説明

時間分解蛍光イメージングシステム

本発明は、蛍光サンプルの時間分解蛍光イメージングを可能にするシステム及び方法を提供する。ユーザは、散乱励起光及び短寿命バックグラウンド蛍光の量が低減された、サンプルの時間フィルタリングされた写真を受け取ることができる。システムは、蛍光ゲート時間及び遅延時間の調整を可能にする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、時間分解蛍光イメージングシステムに関する。
[関連出願の相互参照]
本出願は、2007年1月30日に出願された米国仮特許出願第60/887,230号に対する優先権を主張する。この開示は参照によりその全体が本明細書に援用される。
【背景技術】
【0002】
蛍光検出は、生物系及び材料系におけるプローブ分子の定量化のための最も感度の高い方法のうちの1つを提供する。これは、蛍光検出が準(near)単一分子感度レベルを達成することができるためである。したがって、この技法は、生化学系及び細胞系におけるアッセイにおいて、特に、豊富な生物情報が多重ハイコンテンツデータから提供される、細胞ベースのアッセイの顕微鏡イメージングにおいて広範に使用されている(非特許文献1;非特許文献2)。
【0003】
高感度レベルの達成は、バックグラウンド光の除去を必要とする。部分的に、バックグラウンドは励起光の散乱から生じる。励起光及び放出光のより良好なフィルタリング及び分離は、バックグラウンドを低減するが、少量が依然として検出器に漏出する可能性がある。バックグラウンドはまた、偽蛍光から、対象プローブ以外のサンプルの成分から、サンプルホルダから、そして測定機器の光学部品からも生じる。その複合性に起因して、偽蛍光は概して、広い範囲の波長にわたって生じ、分光フィルタリングによる偽蛍光の除去はあまり効果的ではない。
【0004】
バックグラウンドを低減する1つの方法は信号の時間分解によるものであり、これは信号の時間フィルタリングに相当する。蛍光プローブが適切に長寿命であり、且つ励起光がパルス化される(又は高周波数によって変調される)場合、テストサンプル蛍光は、散乱励起又は偽蛍光よりも長く持続する。この効果は、時間分解蛍光(TRF)試薬では特に顕著であり、ここでは、化学的性質の設計によって(by design of chemistry)、サンプルプローブは、ミリ秒(10−3s)〜マイクロ秒(10−6s)時間領域の蛍光寿命を有する(非特許文献3;非特許文献4)。対照的に、散乱励起パルス及び偽蛍光からのバックグラウンドが持続する時間期間はより短く、概ね励起パルス自体の持続時間ほどである。蛍光の時間分解の重要な要件は、励起パルスの持続時間がテスト化合物の持続時間未満でなければならないということである。時間分解によって感度は非常に大幅に向上する。実際に、たとえば、ニュージャージー州ピスカタウェイに所在のGE(登録商標/商標)ヘルスケア社によって製造されているLEADSEEKER(商標)のようなTRFイメージャは、定常状態蛍光検出モードにおける同じシステムよりも約100倍の検出感度を有することが分かる。
【0005】
バックグラウンド光の除去の他に、時間分解測定にはさらなる利点がある。蛍光は通常、定常状態蛍光(SSF)として測定される(又はイメージングされる)。すなわち、定常励起光源を使用してサンプル蛍光の一定の束が生成される。SSF方法は、2つの理由から劣っている。(a)信号は、励起源の強度と光学測定機器の設計詳細とに依存する。すなわち、SSF信号値は、測定システムの詳細に依存しており、したがって異なる研究所にわたって再現可能ではない。対照的に、時間分解測定は、プローブの平均蛍光寿命と、測定システムから独立した値を有する分子物性とをもたらすことができ、したがって、異なる研究所にわたって再現可能である。
【0006】
さらに、SSFは、長い時間期間にわたる、励起されるプローブの平均状態に関する情報しか提供しない。プローブのダイナミクス及びその微環境に関するはるかに多くの情報は、その蛍光が時間分解を受ける場合に取得することができる。ダイナミクスの例は、分子回転、拡散、反応、エネルギー移動等の動態を含む。特に対象となるのは、長寿命TRF試薬の回転減偏光挙動である。これは、通常の蛍光偏光(FP)アッセイでは、ナノ秒寿命のプローブに依拠するためである。この時間形式(time regime)では、小分子の回転ダイナミクスの情報を調べる(interrogate)ことしかできない。結果的に、このようなFPアッセイは、巨大タンパク質の構造に対する変化を検出することができない。これは、回転時間スケールが蛍光の偏光に影響を与えるには長すぎるためである。長寿命TRF試薬はしかしながら、ナノ秒色素の約10倍の寿命を有し、特に細胞ベースシステム内でのFPアッセイの適用可能性を広げることができる(非特許文献5;非特許文献6)。
【0007】
時間分解検出のさらに別の用途は、生化学培地及び細胞培地におけるタンパク質の、標識を用いない検出のためのものである。ここでは、特にトリプトファン残基からの細胞タンパク質の固有の長寿命の燐光(ミリ秒以上)に依拠する(非特許文献7;非特許文献8)。感度が良い時間分解イメージングシステムがないために、in situタンパク質折り畳みダイナミクスの研究のための新規なアッセイの開発が妨げられてきた(非特許文献9;非特許文献10;非特許文献11)。
【0008】
時間分解測定は、イメージングの2つの形式によって表される2つの分野、すなわちFLIM及びTRFに分割されてきた:(a)ナノ秒〜マイクロ秒の時間形式において測定するシステム。イメージングに適用される場合、これらのシステムは蛍光寿命イメージャ(FLIM)システムと呼ばれ、ここでは、出力画像において、各画素の値はその位置からのサンプル発光の平均寿命を表す。すなわち、画像は「寿命」画像であり、強度に基づくものではない;(b)通常はバイオアッセイTRF試薬(上記を参照されたい)と共に使用される、マイクロ秒〜ミリ秒の時間形式において測定するシステム。この分野において既知である市販の細胞イメージングシステムはない。
【0009】
時間分解イメージングのためのナノ秒時間領域計測装置がFITC、ローダミン、EGFPのようなプローブと共に使用するために開発されてきた。システムは、2つの手法によって動作する:高速検出(たとえば、カメラ/イメージインテンシファイアの組み合わせ)が後続する、サンプルの高速パルスレーザ励起、又はより一般的には、位相シフト電子装置を使用する高速検出器を併用する定常励起源(たとえば、レーザ及び/又はダイオード)の高速電子変調(非特許文献12;非特許文献13;非特許文献14;非特許文献15;非特許文献16)。先行技術開示の例は、P Bastiaens他による特許文献1を含む。これは、Lambert Instruments(オランダ、Leutingewolde)(http://www.lambert-instruments.com/)によって市販されている変調励起及び発光構成体(construct)と、非特許文献15に開示されている、ピコ秒パルスレーザ及び高速ストリークカメラを使用する、浜松C9136寿命イメージング顕微鏡法システム(http://sales.hamamatsu.com/)とを使用している。これらのシステムは、ハイコンテンツ細胞寿命画像を生成することができるが、全て高価で複雑であり、操作及び維持が困難である。
【0010】
時間分解測定のためのマイクロ秒〜ミリ秒の時間領域の計測システムが長寿命TRF試薬(上記を参照されたい)と共に使用するために開発されており、TRF読み取り装置(又はTRFイメージャ)として既知である。これらの読み取り装置は、光増倍管(PMT)を用いる検出に依拠する。これらの読み取り装置は、1度に1つのウェルだけマイクロタイタープレートを読み取るため、遅いスループットを有する。別の種類のシステムは、LEADSEEKER(商標)マルチモダリティイメージングシステム(GE(登録商標/商標)ヘルスケアバイオサイエンス社(ニュージャージー州ピスカタウェイ)、特許文献2に開示されている)と、VIEWLUX(商標)ウルトラHTSマイクロプレートイメージャ(パーキンエルマーライフアンドアナリティカルサイエンス社(マサチューセッツ州ウェルズリー))とによって例示されているように、マイクロタイタープレートのマクロイメージングに依拠する。マクロイメージャは、画像を取り込むために電荷結合素子(CCD)を使用する。マクロイメージャは、マイクロタイタープレートの全てのウェルが1度にイメージングされるため、PMTベースの読み取り装置よりも高いスループットを有する。ほとんどのTRF読み取り装置(又はイメージャ)は、数マイクロ秒の遅延時間後に、約1〜3の発光寿命のゲート持続時間にわたってサンプル蛍光を読み取るための、検出器の電子ゲーティングと共に、サンプルを励起するためにマイクロ秒フラッシュランプを使用することによって動作する。幾つかのシステムでは、フラッシュランプの代わりに、定常光源及び発光自体の機械的チョッピングが用いられる。CCDは、読み取りが比較的遅い装置であるため、TRFイメージャのゲーティングは、(LEADSEEKER(商標)におけるような)光電子シャッタ、又は(VIEWLUX(商標)におけるような)機械的チョッパのいずれかによって検出器の外部で達成される。
【0011】
TRFイメージャの主な利点は、バックグラウンド光の信号強度全体に対する寄与が低減されるということにある。生成される画像は強度画像であり、ゲーティングされる信号は機器設定に依存する。TRFイメージャは通常、FLIM寿命測定システムとして使用されない。しかしながら、TRFイメージャからの寿命画像の生成は原理的には可能である。これには、異なるゲート時間(又は遅延時間)による複数の画像の取得、及び、画素位置ごとに画像データに対してさらなる数学的処理を適用してこの画素位置の平均寿命値を抽出することが必要とされる。
【0012】
ハイコンテンツイメージングのためのTRF技術の顕微鏡法への統合は、特許文献3、及び非特許文献17、非特許文献18に開示されている。この手法では、励起光は、レーザ若しくはフラッシュランプのいずれか、又は定常ランプの前の回転シャッタの使用によってパルス化され、検出は、放出光の前のタイミング電子装置及び機械的チョッパの使用によってゲーティングされる。これらの構成要素によって、基本の顕微鏡イメージングシステムのコスト及び複雑性が増加してしまう。さらに、回転チョッパの使用は、検出システムをミリ秒時間領域以上に制限すると同時に、安全性に対する懸念と機械的振動による画像の歪みの可能性とを導入する。これらの理由から、現時点においては、市場において提供されている市販のハイコンテンツTRF顕微鏡イメージャはない。
【0013】
したがって、少ない追加コストで基本の定常状態蛍光イメージングシステムに時間分解機能を追加するシステムを案出することによってFLIMシステムの費用及び複雑性とTRFイメージャの限界とを克服するシステムが必要である。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】国際公開第2000008443号パンフレット
【特許文献2】米国特許出願公開第2003−0160151号明細書
【特許文献3】米国特許5,523,573号明細書
【非特許文献】
【0015】
【非特許文献1】Ramm P著「Image-based screening: a technology in transition」(Curr. Opin. Biotech. 16, 41-48 (2005))
【非特許文献2】Zhou X and Wong STC著「High content cellular imaging for drug development」(IEEE Sig. Proc. Mag. 23, 170-174 (2006))
【非特許文献3】Hemmila I、Laitala V著「Progress in lanthanides as luminescent probes」(J Fluores 15, 529-542 (2005))
【非特許文献4】Hemmila I、Mukkala V-M著「Time-resolution in fluorometry technologies, labels and applications in bioanalytical assays」(Crit Rev Clin Lab Sci 38, 441-519 (2001))
【非特許文献5】Owicki JC著「Fluorescence polarization and anisotropy in high throughput screening: perspective and primer」(J Biomol Scr 5, 297-306 (2000))
【非特許文献6】Austin RH、Chan SS、Jovin TM著「Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy」(Proc Natl AcadSci. 76, 5650-5654 (1979))
【非特許文献7】Vanderkooi JM著「Tryptophan phosphorescence from proteins at room temperature」("Topics in Fluorescence Spectroscopy" Volume 3 Biochemical Applications, Lakowicz JR Edited, Plenum Press, NY, 1992, pp. 113- 136)
【非特許文献8】Vanderkooi JM他著「On the prevalence of room temperature protein phosphorescence」(Science 236, 568-569 (1987))
【非特許文献9】Lakowicz JR、Gryczynski I、Piszczek G他著「Microsecond dynamics of biological macromolecules」(Methods Enzym. 323, 473- 509 (2000))
【非特許文献10】Schauerte JA、Steel DG、Gafni A著「Time-resolved room temperature tryptophan phosphorescence in proteins」(Methods Enzym. , 278, 49-71 (1997))
【非特許文献11】Subramaniam V、Gafni A、Steel DG著「Time-resolved tryptophan phosphorescence spectroscopy: A sensitive probe of protein folding and structure」(IEEE J of Selected Topics in Quantum Electronics 2, 1107-1114 (1996))
【非特許文献12】van Munster EB、Gadella TWJ著「Fluorescence lifetime imaging microscopy (FLIM)」(Adv in Biochem Eng/Biotech, 95, 143-175 (2005))
【非特許文献13】Suhling K、French PMW,、Phillips D著「Time- resolved fluorescence microscopy」(Photochem & Photobio Sci, 4 (1) 13-22 (2005))
【非特許文献14】Elson D他著「Time-domain fluorescence lifetime imaging applied to biological tissue」(Photochem & Photobio Sci, 3 (8) 795-801 (2004))
【非特許文献15】Krishnan RV他著「Development of multiphoton fluorescence lifetime imaging microscopy (FLIM) system using a streak camera」(Rev. Sci. Instrum., 74, 2714-2721 (2003))
【非特許文献16】Clegg RM著「Fluorescence lifetime-resolved imaging: Measuring lifetimes in an image」(Methods in Enzymology, 360, 509-542 (2003))
【非特許文献17】Seveus L他著「Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization」(Cytometry, 13, 329-338 (1992))
【非特許文献18】Soini AE他著「A new technique for multiparametric imaging microscopy: Use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel to-channel crosstalk」(Microsc Res Technol, 62, 396-407 (2003))
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明は、上述のコスト及び技術背景を鑑みて達成された。本発明の目的は、光のビームによって走査された後に複数の生物有機体から放出される励起光の散乱を低減するためのシステム及び方法を提供することである。
【課題を解決するための手段】
【0017】
本発明は、蛍光サンプルの時間分解蛍光イメージングを可能にするシステム及び方法を提供する。ユーザは、散乱励起光及び短寿命バックグラウンド蛍光の量が低減された、サンプルの時間フィルタリングされた写真を受け取ることができる。システムは、蛍光ゲート時間及び遅延時間の調整を可能にする。
【0018】
本発明のこれらの利点及び他の利点は、以下の説明が添付の図面と共に読まれるにつれてより明らかとなるであろう。
【図面の簡単な説明】
【0019】
【図1A】本発明の一実施形態によるシステムのブロック図である。
【図1B】本発明の一実施形態による調整可能な光操作スリットを有する、図1Aのビームエキスパンダを示す。
【図2】本発明の1つの実施形態による、図1の走査ミラーの幾つかの実施形態を示す。
【図3】本発明による、図1のシステムの画像受信装置の概略図である。
【図4】本発明による、複数の生物有機体の視野(FOV)の画像の図示である。
【図5】本発明による、複数の生物有機体がビームによって走査されるサンプル117における、図4の図示の一例である。
【図6】本発明による、図5のサンプルの画像の図示である。
【図7】本発明による、図5のサンプルの画像の別の図示である。
【図8】本発明による、図6の画素503によって生成される、瞬間蛍光強度信号対時間の図示例を示す実線記録である。破線プロファイルは、ガウス形状レーザ線が点503上を走査するときにこの点が受ける励起強度を表す。
【図9】本発明による、図1のシステムが実施される方法の一例を示すフローチャートである。
【図10A】サンプル内の任意の点からのシミュレートされた時間独立蛍光信号の図示である。スピードvでサンプルを走査する、幅wのガウスレーザ線の通過によって励起される蛍光が単一の寿命τで指数関数的に減衰すると仮定する。システム性能は、a=w/vτの単位なしパラメータによって求められる。この図は瞬間蛍光強度を示し、ここで、t’は励起ビーム最大値の通過後に経過した時間である。
【図10B】サンプル内の任意の点からのシミュレートされた時間独立蛍光信号の図示である。スピードvでサンプルを走査する、幅wのガウスレーザ線の通過によって励起される蛍光が単一の寿命τで指数関数的に減衰すると仮定する。システム性能は、a=w/vτの単位なしパラメータによって求められる。この図は瞬間蛍光強度を示し、ここで、t’は励起ビーム最大値の通過後に経過した時間である。
【図10C】サンプル内の任意の点からのシミュレートされた時間独立蛍光信号の図示である。スピードvでサンプルを走査する、幅wのガウスレーザ線の通過によって励起される蛍光が単一の寿命τで指数関数的に減衰すると仮定する。システム性能は、a=w/vτの単位なしパラメータによって求められる。この図は、励起と検出の開始との間の遅延の関数として積分信号収量を示す。
【図10D】サンプル内の任意の点からのシミュレートされた時間独立蛍光信号の図示である。スピードvでサンプルを走査する、幅wのガウスレーザ線の通過によって励起される蛍光が単一の寿命τで指数関数的に減衰すると仮定する。システム性能は、a=w/vτの単位なしパラメータによって求められる。この図は、励起と検出の開始との間の遅延の関数として積分信号収量を示す。
【発明を実施するための形態】
【0020】
本発明の現時点において好ましい実施形態を図面を参照して説明する。図面においては、同様の構成要素は同じ参照符号によって識別される。好ましい実施形態の説明は、例示であり、本発明の範囲を限定するように意図されていない。
【0021】
時間分解蛍光イメージングシステム又は蛍光寿命イメージングシステム100が、図1Aにおいて概略的に提示されている。このシステムは、蛍光(すなわち、蛍光染色されたか又は蛍光標識された)ターゲット117、すなわちサンプル117を励起するために1つ又は複数の光源101、102及び103と、蛍光放出を検出するために1つ又は複数の検出器131とを備える。システム100は、通常は蛍光顕微鏡において見られる他の構成要素を含むことができ、これらの構成要素はより詳細に説明される。多数の構成要素に関して、複数の潜在的な実施形態が存在する。概して、本発明の好ましい実施形態は、対象とする用途によって決まる。本明細書の目的のために、好ましい対象とする用途は、広範な蛍光体をイメージングする能力を有する高スループット細胞スクリーニング装置である。
【0022】
光源101、102及び103は、励起波長の光をターゲット117、すなわちサンプル117に送達することが可能な任意の光源とすることができるが、好ましくは1つ又は複数の励起レーザがシステム100内に組み込まれる。光源101、102、103は、発光ダイオード、ランプ、又は当業者に既知である任意のタイプの照明源とすることもできる。本発明の好ましい一実施形態では、近IRから近UVまでの光スペクトルをカバーする1つ又は複数のレーザが存在する。これらのレーザ101、102及び103のそれぞれからの光は、光を適切な直径、方向、及びコリメーションの度合いを有する自由空間ビームとして送達することによって、又は光ファイバ光送達システムを介して、残りの光学トレインに結合することができる。本発明の別の好ましい実施形態では、各励起レーザ101、102又は103はTEM00モードで動作し、ここでは、M2<1.2であり、RMS雑音1Hz〜10MHz<0.5%であり、偏光が規定された状態にある。任意の数のレーザを本発明のために使用することができる。
【0023】
次に、光源101、102、及び103からの励起レーザ光は、レーザ選択モジュール104に送達される。このモジュール104は、レーザ101、102、及び103のうちの1つから光を選択し、その光をビーム成形モジュール105に方向付ける。ここで、他のレーザからの光は遮断される。
【0024】
光源101、102、及び103からの励起レーザ光は好ましくは、ビーム成形器105によって適切に成形される。ビーム成形器105の可能な実施形態は、レーザビームエキスパンダを含むが、これに限定されない。本発明の好ましい一実施形態では、ビームエキスパンダ105が使用され、その光学素子は色収差を補正され、それによって、レーザ101、102、及び103を切り替えるときのレーザ選択モジュール104の集束に対する調整が最小化される。レーザビームの直径は優先的に、対物レンズ113の後方の瞳の直径に等しいガウス幅1/e2直径に拡大される。本発明の好ましい一実施形態では、図1Bに示されているように、ビームエキスパンダ105は、ビームエキスパンダ105の集束点に位置決めされる調整可能な光操作スリット105aを含み、ここで、この光操作スリット105aは1μm〜20μmの範囲内の開口105bを有する。好ましくは、光操作スリット105aは10μm以下の開口105bを有し、それによって図5において論じられる小さな値の幅のビーム501又は検出ゲートへのアクセスが可能になる。さらに、光操作スリットは、レーザ源101、102、又は103から放出された光を操作するために、開口を1個、2個、3個、又は100個よりも多く有することができる。調整可能な光操作スリット105aは、金属、プラスチック、又は当業者に既知である任意の材料から成ることができる。本発明の別の実施形態では、光操作スリット105aは、顕微鏡システム100内の制御装置(図示せず)に電機接続又は無線接続することができ、この制御装置によって、人が光操作スリット105aの開口105bを閉じるか又はスリット105aを取り除くことが可能になる。
【0025】
本発明の代替の実施形態では、使用されるビームエキスパンダ105(図1A)のタイプは特定の用途によって決まり、いかなるビーム成形器もなしにレーザビームエキスパンダが続くアナモルフィックプリズムと、色収差がないミラーベースのビームエキスパンダとを含むことができる。
【0026】
TRFイメージングモードでは、励起レーザ光が線形成素子107を通過する。線形成素子は、コリメートされたレーザ光のビームを、1つの方向にのみ発散する集束されたビームに変換する。出力ビームの全発散角Δθは以下によって与えることができる。
【0027】
【数1】

【0028】
ここで、fは対物レンズ113の焦点距離であり、Dは、図1の平面に垂直な方向におけるターゲット117上のイメージングエリアの線寸法である。
本発明の好ましい実施形態では、線形成素子107は、(参照により本明細書に援用される米国特許第4,826,299号において記載されているような)パウエルレンズを含むが、これに限定されない。第2の円錐−円筒表面の形状は好ましくは、範囲Δθを10%超えたところまでの均一な照明と、対物レンズ113を通じるレーザ光の80%を超える透過との両方を達成するように指定される。平凸円筒レンズ、回折格子、及びホログラフィック素子のような、線形成素子107の代替の好ましい実施形態も使用することができる。
【0029】
線形成素子107の次には、走査モジュール109又は走査装置がある。走査モジュール109は、顕微鏡システム100の視野にわたる、対物レンズの焦点面における励起光の走査を提供する。走査ミラー109は対物レンズ113の下に配置され、この走査ミラー109は、典型的な走査ミラー又はストリップミラーとして動作する。走査ミラー又はストリップミラーは、光源101、102及び103からの光又は励起光を受光し、その後、光を対物レンズ113を通じて伝達して、サンプル117内のTRF試薬に蛍光又は照明光を放出させることができ、この蛍光又は照明光は、戻って対物レンズ113を透過し、走査ミラー109の周囲を通って光学検出器131に至る。また、走査ミラー109はアルミニウムコーティングすることができる。
【0030】
励起レーザ光は好ましくは、図1の平面に垂直な軸を中心にして傾斜することができる走査ミラー109によって反射される。傾斜の角度はアクチュエータ111によって設定される。ミラー109は任意選択的に、対物レンズ113の後部の中心に配置されるか又はこの後部から軸方向にずれている小幅のミラーを含むことができる。これは、好ましい一実施形態であり、以下のような好ましい形状及び反射特性を有する:
幅 対物レンズの後方開口の直径の〜1/10倍
長さ 対物レンズの後方開口の直径の〜1.6倍
光学的に平ら
λ/4〜300nm〜λ/10〜800nmの高い反射性。
【0031】
本発明の別の実施形態では、図2に示されているように、走査ミラー109は、モータ駆動される、五角形、六角形、又は5個〜n個の面を有する多角形のような任意のタイプの多角形形状201aを有することができる。走査ミラー109は、顕微鏡システム100の制御装置(図示せず)によってモータ駆動される、六角形のような任意の多角形形状203を有することもできる。ここで、ミラー203は、0.1周/分〜10000周/分の制御可能なスピードで回転する。
【0032】
アクチュエータ111は、角度位置を検出するための一体型センサを有する検流計とすることができる。この検流計111は、適切に調整されるサーボシステムによって駆動される。ベアリングシステムは、ベアリングにおける摩擦との摩耗問題及び裂傷問題を効率的に解決するために撓みに基づく。顕微鏡対物レンズ113はアクチュエータ111の上にあり、ここで、レーザ101、102又は103からの励起レーザ光が対物レンズ113を通過する。この対物レンズ113の好ましい実施形態の場合、この対物レンズ113は:
所望の視野にわたって幾何収差及び色収差を大幅に補正される。
【0033】
良好な像面平坦度を有する。
近UV〜近IRまでの光を透過させる。
実際の最良の光学分割を達成すると共に、可能な限り多くの蛍光放出を集めるための実際の最高開口数を有する。
【0034】
サンプル支持体の光学的厚さのサンプル間における変化によって導入される球面収差の補正に対応する。
システムの時間分解は幾つかの要因によって制限される。1つの要因は、サンプル117の任意の点が励起光にさらされる時間である。速度vでサンプル117上を走査する幅wのレーザ線(図5)の場合、サンプル117の任意の点は、約w/vの持続時間の間、励起にさらされる。wの最低値は、約1μmの回折限界光学系によって与えられる。サンプル上の1m/s未満の走査スピードは容易に達成可能である。これらの状況下では、サンプル117における各点は約1μs以上の間、励起にさらされ、1μsを超える蛍光寿命の測定を可能にする。本発明では、1マイクロ秒以上の寿命を有するTRF試薬が、ナノ秒蛍光寿命を有する染料よりも測定により良好に適している。より短い蛍光寿命測定が必要とされる場合、走査ミラー109のスピードを増大する必要があり、好ましいオプションは多面鏡走査を使用することである。この例は図2に示されている。高走査スピードシステム性能は、以下の本文において詳述される幾つかの要因によって制限され得る。
【0035】
本発明の好ましい一動作では、励起レーザ光は、サンプル117を支持する透過光学材料115を通過する。この支持材料の厚さ、曲率、及び光学特性はサンプル間で変化し得る。最小曲率が理想である。励起レーザ光はサンプル117に入射する。サンプル117は、スライド上の、マイクロタイタープレートのウェル内の、又は任意の他の好都合なサンプルホルダ内の、生きている生物有機体、生物細胞、細菌、化学試薬及び/又は生化学試薬、合成物質及び/又は天然物質とすることができる。システム100が適切に集束されるとき、サンプル117は、光源101、102、又は103からのレーザ光の線によって照明される照明エリアを有する。サンプル内の蛍光材料は、光の線による照明の結果として蛍光を放出する。
【0036】
サンプル117からこのサンプルを通じて放出される蛍光は対物レンズ113によって集光される。蛍光は、ミラーの実施形態に従ってミラー109を通過するか又はこのミラーの傍らを通る。
【0037】
次に、蛍光は適切な光学フィルタ121を通過し、この光学フィルタは効率的に蛍光を透過させ、励起レーザの波長を遮断する。フィルタ121は任意選択的に、図1Aの平面に垂直な軸を中心にして傾斜することができ、それによって、フィルタからの反射がカメラ131の視野外となる。
【0038】
好ましい一実施形態では、フィルタ121は蛍光放出を遮らない。蛍光は、像形成レンズ125、すなわち結像レンズ125を通過する。本発明の好ましい一実施形態では:カメラ131によってイメージングされる領域にわたるレンズの幾何学歪みが非常に低い(<0.2%)。また、レンズは、他の全ての幾何収差及び色収差を補正される。
【0039】
光学検出器131は好ましくは、蛍光を検出すると共に画像を生成することができるCMOS及び/又はCCD検出器である。本発明の好ましい実施形態では、検出器131は、画素の独立したリセット及び読み出し(ランダムアクセス機能)を行うと共に、ランダムアクセス走査によって信号を取得することができる。本発明の好ましい一実施形態では、蛍光放出は、ロールシャッタ(焦点面シャッタとしても既知である)を有するCMOS検出器131上に集束される。ライン走査モードでは、ロールシャッタを有する検出器131は、画素の「縞」において画像を取得する。縞の「長さ」は図1の平面に垂直に調整される。このタイプのカメラの動作の説明に関しては、参照により本明細書に援用される、イーストマン・コダック社により発行されたApplication Note MTD/PS-0259 Shutter Operations for CCD and CMOS Image sensorsを参照されたい。
【0040】
検出器131は好ましくは、行及び列で構成される感光正方形画素の矩形のアレイを含むCMOS検出器であり、ここで、データは列単位で読み取られる。この特徴は、検出エリアの実質上の運動又は実質上の検出領域が、同期されるか又はシフトされてサンプル117上の励起エリア又は照明エリアの画像の後ろに配置されることを可能にする。ライン走査モードでは、レーザは、CMOS検出器131の列に平行に方向付けられる均一に照明される線に集束される。この線はロールシャッタがカメラにわたって動くにつれて動く。このようにして、照明の線によって生成される蛍光放出がセンサによって集められる。
【0041】
検出器131は通信リンクによってコンピュータ112に電気接続又は無線接続される。コンピュータ112は画像受信装置112又は高スループットスクリーニング装置と呼ぶことができる。本発明の別の実施形態では、画像受信装置112は、画像送信装置100の内部に配置することができる。画像受信装置112は、サンプル117の画像を光学検出器131から受信することができる典型的なコンピュータとして動作し、次いで画像受信装置112は、通常1度に1画素だけ標準的な画像処理ソフトウェアプログラム、アルゴリズム、又は方程式を利用することによって画像を構築又は再構成することができる。また、コンピュータ112は携帯情報端末(PDA)、ラップトップコンピュータ、ノートブックコンピュータ、携帯電話、ハードドライブベースの装置、又は通信リンク131を通じて情報を受信、送信、及び記憶することができる任意の装置とすることができる。本発明では1つのコンピュータが利用されているが、複数のコンピュータをコンピュータ112の代わりに使用してもよい。
【0042】
図3は、図1のシステムの画像受信装置の概略図を示している。イメージング受信装置112は、従来のコンピュータに関連付けられる典型的な構成要素を備える。イメージング受信装置112は、プロセッサ112aと、入力/出力(I/O)コントローラ112bと、大容量記憶装置112cと、メモリ112dと、ビデオアダプタ112eと、接続インタフェース112fと、上述のシステム構成要素をプロセッサ112aに動作可能に結合するか、電気結合するか、又は無線結合するシステムバス112gとを備える。プロセッサ112aは、処理装置、中央処理装置(CPU)、複数の処理装置、又は並列処理装置と呼ぶことができる。システムバス112gは、従来のコンピュータに関連付けられる典型的なバスとすることができる。メモリ112dは、読み取り専用メモリ(ROM)及びランダムアクセスメモリ(RAM)を含む。ROMは、起動中にコンピュータの構成要素間で情報を転送するのを援助する、基本ルーチンを含む典型的な入力/出力システムを含む。
【0043】
メモリ112dの上には大容量記憶装置112cがあり、この大容量記憶装置は、1.ハードディスク及びハードディスクドライブインタフェース(図示せず)との間で読み取り及び書き込みを行うためのハードディスクドライブ構成要素(図示せず)と、2.磁気ディスクドライブ(図示せず)及びハードディスクドライブインタフェース(図示せず)と、3.CD−ROM又は他の光媒体のような取り外し可能光ディスク及び光ディスクドライブインタフェース(図示せず)との間で読み取り及び書き込みを行うための光ディスクドライブ(図示せず)とを含む。上述のドライブ及びそれらの関連付けられるコンピュータ可読媒体は、コンピュータ可読命令、データ構造、プログラムモジュール、及びコンピュータ112のための他のデータの不揮発性記憶を提供する。また、上述のドライブは、許容可能な平均信号レベルを得るための、本明細書において記載される走査アルゴリズム、ソフトウェア、又は方程式を含み、これらは、蛍光強度に関連するサンプル117の複数の時間段階に関する信号レベルの図示を生成する技術的効果を有するプロセッサ112aによって動作する図9のフローチャートにおいて説明される。別の実施形態では、走査アルゴリズム、ソフトウェア、又は方程式は、プロセッサ112a、メモリ112d、又は当業者に既知である、画像受信装置112の任意の他の部分に記憶することができる。より高速なデータ処理が必要とされ得るシステムの好ましい一実施形態では、各画素位置における強度の積分及び/又は平均寿命の計算のための数学演算は、引用文献(参照により本明細書に援用される、El Gama A及びEltoukhy H著「CMOS image sensors」(IEEE Circuits & Devices 21, 6-20 (2005));Bigas M、Cabruja E他著「Review of CMOS image sensors」(Microelectronics J 37, 433-451 (2006)))において記載されているような、検出器131の位置において特別に設計されたCMOSチップ上でオンチップで実行される。
【0044】
入力/出力コントローラ112bはバス112gによってプロセッサ112aに接続され、ここで、入力/出力コントローラ112bは、ユーザがキーボード及びポインティング装置のような入力装置113を通じてコンピュータにコマンド及び情報を入力するのを可能にするシリアルポートインタフェースとして動作する。利用される典型的なポインティング装置は、ジョイスティック、マウス、ゲームパッド等である。ディスプレイ114は、ビデオアダプタ112eによってシステムバス112gに電機接続又は無線接続される。ディスプレイ114は、典型的なコンピュータモニタ、液晶ディスプレイ、高解像度TV(HDTV)、投影スクリーン、又はコンピュータ112によって生成される文字及び/又は静止画像を表示することができる装置とすることができる。コンピュータ112のビデオアダプタ112eの次にあるのは接続インタフェース112fである。接続インタフェース112fは、上述したように通信リンクによって光学検出器131に接続されるネットワークインタフェースと呼ぶことができる。また、画像受信装置112は、画像受信装置112が他のコンピュータに結合されることを可能にするネットワークアダプタ又はモデムを備えることができる。
【0045】
図4は光学検出器131のアドレス指定可能な画素エリアの図示であり、ひとまとまりの又は複数の生物有機体の画像を示す。画素の実際の数は通常はるかに多く、数百万に達する。この描写は、顕微鏡システム100の載物台上に置かれるサンプル117の画像を示す。
【0046】
図5は、検出器131上で図4の画像例を生成するサンプルの視野(FOV)の例の図示であり、ここで、複数の生物有機体が光源からの少なくとも1つのビームによって走査される。図6はレーザ線走査を使用するシステムを示すが、上記で論じたように、他の実施形態ではサンプルの点走査も使用することができる。特に、光源101からの少なくとも1つのビーム501がサンプル117内の複数の生物有機体上で走査される。この例の場合、サンプル117の複数の生物有機体内の少なくとも1つの特定の点503のみが検査される。しかしながら、サンプル117の複数の生物有機体内の複数の点を、少なくとも1つのビーム501によって走査することができる。この点503は、顕微鏡システム100の載物台上のサンプル117のx座標及びy座標によって表される。サンプル点503は約w/vの持続時間の間、励起光を受ける。ここで、wは光源101からの集束励起ビーム501のプロファイルの幅であり、vはこのビームのサンプル117上での走査の速度である。励起ビーム501は、励起光又は励起領域と呼ぶことができる。この励起領域501は、点501のようなサンプル117内の任意の場所であり、ここで、サンプル117の一部が励起されて、点501が光源101からの光のビームによって走査された後に、蛍光を放出することになる。励起領域501は、点、線、又は矩形の形態の形状を有する。
【0047】
サンプル117の複数の生物有機体上の光源101の通過の後、生物有機体内の複数の励起された蛍光プローブが或る特定の時間期間の間、光を放出する。サンプル117のサンプル点503からの光の放出の期間は、そのロケーションにおけるプローブの平均発光寿命によって特徴付けられ、記号τによって指示される。
【0048】
図6は、時間分解蛍光強度検出(TRF)形式における検出器に到着する瞬間蛍光強度の図示を示す。瞬間強度は、描写された陰影付けによって表される。TRFモードでは、各画像画素の値は、ゲート時間枠の持続時間の間積分される、対応するサンプル位置における積分蛍光強度に比例する。サンプル点503によって検出される蛍光強度の対応する時間プロファイルを図8に表す。図6の図示は、図5に示されているサンプル117のFOVの画像である。ここでは、光がビーム501による励起に応じて複数の生物有機体によって放射される。好ましい一実施形態では、エリア601は、以前にその上を通過した光源101からのビームの影響下で発光を放射するサンプルエリアに対応する、CMOS検出器において見られるような有効画素エリアである。有効画素エリアとは、サンプル117のこのエリアにおける検出器131画素がサンプル117内の生物材料による光子の検出及び光電子の生成に関して有効であることを意味する。有効画素エリアは、光源101のビーム501の画像のスピードと同じスピードvで移動するようにプログラムされる。ビーム501の画像からの距離がより短い画素エリアは、このビームの画像に時間的にもより近い。結果的に、励起ビーム501のさらに後ろにあるエリアは、発光の減衰の時間がより長かったため、ビームに近いエリアよりも薄暗い蛍光信号を有する。図7において、検出領域601に示されている陰影付けは、検出器に到着する瞬間蛍光強度を表すように意図されている。説明の簡潔さのために、全てのサンプルエリアは等しい蛍光性を有すると仮定する。励起エリア501により近い画素はより高い蛍光強度を経験する。これは、励起エリアがこれらの点にわたって移動した後に経過した時間がより短いためである。励起エリア501の画像の直ぐ近くの画素は、無効であるように設定され、結果的に蛍光バックグラウンド、散乱励起光、及び短寿命自己蛍光に対する2つの主要な原因は検出されない。このように、時間及び距離は、(距離)=(速度)×(時間)によって関係付けられる。ここで、距離及び走査速度の両方は、検出器における像面ではなく、サンプル物体面上の測度を指し、距離及び速度の両方はシステムの光学倍率によって拡大される。同じ関係によって、有効画素エリアの開始端から励起エリア501のピークまでの距離(Xdelay)は、励起と検出の開始との間の遅延時間(tdelay)に対応し、これはtdelay=Xdelay/vによって与えられる。
【0049】
図7は図6における図示と同じ図示を示しているが、検出エリア601における陰影付けは、各画素における時間積分光電子を表すように意図されている。有効エリアの各画素内の積分光電子は、画素が励起線501から遠ければ遠いほどより多い。画素503に関して、積分信号強度は図8のゲート時間枠内の破線エリアに対応する。積分TRFデータの読み出しは、画素602の列(検出エリア601の後列)から行われるようにプログラムされる。ここで、各画素はゲーティング持続時間tgate=Xgate/vの間さらされた。以下で述べるように、走査のスピード及びCMOS検出器のクロックスピードに従って、2つの異なるタイプの検出器アーキテクチャが必要とされ得る。
【0050】
図8の実線記録は、サンプル点503の蛍光強度対時間に対応する、画素503の瞬間光電子生成対時間の一例を示している。破線プロファイルは、点503が受ける励起強度を、この点上のガウス形状のレーザ線走査として表している。時刻「ゼロ」において、励起エリア501のピークがサンプル点503を通過する。遅延時間は、励起ビーム501のピークが点503を通過した瞬間から画素503が光電子の検出及び生成に関して有効に設定される時刻までに経過した時間である。遅延時間は、1w/vより大きく設定することができ、好ましくは約2w/vに設定することができる。(移動の方向における)有効画素エリアの長さはゲーティング距離(Xgate)を構成し、図7の測定ゲート時間はtgate=Xgate/vによって与えられる。
【0051】
以下で詳述される2つのタイミング要件は、好ましい上限及び下限を走査速度vに設定する。2つの限度の間で、より高い走査速度が好ましい。これは、より高速な平均化及びデータ取得が可能となるためである。しかしながら、非常に高速な走査は、ギガヘルツクロックスピードを有するより高価なカメラ(以下を参照されたい)も必要とする場合がある。これらの要件は、本発明の範囲を限定するのではなく例示であるように意図されている。TRF形式の場合、ゲート時間は、概ねゼロ(1画素幅距離、図7)から幾つかの寿命、好ましくは約3τまで選択することができる。このように、放出光の完全積分が可能となる(図8)。励起領域と検出領域とが重なり合うのを回避するために、遅延時間は1w/vより大きく、好ましくは約2w/vに設定すべきであり、すなわち、2w/v<τ(図6)であり、v>2w/τによって与えられる走査速度に対する好ましい下限がもたらされる。
【0052】
任意の点503が受ける励起光の照射量、及び走査ごとに点によって生成される信号は、レーザ走査スピードが遅い方が高い。しかしながら、2つの理由から、より高い走査スピードを使用すると共に、結果として得られる複数の画像フレームを単一の最終画像に平均化するのが好ましい:(1)複数の走査にわたって、サンプル内の任意の点が受ける励起光の平均照射量は走査スピードから独立するようになる;(2)集束励起光の照射量が高いと、特に寿命が長いTRF試薬では、サンプルの大幅な基底状態の減少(ground state depopulation)が生じる場合があり、結果として信号効率が損なわれ、潜在的なサンプル光退色が生じる。
【0053】
極端に速い走査スピードでは、励起されるサンプルは、視野の走査中に減衰時間を有しないであろう。したがって、ゲーティング距離Xgate=v×tgate(図7及び図8)は、視野より大きくする必要があり得る(すなわちXgate>XFOVである)。大きいゲーティング距離は、長い読み取り時間を暗示する。この設定はCMOSロールシャッタにおいて可能であるが、これは、この場合、前の走査からの発光が消えるまで再走査を回避すべきであるため好ましい条件ではない。結果的に、この動作モードは走査間の無駄時間を増大し、結果的に励起光の使用における効率が損なわれる。したがって、視野よりも小さいゲーティング距離を有する(すなわちXgate<XFOV)ことが好ましい。既に述べたように約3τのゲート時間が選択されると、この要件は、好ましい上限をv<XFOV/3τによって与えられる走査速度に設定する。2つの好ましい走査スピードの要件は、XFOV/3τ>v>2w/τと要約することができる。しかしながら、上記の要件は、本発明の範囲を限定するものではなく例示とみなされるべきである。
【0054】
一例として、10倍の倍率の対物レンズの下での顕微鏡イメージングでは、視野がサンプルに対して約XFOV=0.5mm(1000×1000画素を有するCMOSチップに対して5mm、すなわちXFOV=1000画素)であり、レーザ線を、w≒1μmの幅を有する準回折限界まで集束することができる(CMOSに対して10μmの画像幅、すなわちw=2画素)。平均蛍光寿命τが約1msであるTRF試薬に関してこれを計算することができ、必要とされる走査速度vは好ましくは、サンプルに対して0.2cm/s〜16cm/s内に設定される(チップに対して4画素/ms〜330画素/ms)。このようなスピードは、約4MHz〜330MHzのカメラクロックスピードを必要とする(以下を参照されたい)。0.1msの寿命の場合、必要とされる走査速度及びカメラ読み出しスピードは10倍高くなるであろう。クロックスピードの下方範囲は、市販のCMOSカメラによって容易に満たされる。
【0055】
図6及び図7のTRFイメージングの別のタイミング条件は、検出器列602からの画素読み出しスピードは走査スピードに一致すべきであるということである。画素読み出しの速さは複数の要因によって決まる:検出器131のクロックスピード、走査のスピード、検出エリア内の画素の数、時間分解検出の形式の選択、FLIM対TRF、及び、データの数学的処理がチップ上の各画素において集められた電荷において行われるか又は読み出し後に行われるか(El Gamal A及びEltoukhy H著「CMOS image sensors」(IEEE Circuits & Devices 21, 6-20 (2005));Bigas M、Cabruja E他著「Review of CMOS image sensors」(Microelectronics J 37, 433-451 (2006)))。現在では、CMOS検出器のクロックスピードは、リサーチグレード検出器の場合の約10GHzからコマーシャルグレード検出器の場合の約30MHzにまで及ぶ。
【0056】
一例として、寿命が1msである上記で考察されたTRFイメージング例の場合、約1000個の検出器列は、4列/ms〜330列/msのスピードで読み取られることになる。各列は約1000個の画素を有するため、これは4MHz〜330MHz(走査速度の選択に従う)のカメラクロックスピードを必要とする。寿命が0.1msの場合、必要とされる走査速度は10倍高くなり、カメラ読み出しスピードは40MHz〜3GHzである必要がある。より低いスピードはコマーシャルグレード検出器の範囲内にあるが、より高いスピードは専門CMOS検出器を必要とする。
【0057】
好ましい一実施形態では、オンチップデータ処理能力を有する特別に設計されたCMOS検出器の使用によって、読み出しスピード要件の大幅な緩和を実施することができる。たとえば、検出画素ごとに対応して、検出された電荷が記録されるオンチップ積分があり得る。この場合、全エリアが走査されるまでデータ読み出しは行われない。その後、走査ミラーが第2の作動のためにリセットされている間に、記録された素子が通常のスピードで読み出される。別の好ましい手法では、CMOSは、満足のゆく信号レベルが達成されるまで、サンプルの複数の走査のオンチップ積分を実行するようにプログラムされる。複数の走査動作後の通常のフレーム読み出しは1回のみである。
【0058】
蛍光寿命イメージング(FLIM)動作の場合、各画像画素値は、そのロケーションにおけるサンプルの平均蛍光寿命(τ)を表すことになる。τは好ましくは、各光検知画素に関連付けられる特別に設計されたデータ処理素子によってオンチップで評価される。
当業者に既知である様々なアルゴリズム手法を実施することができる。単純な手法は、以下の式から平均寿命を評価する。
【0059】
【数2】

【0060】
ここで、式[1]において、任意の所与の画素503(図6)に関して:時間t=0は
有効画素エリア601の先端が画素503に達するときに開始し、その後続の値(t、t、t、…)は、画素503の有効画素エリア601の先端からの距離を走査速度vで割った値から計算される;I(t)は、時点tにおいて光検知画素において生成される瞬間電荷である;
【0061】
【数3】

【0062】
は積分記録素子に転送される蓄積電荷である;和
【0063】
【数4】

【0064】
は、各光検知画素に関連付けられる別個のオンチップ素子において評価される。無限記号(∞)は、2τよりも長く、好ましくは約3τである十分に長いユーザ選択時間を表すように意図されている。CMOSは、
【0065】
【数5】

【0066】
及び
【0067】
【数6】

【0068】
の両方に関して満足のゆく信号レベルが達成されるまで、サンプルの複数の走査のオンチップ総和を実行するようにプログラムされる。複数の走査動作後の2つの信号の通常のフレーム読み出しは2回のみである。読み出し後、画素ごとの
【0069】
【数7】

【0070】
からの値は、TRF画像の信号を構成する一方、式[1]から計算される値はFLIM画像を構成する。
図9は、図1の時間分解イメージングシステムが利用される方法の一例のフローチャートである。測定処理を開始するために、ブロック900において、ユーザは、適切な時間分解蛍光(TRF)試薬によって標識されたサンプル117を顕微鏡システム109の載物台108上に挿入する。プローブ寿命τ(TRF試薬では典型的には0.1ms〜1ms)及びCMOSチップのクロックスピード性能を予め知っておくことに基づいて、ユーザは、機器が必要とする3つの入力パラメータを調整する:走査速度vは好ましくは、好ましくは、図6〜図8に記載されているXFOV/3τ>v>2w/τによって設定されると共にカメラクロックスピードによって与えられる高い方の範囲内にあるように設定される;図6〜図8に記載されている遅延時間(tdelay)は、w/vよりも大きい値に、好ましくは2w/vに設定される;図6〜図8に記載されているゲート時間(tgate)は、2τよりも大きい値に、好ましくは3τに設定される;再走査反復の回数(N)は、信号対雑音比の所望のレベルが達成されることができるような値に設定される。次に、システムはデータ取得を開始する。
【0071】
ブロック901において、システム100は、顕微鏡システム109の光源101を利用して、サンプル117内の複数の生物有機体内の少なくとも1つの点503上で、光源101からの光のビーム(図5〜図7)を走査し、励起エリア501又は照明エリア501において点503の光吸収蛍光プローブ(蛍光)を励起する(ブロック903)。換言すると、照明エリア501がターゲット117上で形成されて、ターゲット117上の少なくとも1つの点からの蛍光が励起される。ブロック905において、点503の蛍光放出が、システムの光学素子109によって、好ましくはCMOS検出器のような個別にアドレス指定可能な検出素子を有するアレイ検出器110に導かれる。ブロック905において、検出器は、実質的に、励起エリア501に一致するか又はこの励起エリアに同期するが、この励起エリアの後ろでXdelay=vtdelay(図6〜図8)だけ空間的にシフトされると共に幾何学的にスケーリングされて移動する、幅Xgate=vtgate(図6〜図8)の検出エリア601を有するか又は形成するようにプログラムされる。検出器素子において生成される電荷は、ブロック907及び909に示されているような2つの方法で読み出すことができる。幾何学的スケーリングは、照明エリア及び検出エリアを移動させる方向に関して、照明エリアのサイズと検出エリアのサイズとの関係を提供し、ここで、移動方向に垂直な方向における照明エリア及び検出エリアの両方のサイズは同じであり、移動方向における検出エリアのサイズはゲート時間によって規定される。さらに、幾何学的スケールは、ターゲット117にわたる照明エリア501及び検出エリア601の移動方向に沿った、またこの移動方向と交差する照明エリア501のサイズと検出エリア601のサイズとの比である。たとえば、移動方向に沿った照明エリアの幅が1マイクロメートル(micron:ミクロン)に等しい場合、検出エリア601の幅は2マイクロメートルに等しくすることができる。これは、2の係数における幾何学的スケーリングを意味する。移動に垂直な方向における照明エリア501の幅が0.5mmの場合、検出エリア601の対応する幅は0.5mmとすることもでき、したがって幾何学的スケーリングは1の係数を有する。
【0072】
ブロック907では、検出エリア601の後列(図6及び図7、列602)において積分された電荷は、検出器画素が走査されるのと同じスピードでプロセッサ112aに直接読み出される。この場合、プロセッサ112aは、サンプルの複数の(N回の)走査からの結果の平均化を実行しなければならない。次に、ブロック911において、コンピュータ112は、プロセッサ112aを利用して、再走査反復(N)が達成されたか否かを判断するか又は計数し、サンプル117内の少なくとも1つの点503の別の走査を行うべきか否かを判断する。再走査反復の回数(N)、たとえば100走査に達していない場合、別の走査が生成され、処理が開始ブロックにおいて始まる。再走査反復の回数(N)、たとえば100走査に達した場合、別の走査は生成されず、処理はブロック913に続く。ブロック913において、バックグラウンド散乱光が少ない点503の強い蛍光の画像表現又は写真を示す、プロセッサ112aによって蓄積されたデータに基づいてディスプレイ114上に画像表現が生成される。
【0073】
ブロック909において、本発明の好ましい一実施形態では、式1において上記でオンチッププロセッサに基づいて論じたように、CMOS検出器110の検出チップ上でデータの数学的処理が行われる。この場合、チップは、サンプル117の少なくとも1つの点503の全てのN回の走査の蛍光を検出及び処理して、積分強度及び/又は平均寿命の最終値を生成することができ、当該最終値は直接読み出される。次に、ブロック911において、顕微鏡システム109は、検出チップを有するCMOS検出器110を利用して、再走査反復(N)が達成されたか否かを判断するか又は計数し、サンプル117内の少なくとも1つの点503の別の走査を行うべきか否かを判断する。再走査反復の回数(N)、たとえば100走査に達していない場合、別の走査が生成され、処理が開始ブロックにおいて始まる。再走査反復の回数(N)、たとえば100走査に達した場合、別の走査は生成されず、処理はブロック913に続く。ブロック913において、バックグラウンド散乱光が少ない点503の強い蛍光の画像表現又は写真を示す、検出チップを有するCMOS検出器110によって蓄積されたデータに基づいて画像表現が生成され、且つ/又は、各画素値が上記の式[1]に従ってプロセッサ112aによって計算されるサンプル蛍光の平均寿命を表す寿命画像(FLIM)も生成される。
【0074】
図10A及び図10Bは、幅wを有するガウスプロファイル励起ビーム501によって照明される、寿命τを有するサンプル点503(図5)に関してモデル化された、計算された蛍光強度対時間プロファイルの例を示している。単位なしパラメータa=w/vτは、強度プロファイルの形状を決定する。計算結果を、a=1、0.5、及び0.1に関して示している。これらの結果は、飽和効果が生じない低電力励起レベルに関連する。t’は、励起のピークが点503を通過してから経過した時間を表す。各プロファイルの最大値は概ねaに比例する。図10Bは、対数目盛における強度プロットを示しており、ビームが点503の近傍から出ると、すなわちt’≧τex=w/vとなると、減衰が急速に指数関数的になることを例示している。これは、遅延時間tdelayをw/vよりも大きくする、好ましくは≧2w/vにするという上述した選択を正当化する。
【0075】
図10C及び図10Dは、長いゲート時間にわたって計算される、相対的なTRF収量(積分光電子収量)対遅延時間のプロットを示している。結果は、短い遅延の間に高収量が得られることを示す。この結果及び前の結果から、計算がtdelay≒2w/vの好ましい遅延時間を正当化する。
【0076】
本発明は、蛍光サンプルの時間分解蛍光イメージングを可能にするシステム及び方法を提供する。ユーザは、散乱励起光及び短寿命バックグラウンド蛍光の量が低減された、サンプルの時間フィルタリングされた写真を受け取ることができる。システムは、蛍光ゲート時間及び遅延時間の調整を可能にする。
【0077】
本発明の上記の詳細な説明が限定ではなく例示としてみなされること、及び、本発明の範囲を規定するように意図されているのは全ての均等物を含む以下の特許請求の範囲であることが理解されることが意図されている。

【特許請求の範囲】
【請求項1】
時間分解蛍光顕微鏡法のための装置であって、
少なくとも1つの走査装置を利用するように構成される、励起放射を提供する少なくとも1つの光源であって、前記少なくとも1つの走査装置は、前記励起放射を、ターゲットのエリアにわたって動かすように構成され、前記ターゲットは、前記励起放射を受け取ると共に該ターゲット上の照明エリアから蛍光を放出するように構成される、少なくとも1つの光源と、
前記ターゲットから放出される前記蛍光を検出するように構成される少なくとも1つの検出器であって、該少なくとも1つの検出器は、前記ターゲットから放出される前記蛍光のランダムアクセス読み取りが可能であり、前記ターゲットから放出される前記蛍光の前記ランダムアクセス読み取りは、前記ターゲット上の前記照明エリアに対して幾何学的にスケーリングされるように構成される検出領域を提供し、前記走査装置は前記照明エリアを移動させるように構成され、該少なくとも1つの検出器は、前記ターゲットの前記照明エリアと同期して前記検出領域を移動させるように構成され、前記検出領域は前記ターゲットの前記照明エリアの画像に対してシフトされる、少なくとも1つの検出器と、
を備える、装置。
【請求項2】
前記少なくとも1つの光源は、レーザ、レーザダイオード、発光ダイオード、ランプ、及びこれらの組み合わせから成る群から選択される、請求項1に記載の装置。
【請求項3】
前記少なくとも1つの検出器は、2次元画素の独立したリセット及び読み出しが可能な1つ又は複数の2次元画素ベースの光受信器を含む、請求項1に記載の装置。
【請求項4】
前記少なくとも1つの検出器は、CMOS検出器、CCD、PMT、及び光ダイオードから成る群から選択される、請求項3に記載の装置。
【請求項5】
前記少なくとも1つの光源は、前記ターゲット上の一点を照明する手段を備え、
イメージングされる前記エリアにわたって前記一点照明を走査する手段をさらに備える、請求項1に記載の装置。
【請求項6】
前記ターゲットの線部分を照明する線形成手段をさらに備え、イメージングされる前記エリアにわたって前記線部分照明を走査する手段をさらに備える、請求項1に記載の装置。
【請求項7】
前記線形成手段は、パウエルレンズ、円筒レンズ、回折格子、ホログラフィック素子、及びこれらの組み合わせから成る群から選択される、請求項6に記載の装置。
【請求項8】
前記少なくとも1つの走査装置は、1つ又は複数の検流計及び回転多面鏡走査器から成る群からのものである、請求項1に記載の装置。
【請求項9】
前記少なくとも1つの検出器は、ロールシャッタ手段をさらに備えるCMOS検出器である、請求項1に記載の装置。
【請求項10】
前記ロールシャッタ手段は、前記ターゲットの前記照明エリアの前記画像に対する前記検出領域の前記シフトのために構成される、請求項9に記載の装置。
【請求項11】
前記検出領域は、前記励起放射が前記ターゲットにわたって動いている速度と、必要とされるゲート時間との積に等しい幅を有する、請求項1に記載の装置。
【請求項12】
前記少なくとも1つの走査装置は、複数回、前記ターゲットにわたって走査するように構成される、請求項1に記載の装置。
【請求項13】
前記少なくとも1つの検出器はコンピュータに接続される、請求項13に記載の装置。
【請求項14】
前記コンピュータは、前記ターゲットが前記走査装置によって走査されるときに該ターゲットから放出される前記蛍光を読み出すように構成される、請求項13に記載の装置。
【請求項15】
前記コンピュータは、前記ターゲットから放出される前記蛍光の前記読み出しの結果を平均化するように構成される、請求項14に記載の装置。
【請求項16】
前記コンピュータは、前記ターゲットが走査されるときに該ターゲットから放出される前記蛍光を、オンチッププロセッサを利用することによって読み出すように構成され、前記ターゲットは蛍光寿命を有する、請求項15に記載の装置。
【請求項17】
前記コンピュータはディスプレイを備え、該ディスプレイは、前記照明されたターゲットの蛍光表現を示す、前記コンピュータによって蓄積された前記データを表示するように構成される、請求項12に記載の装置。
【請求項18】
時間分解蛍光イメージングのための方法であって、
ターゲット上に照明エリアを形成することであって、該ターゲット上の少なくとも1つの点から蛍光を励起する、照明エリアを形成すること、
前記ターゲット上の前記照明エリアを移動させること、
前記ターゲット上に検出エリアを形成することであって、該検出エリアは前記照明エリアに対して幾何学的にスケーリングされる、検出エリアを形成すること、
前記ターゲット上の前記検出エリアから放出される前記蛍光を検出すること、
前記ターゲット上の前記照明エリアと同期して前記検出エリアを移動させること、及び
前記ターゲットの前記照明エリアの後ろに前記検出エリアをシフトすること、
を含む、方法。
【請求項19】
前記幾何学的スケーリングは、前記照明エリア及び前記検出エリアを移動させる方向に関して、該照明エリアのサイズと該検出エリアのサイズとの関係を提供し、前記移動方向に垂直な方向における前記照明エリア及び前記検出エリアの両方の前記サイズは同じであり、前記移動方向における前記検出エリアの前記サイズはゲート時間によって規定される、請求項18に記載の方法。
【請求項20】
前記照明エリアの幅と前記ターゲットの蛍光寿命との比によって求められる、前記照明エリアを移動させる速度をさらに含む、請求項18に記載の方法。
【請求項21】
前記ターゲット上の前記照明エリアと同期して前記検出エリアを移動させることは、等速度で同じ方向において前記照明エリア及び前記検出エリアを移動させることをさらに含む、請求項18に記載の方法。
【請求項22】
前記照明エリアを前記検出エリアの後ろにシフトすることは、前記照明エリア及び前記検出エリアの両方の前記移動の前記方向において前記照明エリアの後端の後ろに前記検出エリアの先端をシフトすることをさらに含む、請求項18に記載の方法。
【請求項23】
前記ゲート時間は、前記検出エリアの幅と前記検出エリアを移動させる速度との比によって求められる、請求項19に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図10D】
image rotate


【公表番号】特表2010−517056(P2010−517056A)
【公表日】平成22年5月20日(2010.5.20)
【国際特許分類】
【出願番号】特願2009−548361(P2009−548361)
【出願日】平成20年1月23日(2008.1.23)
【国際出願番号】PCT/US2008/051752
【国際公開番号】WO2008/094794
【国際公開日】平成20年8月7日(2008.8.7)
【出願人】(598041463)ジーイー・ヘルスケア・バイオサイエンス・コーポレイション (43)
【住所又は居所原語表記】800 Centennial Avenue, P.O.Box 1327,Piscataway,New Jersey 08855−1327,United States of America
【Fターム(参考)】