説明

有機エレクトロルミネッセンス素子及び表示装置

【課題】発光輝度、寿命および発光効率に優れた有機エレクトロルミネッセンス素子を得ることができ、これを用いた高輝度、鮮明で、長寿命な表示装置を提供する。
【解決手段】下記一般式(1a)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】


(式中、R13は水素原子を表し、R11、R12およびR14はそれぞれ水素原子または一価の置換基を表し、R11、R12およびR14のうち少なくとも2つは芳香族炭化水素基を表す。ただし、R11、R12またはR14が一価の置換基または芳香族炭化水素基を表す場合、該一価の置換基または芳香族炭化水素基はヒドロキシ基を有することはない。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス(以下有機ELと略記する場合もある)素子および表示装置に関するものであり、詳しくいえば、本発明は発光輝度、寿命および発光効率に優れた有機エレクトロルミネッセンス素子、および本発明の有機エレクトロルミネッセンス素子を有する表示装置に関するものである。
【背景技術】
【0002】
発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0003】
これまで、様々な有機EL素子が報告されている。たとえば、Appl.Phys.Lett.,Vol.51、913頁あるいは特開昭59−194393号に記載の正孔注入層と有機発光体層とを組み合わせたもの、特開昭63−295695号に記載の正孔注入層と電子注入輸送層とを組み合わせたもの、Jpn.Journal of Applied Phisycs,vol.127,No.2第269〜271頁に記載の正孔移動層と発光層と電子移動層とを組み合わせたもの等がそれぞれ開示されている。しかしながら、より高輝度な素子が求められており、エネルギー変換効率、発光量子効率の更なる向上が期待されている。
【0004】
また、発光寿命が短いという問題点も指摘されている。こうした経時での輝度劣化の要因は完全には解明されていないが発光中のエレクトロルミネッセンス素子は自ら発する光、及びその時に発生する熱などによって薄膜を構成する有機化合物自体の分解、薄膜中での有機化合物の結晶化等、有機EL素子材料である有機化合物に由来する要因も指摘されている。
【0005】
また、電子輸送材料については、現在のところ、知見が少なく、反結合軌道を利用することも相俟って、実用に耐える有用なる高性能電子輸送材料は見いだされていない。例えば、九州大学の研究グループは、オキサジアゾール系誘導体である2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(t−BuPBD)をはじめ、薄膜安定性を向上させたオキサジアゾール二量体系誘導体の1,3−ビス(4−t−ブチルフェニル−1,3,4−オキサジアゾリル)ビフェニレン(OXD−1)、1,3−ビス(4−t−ブチルフェニル−1,3,4−オキサジアゾリル)フェニレン(OXD−7)(Jpn.J.Appl.Phys.vol.31(1992),p.1812)を提案している。また、山形大学の研究グループは、正孔ブロック性に優れたトリアゾール系電子輸送材料を用いることにより白色発光の素子を作製している(Science,3 March 1995,Vol.267,p.1332)。さらに、特開平5−331459号公報には、フェナントロリン誘導体が電子輸送材料として有用であることが記載されている。上記以外にも、種々の複素芳香環を含有する化合物を発光材料または電子輸送材料に用いる例が報告されている。
【0006】
例えば、ピリミジン環を含有する有機エレクトロルミネッセンス材料としては特開平5−202357号公報、同6−306357号公報、同7−196780号公報、同8−199163号公報等が挙げられるが、具体的に電子輸送材料として使用している例は特開平7−196780号公報のポリマー以外にはほとんど例がない。トリアジン環を含有する発光材料または電子輸送材料としては特開平5−263074号公報、同7−157473号公報、同8−199163号公報、同11−292860号公報、特表平11−514143号公報等が挙げられる。
【0007】
しかし、従来の電子輸送材料では、薄膜形成能が低く、容易に結晶化が起こるため、発光素子が破壊されてしまう問題があり、発光効率および発光寿命の両立については十分ではなかった。
【0008】
また、有機EL素子からの発光を吸収して、その発光を変換して、それとは別の極大発光波長の発光を得る方法が知られている(例えば、特許文献1〜3参照。)。有機EL素子の発光を変換する化合物としては、有機蛍光色素が例示されている。上記特許の構成は、色変換層に用いる有機蛍光体を変更するだけで所望の発光色を得ることができ、通常、フルカラーの有機ELの製造に要する煩雑なパターニングが不要となり、低コスト化が可能である。
【0009】
しかし、従来の電子輸送材料では、発光効率および発光寿命の両立については十分ではないため、色変換層を用いる構成においても、有機EL素子自体の発光強度が十分ではなく、変換後に得られる発光の強度はまだまだ十分なものではなかった。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許第2795932号公報
【特許文献2】特開平9−245511号公報
【特許文献3】特開平5−258860号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、電子輸送材料として高効率の化合物を見いだしたものであり、これを電子輸送層或いは発光層に用いて、発光輝度、発光効率の向上した、また長寿命化した有機エレクトロルミネッセンス素子、および該有機エレクトロルミネッセンス素子を用いた、長寿命な表示装置を提供するものである。
【課題を解決するための手段】
【0012】
本発明の上記目的は、下記(1)〜(8)の構成により達成された。
【0013】
(1)下記一般式(1a)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0014】
【化1】

【0015】
(式中、R13は水素原子を表し、R11、R12およびR14はそれぞれ水素原子または一価の置換基を表し、R11、R12およびR14のうち少なくとも2つは芳香族炭化水素基を表す。ただし、R11、R12またはR14が一価の置換基または芳香族炭化水素基を表す場合、該一価の置換基または芳香族炭化水素基はヒドロキシ基を有することはない。)
(2)前記化合物の分子量が550〜2000であることを特徴とする前記(1)に記載の有機エレクトロルミネッセンス素子。
【0016】
(3)前記化合物を、電子輸送層に含有することを特徴とする前記(1)または(2)に記載の有機エレクトロルミネッセンス素子。
【0017】
(4)電子を注入する陰極と前記化合物を含有する層の間に、陰極バッファー層を有することを特徴とする前記(1)〜(3)のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0018】
(5)前記(1)〜(4)のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【0019】
(6)異なる極大発光波長を有する前記(1)〜(4)のいずれか1項に記載の有機エレクトロルミネッセンス素子の2種以上を同一基板上に並置したことを特徴とする表示装置。
【0020】
(7)前記(1)〜(4)のいずれか1項に記載の有機エレクトロルミネッセンス素子及びその発光を吸収してそれとは異なる極大波長で発光する変換層を有することを特徴とする表示装置。
【0021】
(8)極大発光波長の異なる変換層の2種以上が同一基板上に並置されていることを特徴とする前記(7)に記載の表示装置。
【0022】
なお、以下1〜11は参考とされる構成である。
【0023】
1.下記一般式(1)、一般式(2)または一般式(3)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0024】
【化2】

【0025】
(式中、R11、R12、R13およびR14はそれぞれ水素原子または一価の置換基を表し、少なくとも1つは芳香族炭化水素基を表す。R21、R22、R23、R24、R25およびR26は水素原子または一価の置換基を表す。R31は水素原子または一価の置換基を表し、n3は0〜2を表し、Zは5員環を形成するのに必要な原子群を表す。)
2.下記一般式(4)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0026】
【化3】

【0027】
(式中、R41、R42、R43、R44およびR45は水素原子または一価の置換基を表し、Arは3〜6価の基を表し、n4は3〜6を表す。)
3.下記一般式(5)で示される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0028】
【化4】

【0029】
(式中、R51、R52およびR53はアルキル基、置換または無置換のジアジン基またはピリジン、ピラジン、ピリミジン、ピリダジン、チオフェン、フランおよびピロールを部分構造として有する芳香族複素環基が置換した芳香族炭化水素基を表す。)
4.ピリジン、ピラジン、ピリミジン、ピリダジン、チオフェン、フランおよびピロールを部分構造として有する芳香族複素環基が置換した芳香族炭化水素基が、置換または無置換のフェニル基であることを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。
【0030】
5.前記化合物の分子量がそれぞれ550〜2000であることを特徴とする前記1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0031】
6.前記化合物を、電子輸送層に含有することを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0032】
7.電子を注入する陰極と前記化合物を含有する層の間に、陰極バッファー層を有することを特徴とする前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0033】
8.前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【0034】
9.異なる極大発光波長を有する前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子の2種以上を同一基板上に並置したことを特徴とする表示装置。
【0035】
10.前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子及びその発光を吸収してそれとは異なる極大波長で発光する変換層を有することを特徴とする表示装置。
【0036】
11.極大発光波長の異なる変換層の2種以上が同一基板上に並置されていることを特徴とする前記10に記載の表示装置。
【発明の効果】
【0037】
本発明の上記手段により、発光輝度、寿命および発光効率に優れた有機エレクトロルミネッセンス素子を得ることができ、これを用いた高輝度、鮮明で、長寿命な表示装置を提供することができる。
【図面の簡単な説明】
【0038】
【図1】有機エレクトロルミネッセンス素子から構成される表示装置の一例を示した模式図である。
【図2】表示部の模式図である。
【図3】画素の模式図である。
【図4】パッシブマトリクス方式による表示装置の模式図である。
【図5】色変換層を有する有機エレクトロルミネッセンス素子を厚さ方向から見た断面図である。
【発明を実施するための形態】
【0039】
以下に、本発明を詳細に説明する。
【0040】
まず、一般式(1a)、一般式(1)、一般式(2)および一般式(3)で表される化合物について説明する。式中、R11、R12、R13およびR14は水素原子または一価の置換基を表し、少なくとも1つは芳香族炭化水素基を表す。ただし、R11、R12またはR14が一価の置換基または芳香族炭化水素基を表す場合、該一価の置換基または芳香族炭化水素基はヒドロキシ基を有することはない。
【0041】
21、R22、R23、R24、R25およびR26は水素原子または一価の置換基を表す。R31は水素原子または一価の置換基を表し、n3は0〜2を表し、Zは5員環を形成するのに必要な原子群を表す。R12、R13、R14、R21、R22、R23、R24、R25およびR26が置換基を表す場合、置換基同士は環を形成してもよい。R11、R12、R13、R14、R21、R22、R23、R24、R25、R26およびR31で表される一価の置換基としては、アルキル基(メチル基、エチル基、i−プロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、ベンジル基等)、アルキルオキシ基(メトキシ基、エトキシ基、i−プロポキシ基、ブトキシ基等)、アリールオキシ基(フェノキシ基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アリール基(フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基等)、アルキルチオ基(メチルチオ基、エチルチオ基、i−プロピルチオ基等)、アリールチオ基(フェニルチオ基等)、シアノ基、ニトロ基、複素環基(ピロリル、ピロリジル、ピラゾリル、イミダゾリル、ピリジル、ベンズイミダゾリル、ベンズチアゾリル、ベンゾオキサゾリル等)等が挙げられる。R11、R12、R13およびR14の少なくとも1つで表される芳香族炭化水素基としてはフェニル基、ナフチル基、アンスリル基、フェナンスリル基等が挙げられる。Zにより形成される5員環の例としては、ピロール環、フラン環、チオフェン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等が挙げられる。好ましくは、一般式(2)が一般式(4)で表される場合であり、式中、R41、R42、R43、R44およびR45は水素原子または一価の置換基を表し、Arは3〜6価の基を表し、n4は3〜6を表す。R41、R42、R43、R44およびR45で表される一価の置換基としては、R11、R12、R13、R14、R21、R22、R23、R24、R25、R26およびR31で述べた一価の置換基と同様のものが挙げられ、Arで表される3〜6価の基としては、特に制限はないが、3〜6の結合手を有する脂肪族炭化水素基、単環基、縮合多環基等が挙げられる。また、前記脂肪族炭化水素基等が炭素原子、窒素原子、酸素原子、硫黄原子等で連結されている構造単位も、含まれる。具体例としては、以下の構造単位が挙げられるが、これらに限定されるものではない。
【0042】
【化5】

【0043】
またこれらは任意の置換基を複数個それぞれ独立に有していてもよく、その複数の置換基が互いに縮合してさらに環を形成してもよい。Arに置換する複数のキナゾリン環は同一でも異なっていてもよい。
【0044】
次に一般式(5)について説明する。式中、R51、R52およびR53は置換または無置換のアルキル基、置換または無置換のジアジン基またはピリジン、ピラジン、ピリミジン、ピリダジン、チオフェン、フランおよびピロール環を部分構造として有する芳香族複素環基が置換した芳香族炭化水素基を表す。R51、R52およびR53で表されるアルキル基としては、一般式(1)中のR11、R12、R13で表される一価の置換基の例としてあげたアルキル基と同様のものが挙げられる。ジアジン基としては、ピリダジン基、ピリミジン基、ピラジン基が挙げられ、それらはさらに置換基を有していても良く、複数の置換基を有する場合、お互いが結合して、環を形成してもよい。
【0045】
また、R51、R52およびR53は、ピリジン、ピラジン、ピリミジン、ピリダジン、チオフェン、フランおよびピロール環を部分構造として有する芳香族複素環基が置換した、フェニル基であることが好ましい。
【0046】
また、一般式(1a)、一般式(1)、(2)、(3)、(4)および(5)で表される化合物は分子量が550〜2000であることが好ましい。分子量が550〜2000であるとTg(ガラス転移温度)が上昇し、熱安定性が向上する。
【0047】
また、一般式(1a)、一般式(1)、(2)、(3)、(4)および(5)で表される化合物のバンドギャップは2.96eV〜3.80eVであることが好ましく、さらには、3.20eV〜3.80eVであることが好ましい。この様な高い値をとることによって、電子輸送性を保ったまま正孔ブロック性が向上し、より発光効率の向上が達成される。本発明の化合物のバンドギャップは、例えば化合物II−2、V−8等においてはそれぞれ3.65eV、3.26eVと高い値をもっており、本発明化合物の中でも、例えば比較的低めのバンドギャップを有する例えばI−9、I−10の化合物(それぞれのバンドギャップは2.90、2.85であるが)よりも発光効率が高くなっている。
【0048】
本発明でいうバンドギャップとは、化合物のイオン化ポテンシャルと電子親和力の差を表し、イオン化ポテンシャル、及び電子親和力は真空準位を基準として決定される。イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、電子親和力は真空準位にある電子が物質のLUMO(最低空分子軌道)レベルに落ちて安定化するエネルギーで定義される。尚、上記イオン化ポテンシャルと電子親和力の差は、化合物の吸収スペクトルの吸収端から換算することが可能であり、本発明では、化合物をガラス上に100nm蒸着したときの蒸着膜の吸収スペクトルを測定し、その吸収端の波長YnmをXeVに換算して求めた。この時に、以下の換算式を使用した。
【0049】
X=1240/Y
以下に一般式(1a)、一般式(1)〜(5)で表される化合物例の具体例を示すが、I−1、I−3〜7が本発明に係る化合物の例である。本発明の化合物はこれらに限定されるものではない。
【0050】
【化6】

【0051】
【化7】

【0052】
【化8】

【0053】
【化9】

【0054】
【化10】

【0055】
【化11】

【0056】
【化12】

【0057】
【化13】

【0058】
【化14】

【0059】
【化15】

【0060】
【化16】

【0061】
本発明の化合物は、固体状態において強い蛍光をもつ化合物であり、電場発光性にも優れており、発光材料として有効に使用できる。また、金属電極からの優れた電子注入性および電子輸送性に非常に優れているため、他の発光材料を用いた素子において、電子輸送材料として使用した場合、優れた発光効率を示す。
【0062】
本発明の有機EL素子は、必要に応じこれらの化合物を用いた発光層、電子輸送層の他に、正孔輸送層、陽極バッファー層および陰極バッファー層等を有し、陰極と陽極で狭持された構造をとる。
【0063】
具体的には、(i)陽極/発光層/陰極、(ii)陽極/正孔輸送層/発光層/陰極、(iii)陽極/発光層/電子輸送層/陰極、(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極、(v)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極などの構造がある。
【0064】
本発明の化合物は、いずれの層中に含有されていてもかまわないが、発光層または電子輸送層に含有されていることが好ましく、電子輸送層に含有されていることが特に好ましい。
【0065】
上記発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子および正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であっても良い。
【0066】
発光層に使用される材料(以下、発光材料という)は、蛍光または燐光を発する有機化合物または錯体であることが好ましく、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。このような発光材料は、主に有機化合物であり、所望の色調により、例えば、Macromol.Synth.,125巻,17〜25頁に記載の化合物等を用いることができる。
【0067】
発光材料は、発光性能の他に、正孔輸送機能や電子輸送機能を併せ持っていても良く、正孔輸送材料や電子輸送材料の殆どが、発光材料としても使用できる。
【0068】
発光材料は、p−ポリフェニレンビニレンやポリフルオレンのような高分子材料でも良く、さらに前記発光材料を高分子鎖に導入した、または前記発光材料を高分子の主鎖とした高分子材料を使用しても良い。
【0069】
また、発光層にはドーパント(ゲスト物質)を併用してもよく、EL素子のドーパントとして使用される公知のものの中から任意のものを選択して用いることができる。ドーパントの具体例としては、例えば、キナクリドン、DCM、クマリン誘導体、ローダミン、ルブレン、デカシクレン、ピラゾリン誘導体、スクアリリウム誘導体、ユーロピウム錯体、イリジウム錯体、プラチナ錯体等がその代表例として挙げられる。
【0070】
この発光層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。発光層としての膜厚は、特に制限はないが、通常は5nm〜5μmの範囲で選ばれる。この発光層は、これらの発光材料一種又は二種以上からなる一層構造であってもよいし、あるいは、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0071】
また、この発光層は、特開昭57−51781号公報に記載されているように、樹脂などの結着材と共に上記発光材料を溶剤に溶かして溶液としたのち、これをスピンコート法などにより薄膜化して形成することができる。このようにして形成された発光層の膜厚については、特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm〜5μmの範囲である。
【0072】
本発明の有機EL素子が、有機EL素子からの発光を吸収し、その発光を変換して、それとは別の極大発光波長の発光を得る、有機EL素子の発光を変換する化合物を含有する色変換層を有する場合には、変換の効率から、発光層からの発光は青紫領域の色であることが好ましい。
【0073】
本発明の有機EL素子において、その発光層からの発光である青紫領域の色は、分光放射輝度計CS−1000(ミノルタ製)等の測定器で測定し、その結果、座標が、CIE色度座標(「新編色色彩科学ハンドブック」108頁の図4.16(日本色彩学会編、東京大学出版会、1985))に当てはめたとき、Purplish Blue(紫青)、または、Bluish Purple(青紫)の領域にある場合をいう。
【0074】
前記青紫領域の発光を示す化合物の一般的な特徴としては、溶液中における蛍光極大波長が350nm以上420nm以下に入るものが好ましく、蛍光量子収率が0.1以上のものが好ましい。
【0075】
そのような発光材料の具体例としては、特開2001−143869号、特開2001−160488号、特開2001−81453号、特開2001−93670号、特願2000−265045号、同2000−285050号、同2000−292124号、同2000−290466号、同2000−240880号、同2000−345267号等に記載されている。
【0076】
具体例の一部を下記に示すが、これに限定されるものではない。
【0077】
【化17】

【0078】
【化18】

【0079】
【化19】

【0080】
【化20】

【0081】
【化21】

【0082】
【化22】

【0083】
次に正孔輸送層および電子輸送層について説明する。正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、そのうえ、発光層に陰極、陰極バッファー層又は電子輸送層より注入された電子は、発光層と正孔輸送層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。この正孔輸送層の材料(以下、正孔注入材料又は正孔輸送材料という)については、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導電材料において、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0084】
上記正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。この正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
【0085】
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。
【0086】
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0087】
また、p型−Si、p型−SiCなどの無機化合物も正孔輸送材料として使用することができる。この正孔輸送層は、上記正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度である。この正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0088】
さらに、必要に応じて用いられる電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
【0089】
この電子輸送層に用いられる材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体などが挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。
【0090】
さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0091】
また、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替えた金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として用いられるジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔輸送層と同様に、n型−Si、n型−SiCなどの無機半導体も電子輸送材料として用いることができる。
【0092】
この電子輸送層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。電子輸送層としての膜厚は、特に制限はないが、通常は5nm〜5μmの範囲で選ばれる。この電子輸送層は、これらの電子輸送材料一種又は二種以上からなる一層構造であってもよいし、あるいは、同一組成又は異種組成の複数層からなる積層構造であってもよい。
【0093】
さらに、陽極と発光層または正孔輸送層の間、および、陰極と発光層または電子輸送層との間にはバッファー層(電極界面層)を存在させてもよい。
【0094】
バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(第123頁〜第166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
【0095】
陽極バッファー層は、特開平9−45479号、同9−260062号、同8−288069号等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0096】
陰極バッファー層は、特開平6−325871号、同9−17574号、同10−74586号等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
【0097】
特に、本発明の有機EL素子において、陰極バッファー層が存在した場合、駆動電圧低下や発光効率向上が大きく得られた。
【0098】
上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1〜100nmの範囲が好ましい。
【0099】
さらに上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよく、例えば特開平11−204258号、同11−204359号、および「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第237頁等に記載されている正孔阻止(ホールブロック)層などのような機能層を有していても良い。
【0100】
次に有機EL素子の電極について説明する。有機EL素子の電極は、陰極と陽極からなる。
【0101】
この有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAuなどの金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnOなどの導電性透明材料が挙げられる。
【0102】
上記陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。
【0103】
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウムーカリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性及び酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好適である。
【0104】
更に本発明の有機EL素子に用いる陰極としては、アルミニウム合金が好ましく、特にアルミニウム含有量が90質量%以上100質量%未満であることが好ましく、最も好ましくは95質量%以上100質量%未満である。これにより、有機EL素子の発光寿命や、最高到達輝度を非常に向上させることができる。
【0105】
上記陰極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光効率が向上し好都合である。
【0106】
本発明の有機EL素子に好ましく用いられる基板は、ガラス、プラスチックなどの種類には特に限定はなく、また、透明のものであれば特に制限はない。本発明のエレクトロルミネッセンス素子に好ましく用いられる基板としては例えばガラス、石英、光透過性プラスチックフィルムを挙げることができる。
【0107】
光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。
【0108】
次に、該有機EL素子を作製する好適な例を説明する。例として、前記の陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極からなるEL素子の作製法について説明すると、まず適当な基板上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させ、陽極を作製する。次に、この上に陽極バッファー層、正孔輸送層、発光層、電子輸送層、陰極バッファー層の材料からなる薄膜を形成させる。
【0109】
この有機薄膜層の薄膜化の方法としては、前記の如くスピンコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、かつピンホールが生成しにくいなどの点から、真空蒸着法またはスピンコート法が特に好ましい。さらに層ごとに異なる製膜法を適用しても良い。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類、分子堆積膜の目的とする結晶構造、会合構造などにより異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選ぶことが望ましい。
【0110】
これらの層の形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリングなどの方法により形成させ、陰極を設けることにより、所望のEL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施してもかまわないが、その際には作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
【0111】
また作製順序を逆にして、陰極、陰極バッファー層、電子輸送層、発光層、正孔輸送層、陽極バッファー層、陽極の順に作製することも可能である。このようにして得られたEL素子に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧5〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
【0112】
本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用しても良いし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用しても良い。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでも良い。また、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作成することが可能である。
【0113】
次に色変換層について説明する。本明細書でいう色変換層は、広義の意味ではある波長の光を、異なる波長の光に変換する機能を有する層のことを言う。具体的には、有機EL素子の発光層から発せられる光を吸収して異なる波長の光を発する物質を含有する層のことを言う。これにより有機EL素子が、発光層から発する光の色のみではなく、色変換層により変換された他の色も表示することが可能となる。
【0114】
有機EL素子の発光層から発せられる光を吸収して異なる波長の光を発する物質としては、蛍光体があげられ、蛍光体としては有機蛍光体または無機蛍光体でもよく、変換したい波長によって使い分けることができる。
【0115】
有機蛍光体としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素などが挙げられる。
【0116】
無機蛍光体としては、粒径が3μm以下の微粒子のものが好ましく、さらにその製法が液相法を経由された合成された単分散に近い超微粒子蛍光体であることが好ましい。
【0117】
無機蛍光体は、結晶母体と賦活剤によって構成される無機系蛍光体、または希土類錯体系蛍光体が挙げられる。
【0118】
無機系蛍光体の組成は特に制限はないが、結晶母体であるYS、ZnSiO、Ca(POCl等に代表される金属酸化物及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Al、Mn、In、Cu、Sb等の金属のイオンを賦活剤または共賦活剤として組み合わせたものが好ましい。
【0119】
結晶母体を更に詳しく説明すると、結晶母体としては金属酸化物が好ましく、例えば、(X)Al1627、(X)Al1425、(X)AlSi10、(X)Si、(X)Si、(X)、(X)、(X)(POCl、(X)Si−2(X)Cl〔ここで、Xはアルカリ土類金属を表す。なお、Xで表されるアルカリ土類金属は単一成分でも2種類以上の混合成分でもよく、その混合比率は任意でよい。〕のようなアルカリ土類金属で置換された酸化アルミニウム、酸化ケイ素、リン酸、ハロリン酸等が代表的な結晶母体として挙げられる。
【0120】
その他の好ましい結晶母体としては、亜鉛の酸化物および硫化物、イットリウムやガドリウム、ランタン等の希土類金属の酸化物およびその酸化物の酸素の一部を硫黄原子に換えた(硫化物)もの、および希土類金属の硫化物およびそれらの酸化物や硫化物に任意の金属元素を配合したもの等が挙げられる。
【0121】
結晶母体の好ましい例を以下に列挙する。MgGeO5.5F、MgGeO、ZnS、YS、YAl12、YSiO10、ZnSiO、Y、BaMgAl1017、BaAl1219、(Ba、Sr、Mg)O・aAl、(Y、Gd)BO、(Zn、Cd)S、SrGa、SrS、GaS、SnO、Ca10(PO(F、Cl)、(Ba、Sr)(Mg、Mn)Al1017、(Sr、Ca、Ba、Mg)10(POCl、(La、Ce)PO、CeMgAl1119、GdMgB10、Sr、SrAl1425、YSO、GdS、Gd、YVO、Y(P、V)O等である。
【0122】
以上の結晶母体及び賦活剤または共賦活剤は、同族の元素と一部置き換えたものでも構わないし、とくに元素組成に制限はなく、青紫領域の光を吸収して可視光を発するものであればよい。
【0123】
本発明において、無機系蛍光体の賦活剤、共賦活剤として好ましいものは、La、Eu、Tb、Ce、Yb、Pr等に代表されるランタノイド元素のイオン、Ag、Mn、Cu、In、Al等の金属のイオンであり、そのドープ量は母体に対して0.001〜100モル%が好ましく、0.01〜50モル%がさらに好ましい。
【0124】
賦活剤、共賦活剤は結晶母体を構成するイオンの一部を上記ランタノイドのようなイオンに置き換えることでその結晶の中にドープされる。
【0125】
蛍光体結晶の実際の組成は、厳密に記載すれば以下のような組成式になるが、賦活剤の量の大小は本質的な蛍光特性に影響を及ぼさないことが多いので、以下特にことわりのない限り下記xやyの数値は記載しないこととする。例えばSr4−xAl1425:Eu2+は、本発明においてはSrAl1425:Eu2+と表記する。
【0126】
以下に代表的な無機系蛍光体(結晶母体と賦活剤によって構成される無機蛍光体)の組成式を記載するが、本発明はこれらに限定されるものではない。(BaMg1−z3−x−yAl1627:Eu2+,Mn2+、Sr4−Al1425:Eu2+、(Sr1−zBa1−xAlSi:Eu2+、Ba2−SiO:Eu2+、Sr2−SiO:Eu2+、Mg2−SiO:Eu2+、(BaSr)1−xSiO:Eu2+、Y2−x−ySiO:Ce3+,Tb3+、Sr2−:Eu2+、Sr2−:Eu2+、(BaCaMg1−y−z5−x(POCl:Eu2+、Sr2−Si−2SrCl:Eu2+[x、yおよびzはそれぞれ1以下の任意の数を表す。]
以下に本発明に好ましく使用される無機系蛍光体を示すが、本発明はこれらの化合物に限定されるものではない。
【0127】
[青色発光 無機系蛍光体]
(BL−1) Sr:Sn4+
(BL−2) SrAl1425:Eu2+
(BL−3) BaMgAl1017:Eu2+
(BL−4) SrGa:Ce3+
(BL−5) CaGa:Ce3+
(BL−6) (Ba、Sr)(Mg、Mn)Al1017:Eu2+
(BL−7) (Sr、Ca、Ba、Mg)10(POCl:Eu2+
(BL−8) BaAlSiO:Eu2+
(BL−9) Sr:Eu2+
(BL−10) Sr(POCl:Eu2+
(BL−11) (Sr、Ca、Ba)(POCl:Eu2+
(BL−12) BaMgAl1627:Eu2+
(BL−13) (Ba、Ca)(POCl:Eu2+
(BL−14) BaMgSi:Eu2+
(BL−15) SrMgSi:Eu2+
[緑色発光 無機系蛍光体]
(GL−1) (BaMg)Al1627:Eu2+,Mn2+
(GL−2) SrAl1425:Eu2+
(GL−3) (SrBa)AlSi:Eu2+
(GL−4) (BaMg)SiO:Eu2+
(GL−5) YSiO:Ce3+,Tb3+
(GL−6) Sr−Sr:Eu2+
(GL−7) (BaCaMg)(POCl:Eu2+
(GL−8) SrSi−2SrCl:Eu2+
(GL−9) ZrSiO,MgAl1119:Ce3+,Tb3+
(GL−10) BaSiO:Eu2+
(GL−11) SrSiO:Eu2+
(GL−12) (BaSr)SiO:Eu2+
[赤色発光 無機系蛍光体]
(RL−1) YS:Eu3+
(RL−2) YAlO:Eu3+
(RL−3) Ca(SiO:Eu3+
(RL−4) LiY(SiO:Eu3+
(RL−5) YVO:Eu3+
(RL−6) CaS:Eu3+
(RL−7) Gd:Eu3+
(RL−8) GdS:Eu3+
(RL−9) Y(P、V)O:Eu3+
(RL−10) MgGeO5.5F:Mn4+
(RL−11) MgGeO:Mn4+
(RL−12) KEu2.5(WO6.25
(RL−13) NaEu2.5(WO6.25
(RL−14) KEu2.5(MoO6.25
(RL−15) NaEu2.5(MoO6.25
上記無機系蛍光体は、必要に応じて表面改質処理を施してもよく、その方法としてはシランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、さらにはそれらの併用によるもの等が挙げられる。
【0128】
希土類錯体系蛍光体としては、希土類金属としてCe、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb等を有するものが挙げられ、錯体を形成する有機配位子としては、芳香族系、非芳香族系のどちらでも良く、好ましく下記一般式(B)で表される化合物が好ましい。
【0129】
一般式(B) Xa−(L)−(L−(L)−Ya
(式中、L、L、Lはそれぞれ独立に2個以上の結合手を持つ原子を表し、nは0または1を表し、XaはLの隣接位にあって前記希土類金属に配位可能な原子を有する置換基を表し、YaはLの隣接位にあってやはり前記希土類金属に配位可能な原子を有する置換基を表す。さらにXaの任意の部分とLとは互いに縮合して環を形成してもよく、Yaの任意の部分とLとは互いに縮合して環を形成してもよく、LとLとは互いに縮合して環を形成してもよく、さらに分子内に芳香族炭化水素環または芳香族複素環が少なくとも一つ存在する。ただし、Xa−(L)−(L−(L)−Yaがβ−ジケトン誘導体やβ−ケトエステル誘導体、β−ケトアミド誘導体又は前記ケトンの酸素原子を硫黄原子又は−N(R201)−に置き換えたもの、クラウンエーテルやアザクラウンエーテルまたはチアクラウンエーテルまたはクラウンエーテルの酸素原子を任意の数硫黄原子または−N(R201)−に置き換えたクラウンエーテルを表す場合には芳香族炭化水素環または芳香族複素環は無くてもよい。−N(R201)−において、R201は、水素原子、置換または無置換のアルキル基、置換または無置換のアリール基を表す。)
一般式(B)において、XaおよびYaで表される配位可能な原子とは、具体的には酸素原子、窒素原子、硫黄原子、セレン原子、テルル原子であり、特に酸素原子、窒素原子、硫黄原子であることが好ましい。
【0130】
一般式(B)において、L、L、Lで表される2個以上の結合手を持つ原子としては、特に制限はないが、代表的には炭素原子、酸素原子、窒素原子、シリコン原子、チタン原子等が挙げられるが、このましいものは炭素原子である。
【0131】
以下に一般式(B)で表される希土類錯体系蛍光体の具体例を示すが、本発明はこれらに限定されるものではない。
【0132】
【化23】

【0133】
【化24】

【0134】
【化25】

【0135】
【化26】

【0136】
色変換層を設ける場所は、前記有機EL部からの発光を吸収できる位置であれば特に限定はないが、透明電極と透明基板との間、または、透明基板の前記透明電極とは反対側(発光を取り出す前側)に設けることが好ましい。
【0137】
上記色変換層は、上記蛍光体を蒸着あるいはスパッタリング法による製膜や、適当な樹脂をバインダとしてその中に分散させた塗布膜等いずれの形態であっても構わない。膜厚は、100nm〜5mm程度が適当である。ここで、適当な樹脂をバインダとしてその中に分散させた塗布膜とする場合、蛍光体の分散濃度は、蛍光の濃度消光を起こすことがなく、かつ、有機EL部からの発光を十分に吸収できる範囲であればよく、蛍光体の種類にもよるが、使用する樹脂1gに対して10−7〜10−3モル程度が適当である。無機蛍光体の場合は、濃度消光がほとんど問題とならないため、樹脂1gに対して0.1〜10g程度使用できる。
【0138】
本発明に用いられる色変換層として、発光層中の有機化合物の発光波長で励起して400〜500nmの範囲内に極大発光波長を有して発光する無機蛍光体を含有する色変換層、発光層中の有機化合物の発光波長で励起して501〜600nmの範囲内に極大発光波長を有して発光する無機系蛍光体を含有する色変換層、発光層中の有機化合物の発光波長で励起して601〜700nmの範囲内に極大発光波長を有して発光する無機系蛍光体を含有する色変換層を少なくとも有しているのが好ましい。これにより、有機EL素子をフルカラー化することが可能となる。
【0139】
本発明の有機エレクトロルミネッセンス素子から構成される表示装置の一例を図面に基づいて以下に説明する。
【0140】
図1は、有機エレクトロルミネッセンス素子から構成される表示装置の一例を示した模式図である。有機エレクトロルミネッセンス素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
【0141】
ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
【0142】
制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
【0143】
図2は、表示部の模式図である。表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
【0144】
図においては、画素3の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。
【0145】
配線部の走査線5及び複数のデータ線6は、それぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。
【0146】
画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。
【0147】
次に、画素の発光プロセスを説明する。図3は、画素の模式図である。
【0148】
画素は、有機エレクトロルミネッセンス素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機エレクトロルミネッセンス素子10として、実施例1〜3の赤色、緑色、青色発光有機エレクトロルミネッセンス素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
【0149】
図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
【0150】
画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機エレクトロルミネッセンス素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機エレクトロルミネッセンス素子10に電流が供給される。
【0151】
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機エレクトロルミネッセンス素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機エレクトロルミネッセンス素子10が発光する。
【0152】
すなわち、有機エレクトロルミネッセンス素子10の発光は、複数の画素それぞれの有機エレクトロルミネッセンス素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機エレクトロルミネッセンス素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
【0153】
ここで、有機エレクトロルミネッセンス素子10の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。
【0154】
また、コンデンサ13の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
【0155】
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機エレクトロルミネッセンス素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
【0156】
図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
【0157】
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
【0158】
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
【実施例】
【0159】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0160】
実施例1
(電子輸送材料)
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、m−MTDATAを200mg入れ、別のモリブデン製抵抗加熱ボートにDPVBiを200mg入れ、また別のモリブデン製抵抗加熱ボートにBCを200mg入れ真空蒸着装置に取付けた。
【0161】
次いで、真空槽を4×10−4Paまで減圧した後、m−MTDATAの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで透明支持基板に膜厚25nmで蒸着し正孔輸送層を設け、さらに、DPVBiの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで、膜厚20nmで蒸着し、発光層を設けた。蒸着時の基板温度は室温であった。
【0162】
ついで、BCの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで30nmの電子輸送層を設けた。
【0163】
次に、真空槽をあけ、電子輸送層の上にステンレス鋼製の長方形穴あきマスクを設置し、一方、モリブデン製抵抗加熱ボートにマグネシウム3gを入れ、タングステン製の蒸着用バスケットに銀を0.5g入れ、再び真空槽を2×10−4Paまで減圧した後、マグネシウム入りのボートに通電して蒸着速度1.5〜2.0nm/secでマグネシウムを蒸着し、この際、同時に銀のバスケットを加熱し、蒸着速度0.1nm/secで銀を蒸着し、前記マグネシウムと銀との混合物から成る陰極とすることにより、表1に示す比較用有機EL素子OLED1−1を作製した。
【0164】
上記有機EL素子OLED1−1のBC(電子輸送層)を表1に記載の化合物に替えた以外は有機エレクトロルミネッセンス素子OLED1−1と同様にして、有機エレクトロルミネッセンス素子OLED1−2〜21を作製した。
【0165】
【化27】

【0166】
これらの素子を温度23度、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m)、輝度の半減する時間および発光効率(ln/W)を測定した。発光輝度および発光効率は有機エレクトロルミネッセンス素子OLED1−1を100とした時の相対値で表し、輝度の半減する時間も有機エレクトロルミネッセンス素子OLED1−1の輝度が半減する時間を100とした相対値で表した。結果を表1に示す。発光色は青色だった。
【0167】
発光輝度(cd/m)及び発光効率(ln/W)については、ミノルタ製CS−1000を用いて測定した。
【0168】
【表1】

【0169】
表1より、本発明の化合物を用いた有機EL素子は、点灯開始時の発光輝度、輝度の半減する時間および発光効率が改善されているのが分かる。特に、輝度の半減する時間が改善されているのが分かる。また、有機エレクトロルミネッセンス素子OLED1−10、12、16、17および21の電子輸送材料として用いられたII−13、II−16、V−3、V−4およびV−11は、バンドギャップが3.20eV〜3.60eVの範囲にあり、発光輝度および発光効率が大幅に改良されているのがわかる。
【0170】
実施例2
実施例1で作製した有機エレクトロルミネッセンス素子OLED1−10の陰極をAlに置き換え、電子輸送層と陰極の間にフッ化リチウムを膜厚0.5nm蒸着して陰極バッファー層として設けた以外は同様にして有機エレクトロルミネッセンス素子(OLED2−1)を作製した。
【0171】
実施例1と同様に点灯開始時の発光輝度(cd/m)、輝度の半減する時間および発光効率(ln/W)を測定したところ、有機エレクトロルミネッセンス素子OLED1−1との相対比較で、発光輝度203、輝度の半減する時間521、発光効率199となった。また、有機エレクトロルミネッセンス素子OLED1−4〜9、1−10〜21についても、同様に、陰極バッファー層を導入するとさらに効果的であった。
【0172】
実施例3
実施例1で用いた有機エレクトロルミネッセンス素子の発光層をDPVBiからそれぞれAlqまたはAlqとDCM2を100:1の質量比で蒸着した発光層に置き替えた以外は同様にして、有機エレクトロルミネッセンス素子を作製した。
【0173】
【化28】

【0174】
実施例1と同様に点灯開始時の発光輝度(cd/m)、輝度の半減する時間および発光効率(ln/W)を測定した結果、本発明の化合物を用いた有機エレクトロルミネッセンス素子において、点灯開始時の発光輝度、輝度の半減する時間および発光効率の改善が確認された。
【0175】
なお、Alqを発光層として用いた場合は緑色の発光が得られ、AlqとDCM2を100:1とした発光層からは赤色の発光が得られた。
【0176】
実施例4
実施例1および3で作製したそれぞれ赤色、緑色、青色発光有機エレクトロルミネッセンス素子を同一基板上に並置し、図1〜図3で示したアクティブマトリクス方式フルカラー表示装置を作製した。該フルカラー表示装置を駆動することにより、輝度の高い鮮明なフルカラー動画表示が得られた。
【0177】
実施例5
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、m−MTDATAを200mg入れ、別のモリブデン製抵抗加熱ボートにN,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)[1,1′−ビフェニル]−4,4′−ジアミン(TPD)を200mg入れ、また別のモリブデン製抵抗加熱ボートにBCを200mg入れ、さらに他のモリブデン製抵抗加熱ボートに下記比較化合物3を200mg入れ真空蒸着装置に取付けた。
【0178】
【化29】

【0179】
次いで、真空槽を4×10−4Paまで減圧した後、m−MTDATAの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで透明支持基板に膜厚25nmで蒸着し、さらに、TPDの入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで、膜厚20nmで蒸着し、2層からなる正孔輸送層を設けた。蒸着時の基板温度は室温であった。
【0180】
ついで、比較化合物3の入った前記加熱ボートに通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで30nmの発光層を設けた。更に、BCの入った前記加熱ボートを通電して、220℃まで加熱し、蒸着速度0.1〜0.3nm/secで膜厚20nmの電子輸送層を設けた。
【0181】
次に、真空槽をあけ、電子注入層の上にステンレス鋼製の長方形穴あきマスクを設置し、一方、モリブデン製抵抗加熱ボートにマグネシウム3gを入れ、タングステン製の蒸着用バスケットに銀を0.5g入れ、再び真空槽を2×10−4Paまで減圧した後、マグネシウム入りのボートに通電して蒸着速度1.5〜2.0nm/secでマグネシウムを蒸着し、この際、同時に銀のバスケットを加熱し、蒸着速度0.1nm/secで銀を蒸着し、前記マグネシウムと銀との混合物から成る陰極とすることにより、表2に示す比較用有機EL素子OLED5−1を作製した。
【0182】
上記有機EL素子OLED5−1の比較化合物3を表2に記載の化合物にかえた以外は有機EL素子OLED5−1と同様にして、有機EL素子OLED5−2〜7を作製した。
【0183】
これらの素子を温度23度、乾燥窒素ガス雰囲気下で15V直流電圧印加による連続点灯を行い、点灯開始時の発光輝度(cd/m)、輝度の半減する時間および発光効率(ln/W)を測定した。発光輝度および発光効率は有機EL素子OLED5−1の100とした時の相対値で表し、輝度の半減する時間は有機エレクトロルミネッセンス素子OLED5−1の輝度が半減する時間を100とした相対値で表した。結果を表2に示す。
【0184】
【表2】

【0185】
表2より、本発明の化合物を用いた有機EL素子は、点灯開始時の発光輝度、発光効率及び輝度の半減する時間が改善されているのが分かる。
【0186】
参考例6
化合物I−10とDCM2を100:1の質量比で蒸着した膜厚30nmの発光層を使用する以外は、実施例5と同様の方法で有機エレクトロルミネッセンス素子OLED6−1を作製した。
【0187】
これらの素子を温度23度、乾燥窒素ガス雰囲気下で15V直流電圧印加すると、赤色の発光が得られた。
【0188】
上記有機エレクトロルミネッセンス素子OLED6−1の、DCM2をQd−2またはBCzVBiに替えることによって、それぞれ、緑色または青色の発光が得られた。
【0189】
【化30】

【0190】
又、前記有機エレクトロルミネッセンス素子OLED6−1の化合物I−10をV−12に替え、DCM2、Qd−2およびBCzVBiをドーパントとして用いた場合も同様に赤色、緑色または青色の発光が得られた。
【0191】
参考例7
実施例1で作製した有機エレクトロルミネッセンス素子OLED1−10の、正孔輸送材料をm−MTDATXA、発光層の有機化合物をBP−13、陰極をAl、電子輸送層と陰極の間にフッ化リチウムを膜厚0.5nm蒸着して陰極バッファー層として設けた以外は、同様の方法により、有機エレクトロルミネッセンス素子(OLED7−1)を作製した。
【0192】
【化31】

【0193】
〈無機蛍光体を用いた色変換フィルターの作製〉
平均粒径5nmのエアロジル0.16gにエタノール15g及びγ−グリシドキシプロピルトリエトキシシラン0.22gを加えて開放系室温下1時間攪拌した。この混合物と無機蛍光体RL−12を20g乳鉢に移し、よくすり混ぜた後、70℃のオーブンで2時間、さらに120℃のオーブンで2時間加熱し、表面改質した無機蛍光体RL−12を得た。
【0194】
また、同様にして、無機蛍光体GL−10及びBL−3の表面改質も行った。上記の表面改質を施した(RL−12)10gに、トルエン/エタノール=1/1の混合溶液(300g)に溶解したポリビニルブチラール樹脂エスレックBX−1(積水化学社製)30gを加え、攪拌した後、ウエット膜厚200μmでガラス上に塗布した。得られた塗布済みガラスを100℃のオーブンで4時間加熱乾燥し、ガラス上に色変換層が形成された赤色変換フィルター(F−1)を作製した。
【0195】
また、これと同じ方法で(GL−10)を塗設した緑色変換フィルター(F−2)及び(BL−3)を塗設した青色変換フィルター(F−3)を作製した。
【0196】
続いて、有機エレクトロルミネッセンス素子(OLED7−1)の透明基板の下側に、色変換部として青色変換フィルター(F−3)をストライプ状に貼り付けた。本実施例の有機エレクトロルミネッセンス素子は、以下のような構成である。
【0197】
色変換部/透明基板/陽極/有機化合物薄膜/陰極この素子に15Vの電圧を印加したところ、320cd/m鮮明な青色の発光が得られた。発光スペクトルの極大発光波長は448nm、CIE色度座標上で、(0.15、0.06)となった。
【0198】
さらに、上記色変換部の青色変換フィルター(F−3)を、緑色変換フィルター(F−2)または赤色変換フィルター(F−1)に代えた有機エレクトロルミネッセンス素子を作製した。その結果、緑色変換フィルター(F−2)を設けた有機エレクトロルミネッセンス素子からは、250cd/m、極大発光波長532nm、CIE色度座標上(0.24、0.63)の緑色光が、赤色変換フィルター(F−1)を設けた有機エレクトロルミネッセンス素子からは、170cd/m、極大発光波長615nm、CIE色度座標上(0.63、0.33)の赤色光が、それぞれ得られた。
【0199】
上記、青色光、緑色光及び赤色光の発光輝度は、いずれも特許第2795932号の実施例に記載の有機エレクトロルミネッセンス素子の発光輝度より優れたものである。
【0200】
また、以下のような色変換部の位置を透明基板の上側に変更した以下の層構成の有機エレクトロルミネッセンス素子を作製した。
【0201】
透明基板/色変換部/陽極/有機化合物薄膜/陰極この場合も、上記青、緑、赤色とほぼ同様の極大発光波長とCIE色度座標を有する発光スペクトルが得られた。
【0202】
参考例8
(フルカラー表示装置)
図2の複数の画素3を有する表示部Aにおいて、複数の画素3が備えている複数の有機エレクトロルミネッセンス素子をすべて、参考例7に記載の有機エレクトロルミネッセンス素子(OLED7−1)とした表示装置を作製した。この時点で表示装置に電圧を印加すると、すべての画素3から青紫色の発光が得られた。
【0203】
次に、実施例5に記載の有機エレクトロルミネッセンス素子(図5(a))及びこれとは透明基板と色変換層の位置が異なる有機エレクトロルミネッセンス素子(図5(b))を作製した。図5は、色変換層を有する有機エレクトロルミネッセンス素子を厚さ方向から見た断面図である。図5(a)において有機エレクトロルミネッセンス素子10は、ガラス製の透明基板10dの上側に有機EL部Yを、下側に色変換部Xを積層している。
【0204】
図中、参照符号の10aはAl製の陰極、10bは陰極バッファー層(フッ化リチウム)、電子輸送層(BC)、発光層(BP−13)等が積層された有機化合物薄膜、10cは陽極(ITO透明電極)、10dは透明基板、10eは実施例7で作製した赤色変換フィルター(F−1)、緑色変換フィルター(F−2)、青色変換フィルター(F−3)をストライプ状に並置した色変換層である。
【0205】
陰極10a及び透明電極10cを介して有機化合物薄膜10bに電流が供給されると電流量に応じて発光した。このときの発光は、図中の下側方向へ取り出した。そして、発光した光は透明基板10dを介して色変換層10eに吸収され、色変換層が赤色変換能を有する場合(赤色変換フィルター(F−1)部分)には赤領域の、緑色変換能(緑色変換フィルター(F−2)部分)を有する場合には緑領域の、青色変換能を有する場合(青色変換フィルター(F−3)部分)には青領域の色の発光を、図中白矢印のような方向に取り出すことができた。
【0206】
図5(b)に示すように、透明基板10dの上側に色変換部Xと有機EL部Yをこの順序で積層した場合でも、図5(a)の場合と同様に、赤色、緑色及び青色の発光が得られた。該表示装置を駆動することにより、輝度の高い鮮明なフルカラー動画表示が得られた。
【符号の説明】
【0207】
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機エレクトロルミネッセンス素子
10a 陰極
10b 有機化合物薄膜
10c 透明電極
10d 透明基板
10e 色変換層
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
A 表示部(ディスプレイ)
B 制御部
X 色変換部
Y 有機EL部

【特許請求の範囲】
【請求項1】
下記一般式(1a)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】

(式中、R13は水素原子を表し、R11、R12およびR14はそれぞれ水素原子または一価の置換基を表し、R11、R12およびR14のうち少なくとも2つは芳香族炭化水素基を表す。ただし、R11、R12またはR14が一価の置換基または芳香族炭化水素基を表す場合、該一価の置換基または芳香族炭化水素基はヒドロキシ基を有することはない。)
【請求項2】
前記化合物の分子量が550〜2000であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
【請求項3】
前記化合物を、電子輸送層に含有することを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
【請求項4】
電子を注入する陰極と前記化合物を含有する層の間に、陰極バッファー層を有することを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項5】
請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【請求項6】
異なる極大発光波長を有する請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子の2種以上を同一基板上に並置したことを特徴とする表示装置。
【請求項7】
請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子及びその発光を吸収してそれとは異なる極大波長で発光する変換層を有することを特徴とする表示装置。
【請求項8】
極大発光波長の異なる変換層の2種以上が同一基板上に並置されていることを特徴とする請求項7に記載の表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−142613(P2012−142613A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2012−87083(P2012−87083)
【出願日】平成24年4月6日(2012.4.6)
【分割の表示】特願2001−233461(P2001−233461)の分割
【原出願日】平成13年8月1日(2001.8.1)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】