説明

旋回軸受

【課題】 保持器で転動体を保持する構成であり、フレッティングが生じ難く、保持器の軽量化を図れて、保持器、または保持器と接触する部材の摩耗を抑制することができる旋回軸受を提供する。
【解決手段】 内輪1と、外輪2と、これら内外輪1,2の各軌道面1a,1b,2a,2b間で転動自在な複数の転動体3と、各転動体3を保持する保持器4とを備える。保持器4はセラミックス製である。セラミックスは、βサイアロンを主成分とし、残部不純物からなる焼結体、またはβサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば風力発電装置等の旋回部分に用いられる大型または超大型の旋回軸受に関する。
【背景技術】
【0002】
図13および図14は風力発電装置の1例を示す。この風力発電装置11は、支持台12上にナセル13を水平旋回自在に設け、このナセル13のケーシング14内に主軸15を回転自在に支持し、この主軸15のケーシング14外に突出した一端に、旋回翼であるブレード16を取付けてなる。主軸15の他端は増速機17に接続され、増速機17の出力軸18が発電機19のロータ軸に結合されている。
【0003】
風力発電装置は規模が非常に大きく、1枚のブレード16の長さが数10メートル、中には100メートルを超えるものもある。そのため、ブレード16が主軸15回りに回転する際に、その回転位置、例えば主軸15よりも上側の位置と下側の位置とで、ブレード16が受ける風の風速が異なる。風速が違っていても各ブレード16が同じ荷重を受けるように、ブレード16が回転する間に、風速に応じて各ブレード16の風に向かう角度を調整する。また、常に各ブレード16が正面から風を受けるように、風向きの変化に応じてナセル13の向きを変える(ヨー)。なお、風速が速過ぎて多大な荷重を受ける恐れがある場合には、ナセル13の向きを通常の逆にして、風が抜けるようにすることもある。
【0004】
このように、風力発電装置では、風の状態に合わせてブレード16の角度およびナセル13の向きを随時変える必要があるため、ブレード16およびナセル13はそれぞれ旋回軸受21,22により旋回自在に支持され、図示しない駆動手段により旋回させるようになっている。風力発電装置の旋回軸受の特徴としては、寸法が非常に大きいこと、旋回の揺動角が比較的小さいこと、変動荷重を受けることが挙げられる。
寸法に関しては、ブレード用で外輪外径1000〜3000mm、ヨー用で同1500〜3500mmである。揺動角に関しては、ブレード用で最大約90°、ヨー用で最大360°である。変動荷重に関しては、ブレード用およびヨー用のいずれについても変動荷重を受けるが、特にブレード用が急激な変動荷重を受けることが多い。
【特許文献1】特開2002−339981号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
上述したように、風力発電装置の旋回軸受は、変動荷重により比較的狭い旋回範囲内で頻繁に揺動するため、フレッティングが生じやすい。フレッティングを防止するには、内部すきまを負すきまにして、転動体と軌道輪との滑りを抑える必要がある。一方、負すきまにすると、揺動時に個々の転動体の接触角が変わり、転動体の公転速度が変化することにより、転動体の進み遅れが生じるが、負すきまにして負荷域が広がることにより進み遅れの影響は大きくなる。この進み遅れにより各転動体が散らばることがなく、常に各転動体が等間隔に保持されるようにするために、間座スペーサではなく、保持器で転動体を保持するのが望ましい。
【0006】
しかし、風力発電装置用のような大型または超大型の旋回軸受に、中型以下の旋回軸受と同様に鋼製保持器を用いた場合、保持器の重量が非常に重くなるため、保持器とその案内面である内輪外径面または外輪内径面との間に大きな荷重が作用し、両者の摩耗が大きいという問題がある。また、鋼製保持器であると、保持器のポケットの内周面と転動体間に発生する摩耗も大きい。なお、JIS B 0104-1991によると、大型軸受は外輪外径が180〜800mmのものと定義されている。
【0007】
したがって、風力発電装置用の旋回軸受に保持器を用いる場合、フレッティング対策に加えて、保持器の軽量化を図ることが重要な課題となる。従来、旋回軸受において、保持器の軽量化について特に提案はなされていないが、保持器を複数のセグメントに分割された分割保持器(例えば特許文献1)にすれば、軽量化に効果があると考えられる。分割保持器の採用も保持器の軽量化に対する解決策の一つではあるが、さらに根本的な解決策が求められている。
【0008】
この発明の目的は、保持器で転動体を保持する構成であり、フレッティングが生じ難く、保持器の軽量化を図れて、保持器、または保持器と接触する部材の摩耗を抑制することができる旋回軸受を提供することである。
【課題を解決するための手段】
【0009】
この発明にかかる旋回軸受は、内輪と、外輪と、これら内外輪の各軌道面間で転動自在な複数の転動体と、各転動体を保持する保持器とを備え、前記保持器がセラミックス製であることを特徴とする。
【0010】
保持器をセラミックス製とすれば、以下の作用効果が得られる。
・ セラミックスは、鋼に比べて密度が小さい。このため、保持器の軽量化が図れ、保持器とその案内面である内輪外径面または外輪内径面との間に作用する荷重を小さくして、両者の摩耗を抑制できる。
・ セラミックスは、鋼に比べて硬度が高い。このため、保持器の耐摩耗性が向上する。例えば、転動体と接触するポケットの内周面の摩耗を抑えることができる。
・ 焼結体であるセラミックスは保油性が良好である。このため、保持器に含浸している油が保持器と内輪外径面または外輪内径面間で潤滑油として作用し、両者の摩耗が抑制される。また、保持器に含浸している潤滑油が内外輪の軌道面および転動体の転走面に供給されることにより、軌道面および転走面の潤滑性が向上する。
・ セラミックスは耐食性が高く、絶縁性を有する。このため、腐食や電食により保持器が損傷することを抑制できる。
【0011】
前記セラミックスは、βサイアロンを主成分とし、残部不純物からなる焼結体から構成されたものとすることができる。また、前記セラミックスは、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成されたものとしてもよい。以後、両者を含めて「サイアロン焼結体」とする。
【0012】
サイアロン焼結体は、低圧、例えば1MPa以下の圧力下で焼結されるため、10MPa以上の圧力下で加圧焼結する一般的なセラミックス、例えば窒化珪素を主成分とする焼結体(以下、「窒化珪素焼結体」とする)に比べて、製造コストを低く抑えることができる。
【0013】
前記セラミックスがサイアロン焼結体である場合、前記保持器は、主成分がβサイアロン、残部が不純物である混合物を保持器の概略形状に成形した成形体を作製する成形工程と、前記成形体を焼結して表面に緻密性の高い層である緻密層が形成された保持器原形を作製する焼結工程と、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる仕上げ工程とを経て製造されたものとするか、あるいは前記保持器は、主成分がβサイアロン、残部が焼結助剤および不純物である混合物を保持器の概略形状に成形した成形体を作製する成形工程と、前記成形体を焼結して表面に緻密性の高い層である緻密層が形成された保持器原形を作製する焼結工程と、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる仕上げ工程とを経て製造されたものとする。
【0014】
保持器を上記の各工程を経て製造されたものとすると、保持器のポケット内周面は、サイアロン焼結体における緻密性の低い部分が露出した状態となる。この緻密性の低い部分は、空孔率が高く、緻密層よりも保油性に優れる。このため、保持器のポケット内周面と転動体の転走面間の潤滑性をより一層向上させられる。
【0015】
上記各工程を経て保持器を製造する場合、前記仕上げ工程で前記保持器原形における前記ポケットの内周面の表面を除去する厚さが500μm以上であるのが良い。
緻密層は、焼結体の表面から厚さ500μm程度の領域に形成される。そのため、ポケットの内周面の表面を除去する厚さが500μm以上であれば、確実に緻密層を除去して内部の緻密性の低い部分を露出させることができる。
【0016】
また、前記仕上げ工程で、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる加工に加えて、前記ポケットの内周面以外の箇所に対し、平滑化のため表面層を除去する加工を行う場合、その表面層の除去厚さが150μm以下であるのが良い。
緻密層における焼結体の表面から厚さ150μm程度の領域には、緻密層内の他の領域よりもさらに緻密性が高い高緻密層が形成される。そのため、ポケットの内周面以外の箇所を平滑化のため表面層を除去する加工を行う場合、その表面層の除去厚さを150μm以下とすることにより、高緻密層を残存させ、保持器の耐摩耗性を向上させることができる。
【0017】
この発明において、前記転動体がβサイアロンを主成分とする焼結体からなっていてもよい。その場合、前記同様、残部が不純物であっても、あるいは焼結助剤および不純物であってもよい。
転動体がβサイアロンを主成分とする焼結体(サイアロン焼結体)からなっていれば、保持器がサイアロン焼結体からなる場合と同様の理由により、転動体の軽量化、摩耗の抑制、潤滑性の向上、腐食や電食による損傷の抑制を、比較的安価に実現できる。
【0018】
この発明の旋回軸受は、上記の各作用効果が得られるため、風力発電装置のブレードを主軸に対し、主軸軸心に略垂直な軸心回りに旋回自在に支持するためや、風力発電装置のナセルを支持台に対して旋回自在に支持するために好適に使用できる。
【発明の効果】
【0019】
この発明の旋回軸受は、内輪と、外輪と、これら内外輪の各軌道面間で転動自在な複数の転動体と、各転動体を保持する保持器とを備え、前記保持器がセラミックス製であるため、フレッティングが生じ難く、保持器の軽量化を図れて、保持器、または保持器と接触する部材の摩耗を抑制することができる。特に、セラミックスをサイアロン焼結体とした場合は、製造コストを低く抑えることができる。
【発明を実施するための最良の形態】
【0020】
この発明の実施形態を図1と共に説明する。この旋回軸受は、例えば、風力発電装置のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持する軸受、または風力発電装置のナセルを支持台に対して旋回自在に支持する軸受として使用される。
【0021】
旋回軸受は、内輪1と、外輪2と、これら内外輪1,2の複列の軌道面1a,1b,2a,2b間にそれぞれ転動自在に介在する各列複数のボールからなる転動体3と、各列の転動体3をポケット4a内で別々に保持する保持器4とを備える。
【0022】
内外輪1,2の軌道面1a,1b,2a,2bは、いずれも2つの曲面1aa,1ab,1ba,1bb,2aa,2ab,2ba,2bbで構成されている。これら2つの曲面は、それぞれ転動体3よりも曲率半径が大きく、曲率中心が互いに異なる断面円弧状である。各軌道面1a,1b,2a,2bを構成する一対の曲面間は、溝部1ac,1bc,2ac,2bcになっている。各転動体3は、その転走面3aが内輪軌道面1a,1bおよび外輪軌道面,2a,2bの前記各曲面に接して4点接触する。すなわち、この旋回軸受は4点接触複列玉軸受として構成されている。
【0023】
保持器4は、内輪軌道面1a,1b間および外側の内輪外径面1c、または外輪軌道面2a,2b間および外側の外輪内径面2cのいずれか、例えば内輪外径面1cで案内される。内輪1および外輪2には、取付用ボルト孔5,6がそれぞれ設けられている。内外輪1,2間の軸受空間にはグリースが充填され、この軸受空間の軸方向の両端がシール部材7により密封されている。
【0024】
保持器4は、サイアロン焼結体から構成されている。サイアロン焼結体は、βサイアロンを主成分とし、残部不純物からなる焼結体、またはβサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体のことを言う。
【0025】
βサイアロンは、セラミックスの一種であり、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす物質である。不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。焼結助剤としては、マグネシウム(Mg)、アルミニウム(Al)、珪素(Si)、チタン(Ti)、希土類元素の酸化物、窒化物、酸窒化物のうち少なくとも1種類以上を採用することができる。なお、焼結助剤は、焼結体のうち20質量%以下とすることが望ましい。
【0026】
図2に、サイアロン焼結体から構成される保持器4の製造方法を示す。
βサイアロン粉末準備工程S1は、βサイアロンの粉末を準備する工程である。例えば、燃焼合成法を採用することにより、安価にβサイアロンの粉末を製造することができる。
【0027】
混合工程S2は、βサイアロン粉末準備工程S1において準備されたβサイアロンの粉末に、焼結助剤を添加して混合する工程である。焼結助剤を添加しない場合は、この工程を省略することができる。
【0028】
成形工程S3は、βサイアロンの粉末、またはβサイアロンの粉末と焼結助剤との混合物を、保持器セグメント4Aの概略形状に成形する工程である。具体的には、βサイアロンの粉末、またはβサイアロンの粉末と焼結助剤との混合物に、プレス成形、鋳込み成形、押し出し成形、転動造粒等の成形手法を適用することにより、保持器4の概略形状に成形された成形体を作製する。
【0029】
焼結前加工工程S4は、上記成形体を表面加工して、当該成形体が焼結後に所望の保持器4の形状により近い形状となるよう成形する工程である。具体的には、グリーン体加工等の加工手法を適用することにより、上記成形体が焼結後に保持器4の形状により近い形状となるように成形する。この焼結前加工工程S4は、成形工程S3において上記成形体が成形された段階で、焼結後に所望の保持器4の形状に近い形状が得られる状態である場合には省略することができる。
【0030】
焼結工程S5は、上記成形体を1MPa以下の圧力下で焼結する工程である。具体的には、上記成形体を、ヒータ加熱、マイクロ波やミリ波による電波波加熱等の加熱方法により加熱して焼結することにより、保持器4の概略形状を有する焼結体である保持器原形を作製する。
【0031】
仕上げ工程S6は、焼結工程S5において作製された保持器原形に対して仕上げ加工を実施することにより、保持器4を完成させる工程である。具体的には、焼結工程S5において作製された保持器原形おけるポケットの内周面について、表面の緻密性の高い層である緻密層を除去して内部の緻密性の低い部分を露出させる。ポケット内周面以外の箇所については、平滑化のため表面を軽く研磨するに止める。
【0032】
ここで、上記焼結工程S5における焼結により、焼結体の表面から厚さ500μm程度の領域には、内部よりも緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である緻密層が形成される。さらに、焼結体の表面から厚さ150μm程度の領域には、緻密層内の他の領域よりもさらに緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である高緻密層が形成されている。したがって、仕上げ工程S6において、ポケット内周面の焼結体除去厚さは500μm以上とする。これにより、緻密性が低く空孔率の高い部分を露出させて、保油性を高めることができる。また、ポケット内周面以外の箇所の研磨による焼結体除去厚さは150μm以下とすることが好ましい。これにより、高緻密層を残存させ、保持器4の耐摩耗性を向上させることができる。
【0033】
一般に、βサイアロン以外のセラミックスの焼結体からなる製品の製造方法においては、熱間静水焼結法(Hot Isostatic Press;HIP)、ガス圧焼結法(Gas Pressured Sintering;GPS)等の加圧焼結法による焼結が採用される。これらの加圧焼結法は、通常10MPa以上の圧力下で焼結を行うため、製造コストが高くつく。これに対し、サイアロン焼結体からなる製品の製造方法は、前述したように1MPa以下の圧力下で焼結するため、製造コストを例えば1/10程度に低く抑えることができる。よって、保持器4を安価に製造することができる。
【0034】
内外輪1,2および転動体3の素材は特に限定されない。例えば、鋼、具体的には、JIS規格SUJ2等の軸受鋼や、SCR420、SCM420等の浸炭鋼を採用することができる。場合によっては、保持器4と同様に、サイアロン焼結体を用いてもよい。
【0035】
この旋回軸受は、軸受形式を4点接触玉軸受とし、かつ転動体3を複列に配置したため、構成が簡単でありながら定格荷重が大きい。単純計算で、単列の場合に比べて、静定格荷重が2倍である。転動体3が複列であると、保持器4の軸方向幅が広くなるが、単列である場合に比べて2倍になることはない。そのため、保持器4の軸方向幅をあまり広くすることなく、定格荷重を増加させることができる。転動体3は保持器4により確実に保持されるため、転動体3の進み遅れによって各転動体3が散らばることがなく、常に転動体3を等間隔に保持できる。
【0036】
表1は、サイアロン焼結体と窒化珪素焼結体と軸受鋼(SUJ2)の特性を比較したものである。
【0037】
【表1】

【0038】
保持器4をサイアロン焼結体で構成したことにより、以下の作用効果が得られる。
・ サイアロン焼結体は、軸受鋼に比べて密度が小さい。このため、従来の鋼製保持器に比べて保持器4の軽量化が図れ、保持器4とその案内面である内輪外径面1cまたは外輪内径面2cとの間に作用する荷重を小さくして、両者の摩耗を抑制できる。
・ サイアロン焼結体は、軸受鋼に比べて硬度が高い。このため、保持器4の耐摩耗性が向上する。例えば、転動体3と接触するポケット4aの内周面の摩耗を抑えることができる。
・ サイアロン焼結体は、空孔が多く、保油性が良好である。このため、保持器4に含浸している潤滑油が保持器4と内輪外径面1cまたは外輪内径面2c間で潤滑油として作用し、両者の摩耗が抑制される。また、保持器4に含浸している潤滑油が内外輪1,2の軌道面1a,1b,2a,2bおよび転動体3の転走面に供給されることにより、軌道面1a,1b,2a,2bと転動体3の転走面との潤滑性が向上する。
・ サイアロン焼結体は、耐食性が高く、絶縁性を有する。このため、腐食や電食により保持器4が損傷することを抑制できる。
【0039】
上記の各作用効果は、保持器4が他のセラミックス、例えば窒化珪素焼結体である場合にも言えるが、前述したように、サイアロン焼結体は他のセラミックスよりも低コストであるから、保持器4をサイアロン焼結体で構成する価値は高い。
【0040】
さらに、ポケット4aの内周面について、表面の緻密性の高い層である緻密層を除去して、内部の緻密性が低く空孔率の高い部分を露出させることにより、保油性をさらに高めることができる。それにより、保持器4のポケット4a内周面と転動体3の転走面3a間の潤滑性をより一層向上させられる。
【0041】
以上の説明のように、この旋回軸受は、構成が簡単で定格荷重が大きく、耐久性に優れ、フレッティングが生じにくいことから、風力発電装置のブレード支持用の旋回軸受21(図13)またはナセルのヨー支持用の旋回軸受22(図14)に適する。風力発電装置以外では、油圧ショベル、クレーン等の建設機械、工作機械の回転テーブル、パラボラアンテナ等に適用できる。
【0042】
図3に示すように、各列の保持器4を、円周方向に複数のセグメント4Aに分割された分割保持器とすることによっても、保持器4の軽量化を図ることができる。しかも、組立性の向上が図れる。各セグメント4Aは、内外輪1,2の各軌道面1a,1b,2a,2bに沿って湾曲した板状で、転動体3が嵌り込むポケット4aが円周方向に並んで複数形成されている。各セグメント4Aの分割位置はポケット4aの箇所であり、ポケット4aに転動体3が保持された状態では、隣合うセグメント4A間に隙間8が形成される。
【0043】
保持器4を分割保持器とする場合、前記セグメント4Aは、図4および図5に示すように、円周方向の両端部を、板厚方向の両方の角を先細り状に落とした逃し加工部4bとするのがよい。セグメント4Aの円周方向の端面における逃し加工部4bの落とし量aは、板厚方向の片面につき、セグメント4Aの板厚tの1/10以上である。逃し加工部4bの円周方向の寸法bは、前記落とし量aよりも大きく、例えばb≧10aとする。この図示例では、逃し加工部4bの円周方向の端がポケット4aの円周方向の端と同位置である。つまり、逃し加工部4bは、落とした部分が円周方向の長く延びた形状であり、角のみを落とした面取りとは異なる。
【0044】
セグメント4Aの円周方向の両端部を逃し加工部4bとしたことにより、図6に示すように、セグメント4Aが内外輪1,2の軌道面1a,2a(1b,2b)に対して斜めになって接触しても、セグメント4Aの円周方向端が軌道面1a,2a(1b,2b)にエッジ当たりにならず、軌道面1a,2a(1b,2b)に存在するグリース等の潤滑剤がセグメント4Aにより排斥されない。そのため、軸受の潤滑性が良好で、耐久性に優れる。また、変動荷重を受ける条件下で、狭い旋回範囲内で頻繁に揺動しても、フレッティングが生じにくい。
【0045】
図7ないし図9は異なる形状の保持器に示す。この保持器4は、各軌道面1a,1b,2a,2bに沿って円弧状に湾曲した帯状で、ボール3が嵌り込むポケット4aが円周方向に並んで形成されている。ポケット4a間の部分である柱部4bの形状(図9)は、両側部4baが直線状で、中間部が外径側にV字形に膨らんだ膨らみ部4bbになっている。このように柱部4bの中間部をV字形の膨らみ部4bbとすることにより、ポケット4aの内周面が、円周方向の片側につき2点P1,P2でボール3と接触する。膨らみ部4bbがV字形であると、保持器4を比較的単純な形状とすることができ、加工が容易である。膨らみ部4bbはV字形以外の形状であってもよい。その場合も、ポケット4aの内周面が、円周方向の片側につき複数点で接触するようにできる。
【0046】
保持器4のポケット4aの内周面が、円周方向の片側につき2点P1,P2でボール3と接触するため、ボール3から保持器4に加わる力が分散されて、保持器4のボール接触部の応力が低減される。そのため、保持器4の軸方向端からポケット4aまでの寸法aを狭くしても、または保持器4の柱部4bの最小幅bを狭くしても、ボール3の進み遅れにより保持器4に加わる力に耐えられる。よって、保持器4の軸方向幅wを狭くして軸受の軸方向寸法をコンパクト化できるとともに、ボール間ピッチpを狭くしてボール数を増やすことにより、定格荷重をより一層増加させることが可能である。
【0047】
加えて、ポケット4aの内周面が、円周方向の片側につき2点P1,P2でボール3と接触する構成であると、ボール3と保持器4とが互いに近接している箇所の面積が広く、この近接箇所に潤滑油を多く保持することができるため、軸受の潤滑性が良好である。そのため、変動荷重を受ける条件下で、狭い旋回範囲内で頻繁に揺動しても、フレッティングが生じにくい。
【0048】
上記各実施形態では、転動体3を複列としたが、単列であってもよい。また、軸受形式は、4点接触玉軸受に限らず、深溝玉軸受、アンギュラ玉軸受であってよく、あるいはころ軸受であってもよい。
【0049】
サイアロン焼結体の断面における緻密層および高緻密層の形成状態の調査をする試験を行った。試験の手順は以下のとおりである。
【0050】
はじめに、燃焼合成法で作製した組成が、SiAlON であるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、前記図2に示す保持器の製造方法と同様の方法で、一辺が約10mmの立方体試験片を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で所定の形状に成形し、さらに冷間静水圧成形(CIP)で加圧を行い、成形体を得た。引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱焼結することで、上記立法体試験片を製造した。
【0051】
その後、当該試験片を切断し、切断された面をダイヤモンドラップ盤でラッピングした後、酸化クロムラップ盤による鏡面ラッピングを実施することにより、立方体の中心を含む観察用の断面を形成した。そして、当該断面を光学顕微鏡(株式会社ニコン製、マイクロフォト‐FAX)の斜光で観察し、倍率50倍のインスタント写真(フジフィルム株式会社製 FP−100B)を撮影した。その後、得られた写真の画像を、スキャナーを用いて(解像度300DP1)パーソナルコンピューターに取り込んだ。そして、画像処理ソフト(三谷商事株式会社製 WinROOF)を用いて輝度閾値による2値化処理を行って(本試験での2値化閾値:140)、白色領域の面積率を測定した。
【0052】
次に、試験結果について説明する。図10は、試験片の上記観察用の断面を光学顕微鏡の斜光で撮影した写真である。また、図11は、図10の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。また、図12は、図10の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理する際に、画像処理を行う領域(評価領域)を示す図である。図10において、写真上側が試験片の処理側であり、上端が表面である。
【0053】
図10および図11を参照して、図2に示す保持器の製造方法と同様の方法で作成された試験片は、表面を含む領域に内部よりも白色領域の少ない層が形成されていることがわかる。そして、図12に示すように、撮影された写真の画像を試験片の最表面からの距離に応じて3つの領域(最表面からの距離が150μm以内の領域、150μmを超え500μm以内の領域、500μmを超え800μm以内の領域)に分け、領域毎に画像解析を行って白色領域の面積率を算出したところ、表2に示す結果が得られた。表2においては、図6に示した各領域を1視野として、無作為に撮影された5枚の写真から得られる5視野における白色領域の面積率の、平均値と最大値とが示されている。
【0054】
【表2】

【0055】
表2を参照して、試験片における白色領域の面積率は、内部において18.5%であったのに対し、表面からの深さが500μm以下である領域においては3.7%、表面からの深さが150μm以下の領域においては1.2%となっていた。このことから、図2に示す保持器の製造方法と同様の方法で作成された試験片は、表面を含む領域に内部よりも白色領域の少ない緻密層および高緻密層が形成されていることが確認された。
【0056】
また、参考のために、旋回軸受の転動体をサイアロン焼結体とした場合の転動疲労寿命を確認する試験を行った。なお、本試験は一般の旋回軸受の転動体について行ったが、風力発電装置用の旋回軸受の転動体についても適用できる。試験の手順は以下のとおりである。
【0057】
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、前記図2に示す保持器の製造方法と同様の方法で、直径9.525mmの3/8インチセラミック球を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行い、球状の成形体を得た。
【0058】
次に、当該成形体に対して焼結後の加工代が所定の寸法となるようにグリーン加工を行い、引き続き当該焼結体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行い、3/8インチセラミック球(転動体;JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作成した。ここで、上記焼結球体に対するラッピング加工により除去される焼結球体の厚み(加工代)を8段階に変化させ、8種類の軸受を作製した(実施例A〜H)。一方、比較のため、窒化珪素および焼結助剤からなる原料粉末を用いて加圧焼結法により焼結した焼結球体(日本特殊陶業株式会社製 EC141)に対して、上述と同様にラッピング加工を行い、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(比較例A)。ラッピング加工による加工代は0.25mmとした。
【0059】
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行った。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。なお、試験数は実施例、比較例ともに15個ずつとし、そのL10寿命を算出した上で、比較例Aに対する寿命比で耐久性を評価した。
【0060】
【表3】

【0061】
表3に本試験の試験結果を示す。表3を参照して、実施例の軸受の寿命は、その製造コスト等を考慮するといずれも良好であるといえる。そして、加工代を0.5mm以下とすることにより転動体の表面に緻密層を残存させた実施例D〜Gの軸受の寿命は、比較例Aの寿命の1.5〜2倍程度となっていた。さらに、加工代を0.15mm以下とすることにより転動体の表面に高緻密層を残存させた実施例A〜Cの軸受の寿命は、比較例Aの寿命の3倍程度となっていた。このことから、サイアロン焼結体からなる転動体を備えた旋回軸受は、耐久性において優れていることが確認された。そして、サイアロン焼結体からなる転動体を備えた旋回軸受は、転動体の加工代を0.5mm以下として、表面に緻密層を残存させることにより寿命が向上し、転動体の加工代を0.15mm以下として、表面に高緻密層を残存させることにより寿命がさらに向上することが分かった。
【0062】
先に述べたように、保持器4以外の軸受部品、例えば転動体3をサイアロン焼結体で構成してもよい。転動体3がサイアロン焼結体で構成されていれば、保持器4がサイアロン焼結体からなる場合と同様の理由により、転動体3の軽量化、摩耗の抑制、潤滑性の向上、腐食や電食による損傷の抑制を、比較的安価に実現できる。
【図面の簡単な説明】
【0063】
【図1】この発明の実施形態にかかる旋回軸受の断面図である。
【図2】同旋回軸受の保持器の製造方法の概略を示す図である。
【図3】同旋回軸受の保持器および転動体の正面図である。
【図4】(A)は同保持器のセグメントの正面図、(C)はその平面図である。
【図5】内輪および外輪と保持器のセグメントとの位置関係を示す図である。
【図6】この発明の異なる実施形態にかかる旋回軸受の断面図である。
【図7】同旋回軸受の保持器の一部を展開した平面図である。
【図8】図7のVIII−VIII断面図である。
【図9】図7のIX−IX図である。
【図10】試験片の観察用の断面を光学顕微鏡の斜光で撮影した写真である。
【図11】図10の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。
【図12】図10の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理する際に、画像処理を行う領域(評価領域)を示す図である。
【図13】風力発電用風力発電装置の一例の一部を切り欠いて表した斜視図である。
【図14】同風力発電用風力発電装置の破断側面図である。
【符号の説明】
【0064】
1…内輪
1a,1b…内輪軌道面
2…外輪
2a,2b…外輪軌道面
3…転動体
4…保持器
4a…ポケット
21,22…旋回軸受

【特許請求の範囲】
【請求項1】
内輪と、外輪と、これら内外輪の各軌道面間で転動自在な複数の転動体と、各転動体を保持する保持器とを備え、前記保持器がセラミックス製である特徴とする旋回軸受。
【請求項2】
請求項1において、前記セラミックスは、βサイアロンを主成分とし、残部不純物からなる焼結体から構成されている旋回軸受。
【請求項3】
請求項2において、前記保持器は、主成分がβサイアロン、残部が不純物である混合物を保持器の概略形状に成形した成形体を作製する成形工程と、前記成形体を焼結して表面に緻密性の高い層である緻密層が形成された保持器原形を作製する焼結工程と、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる仕上げ工程とを経て製造されたものである旋回軸受。
【請求項4】
請求項3において、前記仕上げ工程で前記保持器原形における前記ポケットの内周面の表面を除去する厚さが500μm以上である旋回軸受。
【請求項5】
請求項3または請求項4において、前記仕上げ工程で、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる加工に加えて、前記ポケットの内周面以外の箇所に対し、平滑化のため表面層を除去する加工を行い、その表面層の除去厚さが150μm以下である旋回軸受。
【請求項6】
請求項1において、前記セラミックスは、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成されている旋回軸受。
【請求項7】
請求項6において、前記保持器は、主成分がβサイアロン、残部が焼結助剤および不純物である混合物を保持器の概略形状に成形した成形体を作製する成形工程と、前記成形体を焼結して表面に緻密性の高い層である緻密層が形成された保持器原形を作製する焼結工程と、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる仕上げ工程とを経て製造されたものである旋回軸受。
【請求項8】
請求項6において、前記仕上げ工程で前記保持器原形における前記ポケットの内周面の表面を除去する厚さが500μm以上である旋回軸受。
【請求項9】
請求項7または請求項8において、前記仕上げ工程で、前記保持器原形における前記転動体が収容されるポケットの内周面に対し、表面の前記緻密層を除去して内部の緻密性の低い部分を露出させる加工に加えて、前記ポケットの内周面以外の箇所に対し、平滑化のため表面層を除去する加工を行い、その表面層の除去厚さが150μm以下である旋回軸受。
【請求項10】
請求項1ないし請求項9のいずれか1項において、前記転動体がβサイアロンを主成分とする焼結体からなる旋回軸受。
【請求項11】
請求項1ないし請求項10のいずれか1項において、風力発電装置のブレードを主軸に対して、主軸軸心に略垂直な軸心回りに旋回自在に支持する旋回軸受。
【請求項12】
請求項1ないし請求項11のいずれか1項において、風力発電装置のナセルを支持台に対して旋回自在に支持する旋回軸受。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−2011(P2010−2011A)
【公開日】平成22年1月7日(2010.1.7)
【国際特許分類】
【出願番号】特願2008−162402(P2008−162402)
【出願日】平成20年6月20日(2008.6.20)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】