備し得る。
【0003】
燃料電池スタックは、還元性流体ストリームと酸化剤プロセスストリームから電気を発生させる。燃料電池スタックの反応部は、相互に隣接して積層された複数の燃料電池から形成される。複数の燃料電池は、燃料電池スタックの端部に端電池を備える。加圧板は集電体の上に重なり、スタックに圧縮負荷をかけるよう燃料電池スタックの反対側の端部にある反対側の加圧板に対して固定される。既知の加圧板のほとんどは、大型の導電性金属材料から作製されるものである。
【0004】
燃料電池スタックの運転中、電流はスタックの反応部を通過してそこから出て、端電池に隣接する集電体中へと流れる。集電体又は加圧板に固定された電力取出器によって、電流は電池スタックからモータ等の装置へ向かう。
【0005】
凝固点下の条件から「ブートストラップ」始動の間、燃料電池スタックに補助加熱流体を与えないことが好ましいが、一方で水素等の還元性流体を燃料極に供給し、かつ、酸素又は空気等の酸化剤を空気極に供給することが好ましい。電解質として陽子交換膜(「PEM」)を利用する電池において、燃料極の触媒表面では、水素が電気化学的に反応して水素イオンと電子が生成される。電子は外部負荷回路に伝導されてから空気極に戻るが、他方の水素イオンは電解質を通って空気極へ移動して、そこで酸化剤並びに電子と反応して水を生じ、熱エネルギーが放出される。燃料電池により発生した電気は、集電体と導電性加圧板中を通って流れる。
【0006】
そのような「ブートストラップ」始動の間、スタックの中央領域にある燃料電池は、スタックの両端に隣接する端電池と比較して、急速にその温度が上昇する。端電池で発生した熱は集電体中を通って大型の導電性金属製加圧板へ急速に伝導されるため、端電池はもっとゆっくりと加熱する。端電池の温度が摂氏0度(0℃)以上に急速に上昇しなければ、水輸送板中の水は凍結したままであり、それにより生成水の除去が妨害され、端電池が燃料電池生成水で溢れることになる。端電池の溢れは反応性流体が触媒に達するのを妨げるため、端電池に負電圧が生じる結果となり得る。端電池の負電圧は、空気極における水素ガスの発生及び/又は電池電極の炭素支持層の腐食を生じさせ得る。そのような事態の発生により、燃料電池スタックの性能と長期安定性を劣化させることになる。
【発明の開示】
【発明が解決しようとする課題】
【0007】
従って、凝固点下の条件からの始動の間、可能な限り急速に0℃以上に温度を上昇させることのできる端電池を有する燃料電池スタックの必要性がある。
【課題を解決するための手段】
【0008】
本発明は、改良された集電体と絶縁体を有する燃料電池スタックである。本発明の燃料電池スタックは、外部負荷装置と整合して電気エネルギーを供給できる発電設備を作製するための、スタックや、例えば反応物管理システム、熱管理システム、制御装置などの他の構成要素を含む設備のような燃料電池発電設備(図示せず)に使用することができる。そのような設備及びそれら種々の構成要素は当業者には既知である。燃料電池から電力を受容する外部負荷装置は、例えば車両や建造物などの輸送装置や据置き型装置でもよい。燃料電池スタックは、還元性流体ストリームと酸化剤プロセスストリームから電気を発生させるものであり、燃料電池スタックの反応部を形成するよう相互に隣接して積層された複数の燃料電池を備える。複数の燃料電池は、スタック端部に端電池を具備する。
【0009】
集電体は端電池と電気的に連絡するように固定され、ここで、この集電体は、端電池の顕熱を超えない大きさの顕熱と、100μΩcmを超えない大きさの電気抵抗率とを有する。燃料電池スタックは又、集電体に隣接して固定された絶縁体を備え、この絶縁体の熱伝導率は0.500W/(mK)を超えない。スタックは又、絶縁体に隣接してその上に重なって固定され、さらに端電池の上にある加圧板を有する。集電体の顕熱が低く、かつ絶縁体の熱伝導率が低いため、熱は端電池から急速には出て行かず、それゆえ凝固点下の条件での始動の間、端電池が急速にウォームアップする。
【0010】
一実施態様において、集電体は金属箔から作製される。代替的な実施態様では、集電体は金属皮膜からなるものであってもよい。好ましい集電体は、0.25〜0.50ミリメートル(mm)厚を有し、端電池の顕熱のおおよそ0.13〜0.26倍の顕熱を有するスズの金メッキ層であってもよい。
【0011】
好ましい絶縁体は、0.010W/(mK)を超えない大きさの熱伝導率を有する独立気泡プラスチックと、0.010W/(mK)を超えない大きさの熱伝導率を有するシリカエーロゲル、あるいは0.005W/(mK)を超えない大きさの熱伝導率を有する真空絶縁パネル内のシリカエ−ロゲルを包含し得る。好ましい絶縁体は又、350kPaを超える圧縮強度を有するものであってよい。
【0012】
本発明は、金属製導電性材料からなる、あるいは非金属製、非導電性強化プラスチック複合体からなる加圧板を利用してもよい。
【0013】
従って、本発明の目的は、概して、従来技術の欠陥を克服する、改良された集電体と絶縁体を有する燃料電池スタックを提供することである。
【0014】
より詳細には、本発明の目的は、燃料電池スタックの端電池が凍結温度以下の条件での始動の間に急速に加熱するように、低顕熱を有する集電体と低熱伝導率を有する絶縁体を装備する、改良された集電体と絶縁体を有する燃料電池スタックを提供することである。
【0015】
本発明の改良された集電体と絶縁体を有する燃料電池スタックのこれら及びその他の目的並びに利点は、関連する添付の図面と組み合わせて以下の説明を検討することにより容易に明らかとなるであろう。
【発明を実施するための最良の形態】
【0016】
図面を詳細に参照すると、改良された集電体と絶縁体を有する燃料電池スタックが図1に示されており、概して符号10で示されている。スタック10は、スタック10の反応部20を形成する、相互に隣接して固定された複数の燃料電池14,16,18を具備する。当業界において周知のように、スタック10の燃料電池14,16,18は、PEM電解質等の電解質(図示せず)の両側に燃料極と空気極を備える(図示せず)。そのような燃料電池14,16,18は又、周知のように、水輸送板及び/又はセパレータ板(図示せず)を含んでもよい。スタック10は又、スタック10の反応部20の第1の端部24に隣接して固定された端電池12を備える。スタック10は又、当業界において周知のように、還元性流体ストリーム及び酸化剤プロセスストリームなどの反応物ストリームを、スタック10の反応部20内へと方向付け、かつ、生成物ストリームをスタック10から排出されるように方向付けるための、スタック10の反応部20に固定された第1の反応物マニホルド26と第2の反応物マニホルド28を具備することができる。
【0017】
集電体30は、端電池12と電気的に連絡するよう固定される。端電池12と集電体30の間の電気伝導を増強するために、集電体30は、その平面の面積の大きさが、端電池12の平面の面積の大きさと少なくとも同じであるような寸法に形成される。集電体30は、第1の母線32と第2の母線34に対して、それらと電気的に連通するよう固定される。母線32,34は、集電体30から流れる電流を母線32,34に方向付けることができるよう、銅などの導電性材料から作製することができる。さらに、第1の電力取出器36が第1の母線32に固定され、第2の電力取出器38が第2の母線34に固定される。第1と第2の電力取出器36,38は、スタック10から、仕事を実行する装置(図示せず)に電気を伝導するよう導電性材料から作製してよい。集電体30は、端電池12の顕熱未満の顕熱を有し、集電体は100μΩcmを超えない大きさの電気抵抗率を有する。即ち、端電池12は第1の顕熱を有し、集電体30は第1の顕熱未満の第2の顕熱を有する。
【0018】
スタック10は又、集電体30、あるいは集電体30の少なくとも一部に隣接して固定された絶縁体40を具備する。電気的に非伝導性、非金属製繊維強化複合材料からなる層等の加圧板42は、絶縁体40に隣接しかつその上に重なり、さらに端電池12の上にあり、スタック10の外端部41に固定される。本発明における目的に関連して、「端電池12の上にある加圧板42」という用語は、加圧板42が端電池12の平面の面積と少なくとも同じ大きさの平面の面積を有するような寸法形状を有することを意味する。第2の集電体、絶縁体及び加圧板(図示せず)は、スタック10の反対側の第2の端電池(図示せず)に固定される。理解されるように、両方の加圧板は、スタック10に圧縮荷重を印加するよう、タイロッド(図示せず)などで相互に固定される。
【0019】
スタック10は又、集電体30に隣接して固定されたカーボン紙クッション44を含んでもよい。当業界で知られるように、カーボン紙クッション44は、スタック10の隣接する表面間の増強された導電性のために圧縮性である。さらに、スタック10は集電体30と第1の反応物マニホルド26の間に固定された第1のガスケット46と、集電体30と第2の反応物マニホルド28の間に固定された第2のガスケット48を具備してもよい。第1と第2のガスケット46,48は、マニホルド26,28から出る流体が移動するのを防ぐ。
【0020】
加圧板42が非導電性、非金属製繊維強化複合体からなる加圧板42である場合、集電体30は端電池12の接触面49と共通の平面である集電体30の平面47から延在する、第1の長辺延長部(long−side extension)43と反対側の第2の長辺延長部45を含んでもよい。第1と第2の長辺延長部43,45は第1と第2の母線32,34に接触する。
【0021】
図2は図1の燃料電池スタック10の断片的な透視図であり、図1で示した第1の実施態様に関して上述の通りである。図2(正しく縮尺して描かれてはいない)は、電池スタック10に対する集電体30の第1と第2の長辺延長部43,45の配置を示す。スタック10は矩形であり、第1と第2の短辺52A,52B及び第1と第2の長辺54A,54Bを含む。図2に示すように、第1の長辺延長部43は、スタック10の第1の長辺54Aに沿って延長するよう配置され、第2の長辺延長部45はスタック10の第2の長辺54Bに沿って延長するように配置される。この配置により、集電体30の中央領域56から母線32,34まで流れる電流は、より遠くにある短辺52A,52Bまでではなく、より近い第1又は第2の長辺延長部43,45までの短い距離を移動することができる。従って、電流が長辺54A,54Bまでのより短い距離を流れるようにすることよって、電流がさらに短辺52A,52Bまで流れなければならない場合と比較して、集電体30をより薄くすることが可能となる。集電体30が薄いほど、厚い集電体30と比較して、顕熱は小さくなる。
【0022】
周知のように、ある製品の顕熱は、その質量にその比熱をかけ、さらに、その製品がその温度差にわたって加熱された場合の温度差動をかけたものである。つまり、例えば、摂氏0度(0℃)から20℃に上昇した1グラムの水の顕熱は0℃から20℃に上昇した1グラムのコンクリートの顕熱とは異なる。そのため、集電体30の顕熱が小さければ小さいほど、端電池12から集電体30へと、集電体30の温度を上昇させるのに伝達される熱量は小さくなる。端電池12から集電体30に伝達される熱量を低減することにより、端電池12中により多くの熱を残すことができるため、それにより、凝固点下の条件での始動の間、端電池12の急速なウォームアップを促進することが可能となる。
【0023】
図3において、改良された集電体と絶縁体を有する燃料電池スタック60の代替的実施例を示す。効率を目的として、図3に示すこの代替の実施態様において、上述の図1に図示した実施態様における同等の構成要素とほぼ同じ構成要素は、図1の該当する構成要素の符号にダッシュを付している。例えば図1で示した端電池12は、図3において符号12’で示される。
【0024】
代替的実施態様のスタック60は、スタック60の反応部20’を形成する複数の燃料電池14’,16’,18’を備える。スタック60は又、スタック60の反応部20’の第1の端部24’に隣接して固定された端電池12’を有する。
【0025】
集電体62は、絶縁体40’と加圧板64と電気的に連通するように固定される。集電体62は、絶縁体40’の周囲を覆ってもよい。そのような実施態様では、集電体62は、集電体62の第1の折り返し層71が、絶縁体40’の第1の接触面66に隣接して固定され、集電体62の第2の折り返し層73が、絶縁体40’の第2の接触面68に隣接して固定されるよう、折り返された均一な部分である。
【0026】
図1と図2の集電体30の全厚さ、あるいは、図3の集電体62の第1の折り返し層71又は第2の折り返し層73のいずれか一方にわたる全厚さは、1.00mmの厚さを超えないものであることが好ましい。本発明の目的に関して、「厚さ」とは、図1においては端電池12と加圧板42の間で延在する長手方向軸に平行な集電体30を通る最短距離、また、図3においては端電池12’と加圧板64の間で延在する長手方向軸に平行な、集電体62を通る最短距離を意味する。図3の集電体62と導電性の加圧板64の間の電力伝達は、集電体62で絶縁体40’を覆うことにより単純化される。図1に示す母線32,34は、図3に示す構造においては必要とされない。図3の集電体62は、製作公差に適応する空隙69を有してもよい。
【0027】
図3の燃料電池スタック60において、加圧板64はステンレス鋼等の導電性の金属材料で作製され、集電体62に隣接してその上に重なり、さらに端電池12’の上に配置されるよう固定される。さらに、電力取出器70は、スタック60から出る電流を伝導する加圧板64に固定される。
【0028】
スタック60は又、集電体62と端電池12’の間に固定された第1のカーボン紙クッション44’と、集電体62と加圧板64の間に固定された第2のカーボン紙クッション72を具備し得る。加圧板64が導電性であるため、集電体62の長辺延長部は必要とされない。
【0029】
図1〜図3に示す実施態様において、集電体30,62は、ニッケル又は銅のステンレス鋼クラッド等のクラッド材から作製することができる。あるいは又、集電体を、スズ、銅、亜鉛、ニッケル、アルミニウム、金、銀、それらの合金、それらの混合物、及び金メッキしたそれら材料からなる群から選択される材料で作製することもできる。そのようなクラッド材の集電体30,62の両面は、腐食並びに接触抵抗を最小化するために金メッキされる。そのようなクラッド材は、米国マサチューセッツ州アトルボローのエンジニアード・マテリアルズ・ソリューション社(Engineered Materials Solution Company)から入手可能である。クラッド材は、耐食性ステンレス鋼と、高い電気伝導率を有するが耐食性に劣る材料を組み合わせるという利点を有する。そのようなクラッド材は、耐食性のより大きい材料が端電池12に隣接するように配置することが好ましい。集電体30,62は又、スズなどの金属箔、金属皮膜又は金属メッキから作製することも可能である。皮膜として適用された集電体30,62を、絶縁体40,40’に適用してもよい。端電池12の顕熱の約0.13〜0.26倍の顕熱と、100μΩcmを超えない抵抗率を有する0.25mm厚のスズの集電体が好ましい。
【0030】
また絶縁体40,40’は、0.500W/(mK)を超えない熱伝導率を有し、かつ、端電池12から絶縁体を横切る熱伝達の全速度が、端電池12で生じる熱を超えないように集電体30,62に固定される。絶縁体40,40’は、a)0.010W/(mK)を超えない熱伝導率を有する独立気泡又は連続気泡プラスチック、b)0.010W/(mK)を超えない熱伝導率を有するシリカエーロゲル、又はc)0.005W/(mK)を超えない熱伝導率を有する真空絶縁パネル内のシリカエーロゲルから構成することができる。絶縁体40,40’の好ましい厚さは20mm未満であり、最も好ましくは10mm未満である。
【0031】
スタック10の運転中、絶縁体40,40’中への、又はそこを横断する伝熱速度は「ブートストラップ」始動の最初の1分間に端電池12で生じる熱発生率の100パーセント(「%」)より小さく、好ましくは、絶縁体40,40’中への伝熱速度は、端電池12での熱発生率の50%より小さく、さらに好ましくは、絶縁体40,40’中への熱の伝達速度は、ブートストラップ始動の最初の1分間に端電池12で生じる熱発生率の25%より小さい。そのような始動中の、単一の電池で生じる熱発生率は、約0.2W/cm2である。絶縁体40,40’は又、350kPaを超える圧縮強度を有することが好ましい。
【0032】
代表的な連続気泡プラスチック絶縁体は、米国マサチューセッツ州マンスフィールドのオールバニー・インターナショナル社(Albany International Company)から入手可能な、剛性の軽量ポリイミドファイバーボードから作製された「パイロペル(登録商標)(Pyropel(登録商標))MD−50」という商品名で市販されている製品である。代表的なシリカエ−ロゲル絶縁体は、米国マサチューセッツ州マールバラのアスペン・エーロゲル社(Aspen Aerogels,Inc.)から入手可能な「アスペンエーロゲル(Aspen Aerogel)」という商品名で市販されている製品である。代表的な真空パネル内シリカエーロゲルは、米国カリフォルニア州オークランドのグレーシャベイ社(Glacier Bay Company)から入手可能な「バリアウルトラ−R(Barrier Ultra−R)」という商品名で市販されている製品である。
【0033】
代表的な、非導電性加圧板42を作製する材料としては、燃料電池スタック10の運転条件に適合したガラス又は繊維強化ポリマー又は樹脂が包含される。代表的な繊維強化複合材料には、以下の商品名で市販されている、米国ミシガン州ベイシティーのクァンタムコンポジット社(the Quantum Composites Company)から入手可能な製品が包含される。
a)63%ガラス繊維エポキシSMCである「ライテックス(LYTEX) 9063」
b)55%炭素繊維エポキシSMCである「ライテックス(LYTEX) 4149」
c)ガラス繊維強化ビニルエステル樹脂SMCである「QC8560」
d)ガラス繊維強化ビニルエステル樹脂SMCの「QC8880」
「ブートストラップ」始動の間、集電体30に接触していない燃料電池14,16,18が、スタック10の端電池12と比較して、急速に温度上昇することが知られている。端電池12で発生した熱が従来の集電体と加圧板(図示せず)中へ急速に移動するため、端電池12は、もっとゆっくりと加熱される。例えば、従来の加圧板は、燃料電池の顕熱のおおよそ41倍の顕熱を有するステンレス鋼の加圧板である。加圧板の顕熱が大きくて端電池が可能な限り急には加熱しないため、凝固点下の周囲条件下で、端電池が生成水と凍結した生成水で溢れる可能性がある。端電池の溢れによって、端電池中に負電圧が生じ、燃料電池スタックの性能と長期安定性を劣化させる場合がある。
【0034】
端電池12,12’による熱損失の問題を解決するのに際して、本発明者等は、個々の運転条件における代表的燃料電池(図示せず)に関して、集電体30,62の最小厚さに対しての異なる材料を対比した。種々異なる材料を集電体として使用できるが、金が集電体30とカーボン紙クッション44間の低い電気抵抗率を維持し、かつ、スズがPEM電池内に実質的に不溶性の酸化スズを形成し、しかも製造が容易なため、金で被覆したスズの集電体が好ましい材料である。
【0035】
図4は、集電体の厚さをミリメートル(「mm」)単位で測定し、種々の材料の関数として表したグラフを示しており、この場合、集電体の厚さとは、特定の条件下における例示の燃料電池の運転を持続する厚さである。以下は、例示の燃料電池の特定条件である。
a)電池寸法、15.24x30.48センチメートル(「cm」)b)電流密度、1.0A/cm2(「amp/cm2」)
c)電池(図示せず)の中心線から電池の端部の間における許容可能な電圧降下、0.020V。
グラフは304又は316ステンレス鋼、炭素鋼、及びスズとその合金を含む材料を示している。
【0036】
図5は、図4に示した集電体厚さに関して、1個の燃料電池の顕熱の割合としての種々の材料の集電体の顕熱のグラフを示している。即ち、図5は図4の集電体の顕熱を示す。例えば、例示の燃料電池において、1.05mm厚のステンレス鋼からなる集電体の顕熱は、隣接する端電池の顕熱のおよそ1.15倍である。0.25mm厚のスズからなる集電体30の顕熱は、例示の端電池の顕熱の約0.13倍である。これは、端電池で生じた廃熱のほとんどが、集電体に伝達されることなく端電池の温度上昇に利用できることを意味する。従って、端電池12などの代表的な端電池は、凝固点下の条件での始動の間、急速にウォームアップすることになる。
【0037】
図6は、3種の異なる材料で作製した集電体を用いて、ブートストラップ始動中の時間を秒単位で測定した時間の関数として、例示の端電池の摂氏(「℃」)における温度変化のグラフを示す。図6に示す本発明の概念の検証の結果は、以下を対比したものである。
a)図6において符号74を付した線で示す、ステンレス鋼加圧板と「パイロペル」ブランドの連続気泡プラスチック絶縁体を有するスズ集電体
b)図6において符号76を付した線で示す、複合加圧板を有するステンレス鋼集電体
c)図6において符号78を付した線で示す、ステンレス鋼加圧板を有するステンレス鋼集電体。
線74は、0.07ワットW/mK)の導電率を有する8.0mmの「パイロペル」ブランドの絶縁体と、30.0mmのステンレス鋼加圧板を備えた、0.50mmのスズ集電体を示す。線76は、絶縁体を具備しない、2.0mmステンレス鋼集電体と複合加圧板を示す。線78は、絶縁体を具備しない、38.0mmステンレス鋼集電体とステンレス鋼加圧板を示す。
【0038】
端電池の温度を、可能な限り迅速かつ60秒未満で0℃まで上昇させることに関し、線74で示す0.07ワットW/mK)の導電率を有する8.0mmの「パイロペル」ブランドの絶縁体と、30.0mmのステンレス鋼加圧板を備えた0.50mmのスズ集電体が、40秒以下で−20℃から0℃まで著しく急速にウォームアップすることはs明らかである。対照的に、線76で示す絶縁体を具備しない、2.0mmステンレス鋼集電体と複合加圧板と、線78で示す絶縁体を具備しない、38.0mmステンレス鋼集電体とステンレス鋼加圧板は、いずれも2分未満でも−20℃から0℃にウォームアップしない。従って、集電体と加圧板42,64の間に固定された絶縁体を備え、エンドプレート12,12’の顕熱より小さい顕熱を有する薄い集電体40,62が、ブートストラップ始動の間、端電池12,12’を急速に加熱するのに好ましい形態であることは明らかである。
【0039】
本発明を、改良された集電体と絶縁体を備える燃料電池スタック10の特定の形態に関して説明及び例示してきたが、本発明がそれらの説明並びに例示した実施態様に限定されるべきでないことは理解すべきである。例えば、個々の燃料電池を具備する燃料電池14,16,18は、PEM電解質の両側に空気極及び燃料極を有するものとして説明したが、本発明は他の既知の電解質を利用する燃料電池に適用することもできる。また、説明及び例示した実施態様における集電体30、絶縁体40及び加圧板42は、例示の端電池12にのみ隣接して固定されるように図示されている。しかしながら、大抵の環境における燃料電池スタック10は、上述の第2の端電池(図示せず)に隣接する構成要素同様の、第2の集電体、絶縁体さらには加圧板(図示せず)を具備し得ることは理解すべきことである。
【図面の簡単な説明】
【0040】
【図1】本発明により構成された、改良された集電体と絶縁体を有する燃料電池スタックの好ましい実施態様を示す簡略化された概略図である。
【図2】燃料電池スタックの長辺に固定された母線を示す、図1の燃料電池スタックの断片的な透視図である。
【図3】改良された集電体と絶縁体を有する燃料電池スタックの代替的な実施態様の簡略化された概略図である。
【図4】種々の材料の関数としての集電体厚のグラフである。
【図5】種々の材料の関数としての、1個の燃料電池における顕熱の割合としての集電体の顕熱のグラフである。
【図6】ブートストラップ始動の間、秒単位で測定された時間の関数としての摂氏単位で測定された端電池温度のグラフである。

【特許請求の範囲】
【請求項1】
還元流体ストリームと酸化剤反応物ストリームから電気を発生させる燃料電池スタック(10)であって、
a.燃料電池スタック(10)の反応部(20)を形成するように相互に隣接して固定される複数の燃料電池(14),(16),(18)であって、そのスタック(10)の反応部(20)の第1の端部(24)に隣接して固定される端電池(12)を備える、複数の燃料電池(14),(16),(18)と、
b.第1の端部(24)に隣接して固定され、端電池(12)と電気的に連絡して固定される集電体(30)であって、端電池(12)の顕熱より小さい顕熱と、100μΩcmを超えない大きさの電気抵抗率とを有する集電体(30)と、
c.集電体(30)に隣接して固定される絶縁体(40)であって、絶縁体(40)の両端にわたる熱伝導率が0.500W/(mK)を超えない大きさであり、端電池(12)から絶縁体(40)の両端にわたる全伝熱速度が、端電池(12)で生じる熱を超えないように固定される、絶縁体(40)と、
d.絶縁体(40)に隣接しかつその上に重なり、さらに端電池(12)の上にあるように固定される加圧板(42)、
を備える燃料電池スタック。
【請求項2】
前記集電体(30)の顕熱が、前記端電池(12)の顕熱の50%を超えないことを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項3】
前記集電体(30)の顕熱が、前記端電池(12)の顕熱の25%を超えないことを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項4】
前記絶縁体(40)が、0.005W/(mK)を超えない熱伝導率を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項5】
前記絶縁体(40)が、0.010W/(mK)を超えない熱伝導率を有し、かつ、前記絶縁体は350kPaを超える圧縮強度を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項6】
前記絶縁体(40)が、0.005W/(mK)を超えない熱伝導率を有する真空絶縁パネルであり、かつ、前記絶縁体は350kPaを超える圧縮強度を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項7】
前記絶縁体(40)が、20mm未満の厚さを有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項8】
前記絶縁体(40)が、10mm未満の厚さを有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項9】
前記絶縁体(40)が、前記端電池(12)で生じる熱の50%未満である、前記端電池(12)から前記絶縁体(40)の両端にわたる全伝熱速度を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項10】
前記絶縁体(40)が、前記端電池(12)で生じる熱の25%未満である、前記端電池(12)から前記絶縁体(40)の両端にわたる全伝熱速度を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項11】
前記加圧板(42)が導電性金属であることを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項12】
前記加圧板(42)が非導電性、非金属製繊維強化複合材料から作製されるものであることを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項13】
前記集電体(30)が、前記スタック(10)の第1の長辺(54A)に沿って、前記非導電性加圧板(42)に隣接して延長されるように配置された第1の長辺延長部(43)と、前記スタック(10)の第2の長辺(54B)に沿って、前記非導電性加圧板(42)に隣接して延長するように配置された第2の長辺延長部(45)と、前記第1の長辺延長部(43)と電気的に連絡して固定された第1の電力取出器(36)と、前記第2の長辺延長部(45)と電気的に連絡して固定された第2の電力取出器(38)とを備え、前記集電体(30)を通って前記第1と第2の電力取出器(36),(38)に電気の流れを生じさせることを特徴とする、請求項12に記載の燃料電池スタック(10)。
【請求項14】
前記集電体(30)が金属箔であることを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項15】
前記集電体(30)が、前記絶縁体(40)上の金属皮膜であることを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項16】
前記集電体(30)が1.00mmの厚さを超えないことを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項17】
前記集電体(30)が0.50mmの厚さを超えないことを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項18】
前記集電体(30)が0.25mmの厚さを超えないことを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項19】
前記集電体(30)が50μΩcmを超えない電気抵抗率を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項20】
前記集電体(30)が25μΩcmを超えない電気抵抗率を有することを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項21】
前記集電体(30)が、スズ、銅、亜鉛、ニッケル、アルミニウム、金、銀、それらの合金、それらの混合物、及び金メッキしたそれらの材料からなる群から選択される材料からなることを特徴とする、請求項1に記載の燃料電池スタック(10)。
【請求項22】
外部装置に電気を供給する燃料電池発電設備であって、
a.第1の顕熱を有する端電池(12)を有する反応部(20)を備える燃料電池スタック(10)と、
b.前記第1の顕熱より小さい第2の顕熱を有し、100μΩcmを超えない電気抵抗率を有する、前記端電池(12)と電気的に連絡して固定される集電体(30)と、
c.前記燃料電池スタック(10)の外端部(41)に固定される、加圧板(42)と、
d.前記加圧板(42)と、前記集電体(30)の少なくとも一部の間に設けられた、0.500W/(mK)を超えない熱伝導率を有する絶縁体(40)、
を備えることを特徴とする、燃料電池発電設備。
【請求項23】
前記外部装置が、輸送機器の電気駆動部品であることを特徴とする、請求項22の燃料電池発電設備。
【請求項24】
前記外部装置が据置き型装置であることを特徴とする、請求項22の燃料電池発電設備。
【請求項25】
燃料電池スタック(10)が、その反応部(20)を形成するよう相互に隣接して固定された複数の燃料電池(14),(16),(18)を備え、かつ、前記スタック(10)の第1の端部(24)に隣接して固定される前記端電池(12)を具備する燃料電池スタックにおいて、燃料電池スタック(10)の始動の間、その燃料電池スタック(10)の端電池(12)を急速にウォームアップする方法であって、
a.集電体(30)を、前記第1の端部(24)に隣接し、前記端電池(12)と電気的に連絡して固定するステップであって、前記集電体(30)は前記端電池(12)の顕熱より小さい顕熱と、100μΩcmを超えない電気抵抗率とを有するステップと、
b.集電体(30)に隣接して絶縁体(40)を固定するステップであって、前記絶縁体(40)は、0.500W/(mK)を超えない熱伝導率を有し、かつ、前記端電池(12)から前記絶縁体(40)の両端にわたる全伝熱速度は、前記端電池(12)で生じる熱を超えないように前記絶縁体(40)を前記集電体(30)に固定するステップと、
c.前記絶縁体(40)に隣接しかつその上に重なり、さらに前記端電池(12)の上にあるように加圧板(42)を固定するステップと、
d.前記燃料電池(12),(14),(16),(18)を流れるように反応物流体を方向付けるステップ、
を含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2007−511870(P2007−511870A)
【公表日】平成19年5月10日(2007.5.10)
【国際特許分類】
【出願番号】特願2006−535614(P2006−535614)
【出願日】平成16年10月12日(2004.10.12)
【国際出願番号】PCT/US2004/033704
【国際公開番号】WO2005/043645
【国際公開日】平成17年5月12日(2005.5.12)
【出願人】(500477447)ユーティーシー フューエル セルズ,エルエルシー (138)
【Fターム(参考)】