説明

有機修飾エアロゲルの製造方法

【課題】共通に使用できる表面修飾方法を用いて、水と有機溶媒を交換することなく有機修飾されたゲルを製造する方法を提供する。
【解決手段】a)シリカ系ヒドロゲルをpH3以上で形成し、次いでb)得られたヒドロゲルの表面をシリル化剤で処理して修飾して表面修飾ゲルとなし、次いでc)得られた表面修飾ゲルを、臨界温度・圧力に至らない条件下に乾燥する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は新規な有機修飾エアロゲル、その製造方法およびその使用に関する。
【背景技術】
【0002】
エアロゲル、特に多孔度60%以上で密度0.6g/cm以下のものは極端に低い熱伝導率を有しており、それゆえに、例えば、特許文献1に記載されているごとく、断熱材料として採用されている。
【0003】
広義の、即ち「分散媒体としての空気を伴うゲル」の意味でのエアロゲルは、適当なゲルを乾燥することにより調製される。この意味における用語「エアロゲル」には、狭義のエアロゲル、キセロゲルおよびクリオゲル(cryogel)が含まれる。乾燥ゲルは、ゲルの液体が臨界温度より高い温度で除去され臨界圧より高い圧内から開始される場合、狭義のエアロゲルとして記載される。反対に、ゲルの液体が臨界未満で、例えば液体−蒸気境界相の形成を伴って、除去される場合は、得られたゲルはしばしばキセロゲルとして記載される。
【0004】
本出願では、用語エアロゲルは、広義の、即ち「分散媒体としての空気を伴うゲル」の意味におけるエアロゲルに関する。加えるに、エアロゲルはゲル構造の形によって、基本的に無機および有機エアロゲルに分けることができる。
【0005】
無機エアロゲルは、早くも1931年には知られていた(非特許文献1)。これらの最初のエアロゲルは出発物質として水ガラスおよび酸から製造されていた。得られた湿潤ゲルにおいて、水は有機溶媒と交換され、このリオゲルは超臨界乾燥にかけられる。このようにして、例えば特許文献2に開示されるように、親水エアロゲルが得られる。
【0006】
今日まで、非常に広範な種々の無機エアロゲルが製造されてきた。例えば、SiO−、Al−、TiO、ZrO−、SnO−、LiO−、CeO−およびV−エアロゲルおよびそれらの混合物が製造されてきた(非特許文献2)。
【0007】
有機エアロゲルも以前から知られている。文献に見られる例としては、レゾルシン/ホルムアルデヒド、メラニン/ホルムアルデヒド、またはレゾルシン/フルフラールをベースとする有機エアロゲルである(非特許文献3、特許文献3、特許文献4、特許文献5および特許文献6)。さらに、知られている例としては、ポリイソシアネート(特許文献7)およびポリウレタン(特許文献8)から形成された有機エアロゲルがある。例えば、特許文献3に記載されている方法は、水に溶解したホルムアルデヒドおよびレゾルシンなどの原料から出発し、これらの原料を適当な触媒により互に反応させ、得られたゲルの孔中の水を適当な有機溶媒と交換し、そしてゲルを超臨界乾燥にかける。
【0008】
無機エアロゲルは様々な方法で調製可能である。
【0009】
例えば、SiOエアロゲルは、まずオルトケイ酸テトラエチルのエタノール溶液の酸加水分解および縮合により調製できる。これは超臨界乾燥によってその構造を保ちながら乾燥させることによりゲルを製造するものである。この乾燥技術を用いた方法は、例えば、特許文献9、特許文献10、特許文献11などから公知である。
【0010】
シリカゲルの超臨界乾燥法を用いる上記乾燥法の代替方法として、ゲルを乾燥前に塩素含有シリル化剤と反応させる方法がある。シリカゲルは、例えばテトラアルコキシシラン、好ましくはテトラエトキシシラン(TEOS)を適当な有機溶媒、好ましくはエタノール中で水と反応させ、酸加水分解して得ることができる。次に溶媒を適当な有機溶媒と交換し、得られたゲルを塩素含有シリル化剤と反応させる。ここで用いられるシリル化剤は、その反応度により、好ましくはメチルクロロシラン類(Me4−nSiCl、ここでn=1−3)である。得られた表面がメチルシリル類で修飾されたシリカゲルは、続いて、空気中で有機溶媒中から乾燥して得られる。このようにして、密度が0.4g/cm以下で、細孔率60%以上のエアロゲルを得ることができる。この乾燥法を用いた方法は特許文献12に余すところなく記載されている。
【0011】
またさらに、乾燥前に、例えば特許文献13に開示されているように、ゲルネットワークの強度を増すために、反応に必要な量の水を含むアルコール溶液中での乾燥前、テトラアルコキシシランで処理され、熟成されうる。
【0012】
上記の方法で出発物質として用いられるテトラアルコキシシランは、非常にコストがかかる。著しいコスト減少は、シリカエアロゲル製造の出発物質として、水ガラスを用いることにより達成されうる。
【0013】
これは、例えば、水ガラス水溶液からイオン交換樹脂によってケイ酸が得られ、これに塩基を加えて縮重合させてシリカゲルとするものである。さらに、水性溶媒を適当な有機溶媒に交換したのち、得られたゲルを塩素含有シリル化剤と反応させる。ここで用いられるシリル化剤は、その反応性により、好ましくはメチルクロロシラン類(Me4−nSiCl、ここでn=1−3)が用いられる。得られたシリカゲルは、表面がメチルシリルグループで修飾されており、続いて空気中で有機溶媒から乾燥されて得られる。この技術に基づく方法については特許文献14に詳細に記載されている。
【0014】
特許文献15では、ヒドロゲルは水ガラス溶液に鉱酸を加えて得られる。ヒドロゲルが形成されてのち、ゲル中の水は有機溶媒と入れ替えられ、ついでゲルはシリル化剤、好ましくは塩化アルキルシランによってシリル化され、臨界未満乾燥される。
【0015】
特許文献16には塩素を含有しないシリル化剤の使用が記載されている。そのため、例えば、上記方法で製造されたケイ酸塩のリオゲルを反応容器に入れて、塩素非含有シリル化剤と反応させる。ここで用いられるシリル化剤は、好ましくは、メチルイソプロペノキシシラン類(Me4−nSi(OC(CH)CH、ここでn=1−3)が用いられる。得られたシリカゲルは、表面がメチルシリル類で修飾されており、続いて空気中で有機溶媒中から乾燥して得られる。しかしながら、塩素を含有しないシリル化剤を用いるとコストが高くなる。
【0016】
特許文献17および特許文献18には疎水性表面グループを有するシリカエアロゲルの調製法が記載されている。
【0017】
特許文献17では、シリカエアロゲルは水ガラス溶液をpH7.5−11で酸と反応させ、水または無機塩基性の希釈用水溶液で洗うことにより得られるシリカヒドロゲルがイオン成分を含まないようにし、ヒドロゲルのpHを7.5−11に保ちながら水相をアルコールで交換し、得られたアルコゲルを超臨界乾燥させる。
【0018】
特許文献18では、シリカエアロゲルは特許文献17に記載されているのと同様の方法で調製し、その後超臨界乾燥させるよう記載されている。
【0019】
しかしながら、両方の方法とも塩素含有シリル化剤を用いないと、エアロゲルは酸素を介して結合した疎水性表面グループを有することになる。水分を含む大気中では、そのようなグループは非常に容易に分解される。その結果、そのようなエアロゲルは非常に短時間だけ疎水性である。
【0020】
前述の密度300kg/m以下のエアロゲル調製法すべてに共通する点として、乾燥前に、水は有機溶媒または二酸化炭素と交換されることが挙げられる。超臨界乾燥の際に、ヒドロゲルの細孔の水を有機溶媒で交換して、超臨界状態の水が網目を壊変しないようにする必要がある。臨界未満乾燥による製造の場合、必要な表面修飾の前に、同様にヒドロゲル中の水を有機溶媒で交換することが起る。それは、当業者からみて、例えば、シリル化剤が水に溶けないでゲル分子が通常存在している水相を通して水がゲル内に入ることができないか、または、シリル化剤が水の中で水と、または互いに反応してしまって、もはやシリル化に利用できないかまたは非常にその反応性が減少してしまったような場合などのいずれの場合においても、必要であったか必要である。
【0021】
さらに、例えばクロマトグラフィ、化粧品、医薬品のように幅広い可能性を考えた場合、最終乾燥することなしに、有機修飾したゲルを用いることも可能である。
【0022】
エアロゲルの調製にあたり、当業者からみて、有機修飾したゲルの場合、ゲルの孔中の水を様々な溶媒と交換することが必要であった。
【0023】
しかしながら、水と様々な溶媒との交換は、いずれの場合も時間とエネルギーを消費し、かつコストも高いものになる。さらに安全性の問題も伴ってくる。
【先行技術文献】
【特許文献】
【0024】
【特許文献1】EP−A−0 171 722
【特許文献2】US−A−2,093,454
【特許文献3】US−A−5,508,341
【特許文献4】RD388047
【特許文献5】WO94/22943
【特許文献6】US−A−5,556,892
【特許文献7】WO95/03358
【特許文献8】US−A−5,484,818
【特許文献9】EP−A−0 396 076
【特許文献10】WO92/03378
【特許文献11】WO95/06617
【特許文献12】WO94/25149
【特許文献13】WO92/20623
【特許文献14】EP−A−0 658 513
【特許文献15】US−A−3,015,645
【特許文献16】DE−C−195 02 453
【特許文献17】WO95/06617
【特許文献18】DE−A−195 41 279
【非特許文献】
【0025】
【非特許文献1】S. S. Kistler, Nature 1931, 127,741
【非特許文献2】H. D. Gesser, P. C. Goswami, Chem. Rev. 1989, 89, 765ff
【非特許文献3】R. W. Pekala, J. Mater, Sci. 1989, 24, 3221
【発明の開示】
【発明が解決しようとする課題】
【0026】
したがって、本発明の目的は、共通に使用できる表面修飾方法を用いて、水と有機溶媒を交換することなく有機修飾されたゲルを製造する方法を提供することにある。
【課題を解決するための手段】
【0027】
この目的は、驚くべきことに、
a)初期装入物としてヒドロゲルを導入するステップと、
b)ステップa)で得られるヒドロゲルの表面を修飾するステップと、
c)ステップb)で得られる表面修飾ゲルを臨界未満乾燥させるステップ
を含む有機修飾ゲルを製造する方法によって達成することができる。
【0028】
得られたヒドロゲルは、好ましくはステップb)で表面をシリル化される。
【発明の効果】
【0029】
本発明の方法により、水と有機溶媒を交換することなく有機修飾されたゲルが提供される。
【図面の簡単な説明】
【0030】
【図1】本発明の有機修飾エアロゲルの一例の図面代用光学顕微鏡写真である。明るい部分は球状エアロゲルモノリスを示し、塩化ナトリウムの結晶は暗く見えている。
【図2】図1のエアロゲルモノリス中の塩化ナトリウム結晶を見た、走査電子顕微鏡写真(図面代用)である。
【発明を実施するための形態】
【0031】
第1の好ましい実施例では、使用されるシリル化剤は、式Iで示されるジシロキサンおよび/または式IIのジシラザンである。
Si−O−SiR (I)
Si−N(H)−SiR (II)
ここでは、Rは互いに独立に同じかまたは異なり、それぞれ、水素原子、または直鎖、分岐或いは環式のC〜C18−アルキルまたはC〜C14−アリール基を示す。
【0032】
次に好ましい実施方法として、使用されるシリル化剤は、式R4−nSiClまたは式R4−nSi(OR(ここでn=1−4であり、それぞれRおよびRは互いに独立に同じかまたは異なり、それぞれ、水素原子または直鎖、分岐或いは環式のC〜C18−アルキルまたはC〜C14−アリール基を示す。)である。
【0033】
本発明に用いられるヒドロゲルは、少なくとも1種類の溶媒に分散していく、それにより水相は少なくとも50重量%、好ましくは80重量%、特に好ましくは90重量%であり、98重量%のこともある。ヒドロゲルはこのようにリオゲルの特殊なケースで、即ち液体を含有するゲルである。
【0034】
ステップb)では、シリル化剤は前もって細孔内の水を有機溶媒や二酸化炭素で交換することなく、直接反応物に加えられる。
【0035】
ヒドロゲルの網目(ネットワーク)は、有機/無機いずれの基本的組成においても存在する。従来の技術から当業者に公知の全ての系が有機基本的組成として適している。無機の基本的組成物は、好ましくは、酸化シリコン、スズ、アルミニウム、ガリウム、インジウム、チタン、および/またはジルコニウム化合物をベースとするもので、特に好ましいのは酸化シリコン、アルミニウム、チタン、および/またはジルコニウム化合物をベースとするものである。その中でも特に好ましいのは、ジルコニウム、アルミニウム、チタン、バナジウム、および/または鉄化合物を少量含むシリカ系ヒドロゲルであり、殊に純粋なシリカ系ヒドロゲルが好ましい。有機および/または無機の基本的組成物の場合、様々な成分が均一に分散している必要はなく、また切れ目のない網目を形成する必要もない。全てのまたは一部の成分が網目中で混在物、独立核、および/または蓄積物の形で存在することが可能である。
【0036】
以下に、ヒドロゲルの調製についての3つの好ましい実施形態について述べるが、それによってこの発明が限定されるものではない。
【0037】
第1の好ましい実施形態では、ステップa)において、初期装入物としてシリカ系ヒドロゲルを導入するが、これは水ガラス水溶液を酸性イオン交換樹脂、鉱酸または塩酸溶液を用いてpH3以下にし、得られたケイ酸に塩基を加えて縮重合させてシリカゲルを形成し、ゲルを水で洗って電解質を除去して調製する。シリカゲルへの縮重合は一段階または多段階で起こる。
【0038】
使用される水ガラスは、ナトリウムおよび/またはカリウム水ガラスが好ましい。イオン交換樹脂としては酸性樹脂を用いることが好ましく、スルホン酸類を含有するものが適している。鉱酸を用いる場合は、塩酸および硫酸が特に好ましい。塩酸を使用する場合は、適しているのはアルミニウム塩で、特に硫酸アルミニウムおよび/または塩化アルミニウムが好ましい。塩基は一般的に、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化アルミニウムおよび/またはコロイド状シリカが用いられる。
【0039】
好ましくは上記に記載したシリカ系出発化合物から調製されたヒドロゲルはさらに、重合可能なチタン、スズ、アルミニウム、および/またはジルコニウム化合物を含むことができる。
【0040】
さらに、ゲルの調製前および調製中に、不透明化剤、特にIR不透明化剤を添加して、放射熱伝導率を低下させることができる。その例としては、カーボン・ブラック、酸化チタン、酸化鉄、および/または酸化ジルコニウムなどが挙げられる。
【0041】
さらに、ゾルに繊維を添加することにより安定性を増すことができる。繊維材料には、ガラス繊維や鉱物繊維などの無機繊維、ポリエステル、アラミド、ナイロンや植物由来繊維などの有機繊維、それらの混合物などが含まれる。繊維はコートされた形のものでもよく、その例としては、アルミニウムのような金属で覆われたポリエステル繊維などが挙げられる。
【0042】
ヒドロゲルは一般的に溶液の凝固点と沸騰点の間の温度で調製する。調製は例えば、スプレー法、押出し、滴下などの同時成形ステップを含むことができる。
【0043】
さらに、得られたヒドロゲルはしばらく熟成しておく。この熟成は、ゲルを水で洗って電解質から遊離させるステップの前および/または後で行う。
【0044】
熟成は、一般的に20〜100℃で行われ、好ましくは40〜100℃で、特に好ましくは80〜100℃で、pHは4〜11、好ましくは5〜9、特に好ましくは5〜8で行われる。熟成の時間は一般的に48時間までで、好ましくは24時間、さらに好ましくは3時間までである。
【0045】
第2の実施態様において、ステップa)において、水ガラス水溶液から少なくとも1つの有機および/または無機酸を用いてシリカを得るか、またはシリカゾルの中間ステップよりシリカを得ることにより調製されたシリカヒドロゲルを用いている。
【0046】
水ガラス溶液としては、一般的に6〜25重量%(シリカ含有量による)のナトリウムおよび/またはカリウム水ガラス溶液が用いられる。10〜25重量%、特に10〜18重%量の水ガラス溶液が好ましい。
【0047】
さらに、水ガラス溶液はシリカに基づいて90重量%までの、縮合可能なチタン、スズ、アルミニウム、および/またはジルコニウム化合物を含有することができる。
【0048】
酸としては、一般的に1〜50重量%強度のもの、好ましくは1〜10重量%のものが用いられる。好ましい酸は、硫酸、リン酸、フッ化水素酸、シュウ酸、塩酸で、特に好ましくは塩酸である。これらの酸の混合物も用いることができる。
【0049】
水ガラス溶液と酸との本来の混合のほかに、まず酸の一部をpH8以上になるまで水ガラス溶液に加え、次に上記のpHのゾルを形成させる、および/または最初に酸に水ガラス溶液の一部を加えてpH4以下とし、さらに最終pHとする。このようにして、非常に広い範囲で、水ガラス溶液と酸の配合を替えることが可能である。
【0050】
2つの溶液の混合液は好ましくは5〜12重量%シリカゲルを含有する。特に好ましくは、6〜9重量%である。
【0051】
シリカゲルを展開する前に、水ガラス溶液と酸を確実に混合するために、2つの溶液は互いに独立に0〜30℃、好ましくは5〜25℃、特に好ましくは10〜20℃の温度であるのが適当である。
【0052】
攪拌容器、混合用ノズル、静置混合装置など当業者にはよく知られている装置を用いて2つの溶液を急激に混合する。例えば、混合用ノズルなどを用いて、連続的に行うことが好ましい。
【0053】
所望により、例えばスプレー法、押出し法、滴下法によって形成も同時に行ってもよい。
さらに、得られたヒドロゲルは熟成してもよい。熟成は、通常、20〜100℃、好ましくは40〜100℃、特に好ましくは80〜100℃の温度で、pH2.5〜11、好ましくはpH5〜8で行うのが好ましい。熟成時間は、通常は12時間以内、好ましくは2時間以内で、特に好ましくは30分以内である。
【0054】
ゲルは、好ましくは水で、使用した水が電解質を含まなくなるまで洗浄する。ゲルを熟成する場合には、洗浄を熟成の前、途中、および/または後に行うことができるが、熟成の途中および熟成後が好ましい。洗うのに用いられる水の一部の代わりに、有機溶媒を使用することができる。水含量は、ヒドロゲルの細孔中で塩が結晶しないように充分に高くするのが適当である。
【0055】
ナトリウムおよび/またはカリウムイオンを充分に除去するために、ヒドロゲルを水で洗浄前、洗浄中、および/または洗浄後に、水だけでなく鉱酸でも洗う。ここで用いられるのに適した鉱酸は、ヒドロゲルの調製に用いられたのと同じものである。
【0056】
さらに、水ガラス、酸および/またはゾルに不透明化剤を添加してもよく、特にIR不透明化剤は、放射熱伝導率を低下させる。例えばカーボン・ブラック、酸化チタン、酸化鉄、および/または酸化ジルコニウムなどが挙げられる。
【0057】
さらに、水ガラス、酸および/またはゾルに繊維を添加することにより機械的安定性を増すことができる。繊維材料には、ガラス繊維や鉱物繊維などの無機繊維、ポリエステル、アラミド、ナイロンや植物由来繊維などの有機繊維、それらの混合物などが含まれる。繊維はコートされた形のものでもよく、例えば、アルミニウムなどの金属で覆われたポリエステル繊維などが挙げられる。
【0058】
第3の好ましい実施態様では、ステップa)で、四塩化ケイ素(SiCl)と水の加水分解および縮重合によって得られたシリカ系ヒドロゲルを用いる。この場合、加水分解および縮重合は1段階で行われるかまたは多段階で行われるが、1段階で行われるのが好ましい。
【0059】
ここでは、四塩化ケイ素は濃縮したもの、稀釈したもののいずれをも用いることができる。稀釈用の液体または溶媒としては、原則として、四塩化ケイ素と混和できるものであれば全て適している。好ましいのは、脂肪族および芳香族炭水化物、脂肪族アルコール、エーテル、エステルまたはケトン、および水である。特に好ましい溶媒は、メタノール、エタノール、イソプロパノール、アセトン、テトラヒドロフラン、ペンタン、n−ヘキサン、n−ヘプタン、トルエンおよび水であり、中でも特に好ましいのは、アセトン、ペンタン、n−ヘキサン、n−ヘプタンおよび水である。またこれらの混合物も使用できる。
【0060】
さらに、混合しうる溶媒を加水分解/縮重合のために必要な水に加える。溶媒は上記と同様のものを用いる。
【0061】
四塩化ケイ素の稀釈、および/または加水分解/縮重合のために必要な水への溶媒の添加は、一般的に生成したヒドロゲルのシリカ濃度が、4〜12重量%、好ましくは4〜10重量%、より好ましくは4〜9重量%となるようにする。
【0062】
酸または塩基も水に加えることができる。この場合好ましいのは、硫酸、リン酸、フッ化水素酸、シュウ酸、酢酸、ギ酸および/または塩酸で、塩酸および酢酸がこの場合好ましく、塩酸が特に好ましい。しかし、上記の酸の混合物も使用できる。塩基としては、一般的に、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウムおよび/または水酸化アルミニウムなどが用いられる。好ましくは水酸化ナトリウムが用いられる。
【0063】
またさらに、上記の酸または塩基の一部は、加水分解/縮重合反応中の反応液にも添加することが可能である。
【0064】
好ましくは上記の四塩化ケイ素から生成されたヒドロゲルはさらに、縮合しうるチタン、スズ、アルミニウムおよび/またはジルコニウム化合物を含んでもよい。この化合物は上記出発物質に、加水分解/縮重合反応の前または反応中、および/またはゲル生成後に加えることができる。
【0065】
さらに、ゲルの調製前および調製中に、不透明化剤、特にIR不透明化剤を添加して放射熱伝導率を低下させることができる。このような例としてカーボン・ブラック、酸化チタン、酸化鉄、および/または酸化ジルコニウムなどが挙げられる。
【0066】
ゲルの機械的安定性を増加させるために、出発物質に繊維を添加することもできる。繊維材料には、ガラス繊維や鉱物繊維などの無機繊維、ポリエステル、アラミド、ナイロンや植物由来繊維などの有機繊維、それらの混合物などが含まれる。繊維はコートされた形のものでもよく、例えば、アルミニウムなどの金属で覆われたポリエステル繊維などが挙げられる。
【0067】
ヒドロゲルは一般的に反応物の凝固点と沸騰点の間の温度で調製される。好ましくは、0〜50℃、さらに好ましくは0〜30℃である。この場合、調製のために望ましければ、スプレー、押出し、滴下などの同時成形ステップを伴うことも可能である。
【0068】
さらに、得られたヒドロゲルはまた熟成しておくことができる。熟成は、一般的に20〜100℃、好ましくは40〜100℃で行われる。熟成時間は一般的に48時間までで、好ましくは24時間、さらに好ましくは3時間までである。この熟成は、ヒドロゲルを水で洗うステップの前、および/または後で行うことができる。このとき、前に述べたような溶媒で洗うことにより、ヒドロゲルの細孔のpHを変えることができる。水で洗うことが好ましい。
【0069】
ステップb)の前に、ヒドロゲルの細孔内の水が50重量%より少なければ、水で洗うことによって、少なくとも50重量%になるようにする。
【0070】
ステップb)では、ステップa)からのヒドロゲルを表面修飾、好ましくは表面をシリル化する。本発明では、このシリル化について以下に詳細に述べるが、これによって限定されるものではない。
【0071】
シリル化剤は、原則として、凝集体の状態であればどんなものでもよいが、液体および/またはガスまたは蒸気状態のものが好ましい。
【0072】
ガスおよび/または蒸気状態のシリル化剤を用いるときには、水性ヒドロゲルの温度は20〜100℃、好ましくは40〜100℃で、特に60〜100℃であることが好ましい。ゲル毛細管内の水の沸騰を防止するために、加圧下で高温にすることも可能である。
液状のシリル化剤を使用する場合は、水性ヒドロゲルの温度は、好ましくは20から100℃である。ゲル毛細管内の水の沸騰を防止するために、加圧下に高温にすることも可能である。
【0073】
ガスおよび/または蒸気のシリル化剤を用いるときには、シリル化剤は反応中にガスの流れ、または静置ガス雰囲気の状態で存在することができる。
【0074】
気相のシリル化剤の温度は加圧またはガス流の追加により上げることができる。
【0075】
好ましい実施態様では、シリル化剤は液相で導入することもできる。この場合、シリル化剤は、液相として直接用いても、および/またはヒドロゲルの表面に、用いたガスの凝縮の結果として生成させることもできる。液相の温度は0℃からシリル化剤の沸騰点までの間であってもよい。20〜100℃であることが好ましい。加圧下高温で行うことも、場合によっては可能である。一般的には、表面のシリル化は高温下で、より速やかに起こる。
【0076】
好ましい実施態様によれば、式Iのジシロキサンおよび/または式IIのジシラザンがシリル化剤として用いられる。
Si―O―SiR (I)
Si―N(H)―SiR (II)
式中、Rは互いに独立して同じかまたは異なって、水素原子、または直鎖、分岐或いは環式のC−C18−アルキルまたはC−C14−アリール基、好ましくはC−C−アルキル基、シクロヘキシル基、フェニル基、特にメチルまたはエチル基を示す。
【0077】
ステップb)のヒドロゲルは対称ジシロキサン、即ち両方のSi原子が同じRを有するものと反応せしめられる。
【0078】
全てのRが等しいジシロキサンを用いるのが好ましく、特に、ヘキサメチルジシロキサンが好ましい。
【0079】
さらには、当業者に公知の、水と混和しない全てのシリル化剤が使用できる。
【0080】
例えばヘキサメチルジシロキサン(HMDSO)の場合のように、シリル化剤が水に殆どまたは全く溶けない場合にはゲル内またはゲルからの水で形成する水相と容易に分離でき、過剰の試薬のリサイクルに役立つ。この方法により、例えば過剰な濃度のシリル化剤を用いることにより、シリル化の時間を最小にすることができる。
【0081】
本来のシリル化反応に必要なシリル化剤は他の物質、とりわけ、他のシリル化剤から生成される。これはシリル化の直前および/またはシリル化中に行われる。さらに、これは反応の直前および/または反応途中においてはじめてヒドロゲル内表面で行われうる。このような状況においては、シリル化剤という言葉は本来のシリル化に必要か、または原理的に互いに化学平衡にある物質の混合物をも包含することになる。例えば、混合物は、触媒として作用する酸または塩基を含有することができる。
【0082】
そのために用いられる酸は硫酸、リン酸、フッ化水素酸、シュウ酸、酢酸、ギ酸および/または塩酸である。塩酸および酢酸が好ましく。特に塩酸が好ましい。また、上記酸の混合物も使用できる。塩基としては、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、および/または水酸化アルミニウムなどが好ましく、特に好ましいのは水酸化ナトリウム溶液である。酸または塩基はシリル化剤を加える前、途中および/または後で添加することができる。
【0083】
ステップb)で、表面シリル化は少なくとも1種のシリル化剤および所望により、既にヒドロゲル中に存在する少なくとも1種の酸または塩基、好ましくは、上記の酸および塩基の存在下に起こる。
【0084】
酸または塩基は当業者に公知の方法によって水性ゲルに導入される。酸または塩基の水溶液で洗うか、またはガス状の酸または塩基で処理することが好ましい。特に、酸または塩基は高濃度の酸または塩基水溶液、またはガス状、中でもガス状であるのが好ましい。
【0085】
湿潤ゲルの水中の濃度は一般に、5重量%から最大可能濃度の間で、特に10重量%から最大濃度までの間が好ましい。塩酸の場合、5重量%以上、好ましくは10重量%以上、特に15重量%である。
【0086】
さらに、酸または塩基と共に、シリル化剤も蒸発させ、および/またはガス相と一緒にする、および/または液相に混合することができる。蒸発前および/または蒸発中に、および/またはガス相および/または液相でシリル化剤と酸または塩基の反応を起こすことも可能である。
【0087】
一般に、表面修飾は相対的に高濃度の酸または塩基のもとで加速的に起こりうる。
【0088】
もう1つの特に好ましい実施態様では、ヒドロゲルにシリル化剤を加え、次いで少なくとも1つの酸および/または塩基を加える。これは当業者に公知の技術を用いて行いうる。ガス状の酸または塩基を用いるのが好ましい。
【0089】
そのための好ましい酸は硫酸、リン酸、フッ化水素酸、シュウ酸、酢酸、ギ酸および/または塩酸である。特に塩酸が好ましい。また、上記酸の混合物も使用できる。用いられる塩基は、好ましくはアンモニア、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、および/または水酸化アルミニウムであり、特に好ましいのはアンモニアである。
【0090】
使用しうるシリル化剤は、原則として上記のシリル化剤の全てである。全てのRが等しいジシロキサンを用いるのが好ましく、特に、ヘキサメチルジシロキサンが好ましい。
【0091】
さらには、当業者に公知の全てのシリル化剤が使用できる。
【0092】
酸および/または塩基をヒドロゲルに加えると実際の表面修飾またはシリル化反応が起こる。この場合、湿潤ゲルの水分中の酸または塩基の濃度は、一般に5重量%から最大可能濃度の間で、特に10重量%から最大可能濃度までの間が好ましい。塩酸の場合、5重量%以上、好ましくは10重量%以上、特に好ましくは15重量%である。
【0093】
ガス状の酸または塩基の場合、溶解工程はヒドロゲルの水への溶解熱の発生を伴う。好ましくは、このことにより、多かれ少なかれ、系を強く加熱することになる。これにより、表面修飾またはシリル化反応が好ましく加速される。
【0094】
一般的に、また特に記載された実施態様においては、表面修飾は酸または塩基が高濃度の方が、より速い速度で起こる。
【0095】
ヒドロゲル内および/または外でのシリル化剤と酸または塩基の反応により、場合によっては加速的または自触媒的にさえ、ゲルの内表面と反応しうる化合物が生成されうる。
【0096】
この点については、ヘキサメチルジシロキサンを例にとって、簡単に説明されるが、本発明を限定するものではない。
【0097】
ヘキサメチルジシロキサンは水に不溶で、湿潤ゲルの内部表面およびヒドロゲル細孔内の水に含まれる、例えば塩酸の両方と反応する。塩酸との反応により、トリメチルクロロシランおよび水が生成する。生成したトリメチルクロロシランは、細孔中の水およびヘキサメチルジシロキサンの両方に溶解する。一方では、水相に拡散してヒドロゲルの内部表面および/または細孔内の水と反応することができ、また他方ではヘキサメチルジシロキサン内に拡散して、同様にヒドロゲルの内部表面と反応することができる。これによって水相およびヘキサメチルジシロキサン内の反応性分子の濃度が高まり、シリル化剤により、細孔内に位置しているつくられた内部表面により速く到達できる。
【0098】
さらに、より好ましい実施態様によれば、用いられるシリル化剤は、式R4−nSiClまたはR4−nSi(ORで表されるシランであり、ここでnは1−4、好ましくは1−3であり、RおよびRはそれぞれ同一または異なってもよく、それぞれ水素原子または直鎖、分岐或いは環式のC−C18−アルキルまたはC−C14−アリール基、特に好ましくはC−C−アルキル基、シクロヘキシル基、フェニル基、特にメチルまたはエチル基である。トリメチルクロロシランが好ましく用いられる。イソプロペンオキシシランおよびシラザンも適当である。
【0099】
本来のシリル化反応に必要なシリル化剤は、他の物質、例えば他のシリル化剤から生成させることも可能である。これはシリル化の直前および/またはシリル化中に起こる。また、反応の直前および/または反応中にヒドロゲルの内部表面に直接反応する。シリル化剤という用語は本来のシリル化に必要な物質や化学平衡にある物質の混合物をも包含する。混合物は、例えば触媒として作用する酸または塩基などを含むことができる。
【0100】
好ましい酸としては、硫酸、リン酸、フッ化水素酸またはシュウ酸、酢酸、ギ酸および/または塩酸である。中でも塩酸および酢酸が好ましく、特に塩酸が好ましい。また、上記の酸の混合物も使用できる。塩基としては、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、および/または水酸化アルミニウムなどが好ましく、特に好ましいのは水酸化ナトリウム溶液である。酸または塩基はシリル化剤を加える前、途中および/または後で添加することができる。さらに、酸または塩基と共に、シリル化剤を蒸発させ、および/または気相に混合させ、かつ/または液相に混合させることができる。蒸発前または蒸発途中に、ガス相または液相でシリル化剤と酸または塩基の反応を起こすことも可能である。また、酸または塩基をヒドロゲル中の水に溶解させることも可能である。
【0101】
さらに、シリル化は、所望により特定の物質や触媒、例えばゲル水相中に存在する酸または塩基によって加速されうる。酸や塩基は上記のものが好ましく、そのような酸や塩基は、当業者にとってよく知られた方法によりゲル水相中に導入される。酸または塩基の水溶液で洗うかまたはガス状の酸または液で処理することが好ましい。特に好ましくは、酸や塩基は高濃度水溶液またはガス状、特にガス状である。
【0102】
湿潤ゲルの水分中の酸または塩基の濃度は一般に、0重量%から最大可能濃度の間である。塩酸の場合、5重量%以上、好ましくは10重量%以上、特に好ましくは15重量%以上である。
【0103】
さらに、シリル化剤とゲルの内部表面および/またはゲル中の水との反応により、例えば酸または塩基のように、シリル化剤の反応を加速させ、または自触媒作用を及ぼす化合物が生成されることが可能である。
【0104】
この点については、ヘキサメチルジシロキサンを例にとって、簡単に説明されるが、本発明を限定するものではない。
【0105】
トリメチルクロロシランは湿潤ゲルの内部表面および湿潤ゲルの細孔内の水の両方と反応しうる。内部表面との反応の場合、塩酸が副生成物として生成する。水との反応の場合、ヘキサメチルジシロキサンおよび塩酸が生成される。生成した塩酸は、残りの水の中で解離されて存在し、その後の内部表面との反応を加速させ、さらに生成したヘキサメチルジシロキサンをトリメチルクロロシランに分裂させることができる。その結果反応性分子の濃度を増加させる。
【0106】
用いられた、シリル化剤とゲルの内部表面との反応が酸および塩基を生成させるアニオンの除去を含むならば、その結果酸および塩基の濃度は増加する。
【0107】
さらには、湿潤ゲルの外部表面をシリル化が起こる前に乾燥させることが可能である。乾燥方法は当業者に公知のあらゆる方法、例えば、−30℃〜200℃、好ましくは0〜200℃の温度で、また0.001〜20バール、好ましくは0.01〜5バール、さらに好ましくは0.1〜2バールの圧力において、例えば、放射、対流、接触乾燥方法によって行われる。好ましいのは、少なくとも1種のガスを用いることによって外部表面を乾燥させることであり、この場合、化学的に不活性な全てのガスが好ましい。窒素およびアルゴン、特にアルゴンが好ましい。
【0108】
上記の乾燥は、少なくとも1種のガス、例えば塩酸やアンモニアが、吸着や細孔内の水との反応によってpHを変化させることによって起こりうる。そのようなガスとしては、pH値を7以下に下げるようなものが好ましい。塩酸は特に適しているが、化学的に不活性なガスの混合物を使用することも可能である。この過程で湿潤ゲルが熱くなると、細孔内で沸騰が起こりうる。このことは、例えば冷却、加圧などの適当な方法をとることによって、防ぐことが可能である。
【0109】
例えば塩酸ガスを使用すると、湿潤ゲルはその体積が0〜40体積%の範囲で、好ましくは0〜30体積%、より好ましくは5〜20体積%の範囲で縮小する。このことは、最初の体積に比べ、シリル化の前、および/または途中、および/または後の、および/またはその後の乾燥の前に細孔内に存在する水および/または有機物質の量を減少させ、シリル化の前、および/または途中、および/または後に用いられるべき物質の量の減少を意味していて、その後の乾燥において細孔から蒸発すべき溶媒の量の減少を意味していて、その結果、例えば装置のサイズやエネルギー量を著しく減少させることになる。
【0110】
さらに、湿潤ゲルの外部表面の乾燥は、例えばヘキサメチルジシロキサン(HMDSO)のような水不溶性のシリル化剤によって、水を置換することにより実施されうる。
【0111】
シリル化剤に加えて、少なくとも1種のキャリアーガスまたはキャリアーガス流を用いることも可能である。この場合、化学的不活性ガスが好ましく、窒素またはアルゴン、特に窒素が適している。キャリアーガスの温度は20〜400℃である。
【0112】
シリル化は、ヒドロゲルの内部表面が希望する程度に覆われるまで続けられるが、最大限、化学的に修飾可能な表面が全て修飾されるまでである。
【0113】
さらに、ゲル内部および周囲の温度、シリル化剤の温度、濃度およびタイプおよび流速およびもし用いるならばキャリーガスの温度および流速のパラメータを選択することにより、細孔内の水とシリル化剤の入れ替わりの度合いおよびシリル化の過程での乾燥の度合いを調整することが可能である。
【0114】
より長時間のシリル化によって、ゲルの細孔内の水とシリル化剤を完全にまたは部分的に入れ替えることが可能になった。
【0115】
例えば、ヒドロゲル内の水の一部がシリル化剤(例えばトリメチルクロロシラン(TMCS))と反応して水不溶性化合物(例えばヘキサメチルジシロキサン(HMDSO))が生成されるようにシリル化が行われると、生成された化合物の容積により自動的に細孔から少なくとも一部の水を駆逐する。
【0116】
網目の内部表面がシリル化されている間に、ヒドロゲル細孔内の液体が、水不溶性溶媒によって、部分的にまたは全部を交換される。この水不溶性溶媒はゲル内およびゲルからの水により生成される水相から容易に分離される。このことは過剰な試薬のリサイクルを容易にする。この手段により、過剰な濃度を用いても、シリル化に要する時間を最小にすることが可能である。
【0117】
シリル化剤とヒドロゲル内の水との反応により生成した物質は、所望により、1以上のシリル化剤に容易にリサイクルされる。これは例として、シリル化剤にTMCSを用いて簡単に説明することができる。
【0118】
TMCSはヒドロゲル内の水と反応してHMDSOおよび塩酸となる。HMDSOおよび塩酸は分離後、適当な条件下で再び反応しTMCSおよび水となる。
【0119】
このプロセスにおける残渣の量を減らすことが利点である。
【0120】
ステップc)の前に、必要があれば、シリル化ゲルをプロトン性または非プロトン性溶媒で洗い、未反応のシリル化剤を除去し(含有量は0.1重量%以下)、ゲルの水分含有量は5重量%以下、好ましくは3重量%未満、特に1重量%未満とすることができる。使用される溶媒は、一般的には脂肪族アルコール類、エーテル類、エステル類、ケトン類、脂肪族炭化水素または芳香族炭化水素である。
【0121】
好ましい溶媒は、メタノール、エタノール、アセトン、テトラヒドロフラン、酢酸エチル、ぺンタン、n−へキサン、n−ヘプタンおよびトルエンである。しかし、これらの混合物も使用できる。
【0122】
さらに、ゲルを用いられたシリル化剤で洗うことができる。トリメチルクロロシラン、トリメチルシロキサン、ヘキサメチルジシラザンおよびヘキサメチルジシロキサンが適している。ヘキサメチルジシロキサンが特に適している。しかし、これらのシリル化剤の混合物も用いることが可能である。
【0123】
さらに、一部または全てのゲル細孔に低表面張力の溶媒または溶媒混合物が含まれている場合、原則として臨界未満乾燥が好ましい。ヘキサメチルジシロキサンが適している。
【0124】
ステップc)では、シリル化され洗われたゲルが好ましくは−30℃〜200℃、好ましくは0〜150℃の温度で、また0.001〜20バール、好ましくは0.01〜5バール、さらに好ましくは0.1〜2バールの圧力において、例えば、放射、対流および/または接触乾燥により、好ましくは臨界未満乾燥に付される。ゲル内の溶媒残量0.1重量%以下になるまで、好ましくは乾燥が続けられる。乾燥して得られたエアロゲルは修飾の程度によって一部または全部が疎水性を有する。疎水性は永続する。
【0125】
また、ステップb)で得られたゲルを、超臨界乾燥させることもできる。溶媒によっては温度を200℃以上に、および/または圧力を20バール以上に高める必要がある。そのような条件は容易ではあるが、コストもかかることになる。
【0126】
別の実施態様では、用途に応じて、ステップb)におけるシリル化に先立って、ゲルの網目の捕強を施すこともできる。この補強は、例えば、得られたゲルを式R4−nSi(OR(式中、nは2〜4で、RおよびRは互いに独立に水素原子、直鎖または分岐のC−Cアルキル、シクロヘキシルまたはフェニル基である。)の縮合しうるオルトシリケート、好ましくはオルトケイ酸アルキルおよび/またはアリール、またはケイ酸水溶液と反応させることにより行いうる。
【0127】
またさらに、形状付与縮重合の後、および/またはその後の工程段階を経た後、ゲルは、例えば粉砕のような当業者に公知の方法によって、サイズを縮小させることも可能である。
【0128】
またさらに、表面修飾またはシリル化を少なくとも1つのイオン性および/または非イオン性化合物の存在下で行うことも可能である。溶解されたイオン性化合物としては、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸ナトリウム、硝酸アルミニウムなどが好ましい例として挙げられる。中でも、水ガラスと少なくとも1つの鉱酸との反応によって生成される塩、例えば塩化ナトリウムなどが好ましい。濃度は一般的には、0重量%から飽和溶液までの間で、好ましくは0重量%から半飽和溶液の間、さらに好ましくは0〜10重量%の間である。
【0129】
非イオン性化合物の例としては、酸化チタン、酸化鉄、および/または酸化ジルコニウムが挙げられる。
【0130】
この方法の変法には、下にヒドロゲルの細孔中の溶解された塩化ナトリウムを例にして記載するが、これに限定されるものではない。ゲル細孔内の水に溶解して塩化ナトリウムの濃度は一般的には0重量%から飽和溶液までの間で、好ましくは0〜20重量%、さらに好ましくは0〜10重量%、さらには0〜8重量%の間が好ましい。
【0131】
ステップb)では、前に述べたように、表面シリル化が起こる。正確な実験の管理によれば、ゲルの中および/または外で、塩化ナトリウムの部分的晶出がありうる。
【0132】
湿潤ゲルの外で結晶した塩は、濾過などの公知の方法でゲルから分離することができる。この場合、所望により、シリル化ゲルをプロトン性、または非プロトン性溶媒で湿潤ゲルの外で結晶した塩化ナトリウムが実質的に取り除かれるまで洗浄することができる。このとき使用される溶媒は、一般的には脂肪族アルコール類、エーテル類、エステル類、ケトン類、脂肪族炭化水素、芳香族炭化水素および水である。好ましくは、メタノール、エタノール、アセトン、テトラヒドロフラン、酢酸エチルおよび水で、水が特に好ましい。水には塩、好ましくは洗浄によってエアロゲルから除去される塩が含まれることもある。またこれらの混合物も使用できる。
【0133】
さらに、ゲルは用いられたシリル化剤で洗うことができる。トリメチルクロロシラン、トリメチルシロキサン、ヘキサメチルジシラザン、ヘキサメチルジシロキサン、などが適している。ヘキサメチルジシロキサンが特に適している。これらのシリル化剤の混合物を用いることも可能である。
【0134】
他にシリル化中および/またはシリル化後に、結晶化した塩化ナトリウムをゲル粒子の外表面から除去するのに適した方法として、超音波が挙げられる。
【0135】
ゲル中で塩化ナトリウムの部分的結晶かが起こると、驚くべきことに乾燥中および/または乾燥後に巨視的レベルで粒子が破壊されずに済む。
【0136】
さらに、存在する塩化ナトリウムの結晶は、エアロゲル粒子の中の内側シェルおよび/または核部分に好ましくは集中する。エアロゲル粒子の外側領域に塩化ナトリウムの結晶は存在しないのは注目に値する(図1)。
【0137】
図1で、明るい部分は球状エアロゲルモノリスを示し、塩化ナトリウムの結晶は暗く見えている(光学顕微鏡写真で、スケール1cmは200μmに相当)。
【0138】
エアロゲルモノリス中の塩化ナトリウム結晶を走査電子顕微鏡(SEM)を用いて見ると、その形状および構造(図2)は、約20〜200μmの大きさではっきりと見ることができる(スケール:1cmは50μmに相当)。走査透過電子顕微鏡(STEM)による解析とエネルギー分散X線解析(EDX)の結果、結晶内にはシリカ粒子は取り込まれていないことが示された。樹木状の結品形状は、一般的に、結晶成長の空間的拡がりに阻害がない場合にのみ生長するから、結晶化の間中存在する適度な大きさの細孔が存在すると仮定する必要がある。しかし、乾燥された表面がシリル化されたエアロゲルでは、これらの細孔は、このような結晶の存在によって間接的にのみ示されうる。もし、湿潤ゲル中に溶解した塩化ナトリウムなしにシリル化が行われるならば、そのような細孔は見つけられ得ない。さらに、そのような細孔は湿潤ゲル内でも見られ得ない。それ故に、このような大きさの細孔は、塩が晶出し得ない場合には、シリカ中に可逆的に現れる。塩が晶出するのであれば細孔の形成は非可逆的である。
【0139】
そのような大きい細孔(数百μmまで)ができると、普通は数nmの大きさしかない細孔内で非常にゆっくり起こる物質の入れ替わりを大きく加速させることができる。このことは、従来技術から知られているよりも非常に急速なシリル化を起こさせ、溶媒の入れ替わりを早めることになる。
【0140】
さらに、湿潤ゲルの塩化ナトリウム濃度により、内部表面積を減少させることが可能である。このことは、全体的には、被覆度を減少させることなしに、エアロゲルの単位質量または体積当たりの有機表面基を減少させることになる(表1、実施例7d、実施例1から8)。
【0141】
ステップc)に記載されている乾燥によって、塩化ナトリウム含有量が0〜50重量%、好ましくは0〜20重量%、特に好ましくは0〜10重量%のゲルを生成される。
【0142】
さらに、エアロゲル分子は、そのシリル化の程度によって、全体または一部が疎水性である。疎水性は持続する。
【0143】
修飾の程度により、上記の新規の方法でつくられたエアロゲルは全体または一部が疎水性である。疎水性は永続的である。その結果、ゲルの内部表面はSi−Rおよび/またはSi−OH基のみが作用し、Si−OR基は作用しない。
【0144】
上記のヒドロゲルは、内部表面にSi−OH基を有する。特に好ましいトリアルキルクロロシラン類および/またはヘキサアルキルジシロキサン類による新規な有機修飾の結果として内部表面上のSi−OH基を全部または部分的な反応によってSi−O−SiR基が生じる。湿潤ゲルは全工程を通じて、アルコール(メタノール、エタノール、イソプロパノールなど)やケトン(アセトンなど)、エーテル(ジメトキシエタンなど)やテトラヒドロフランのような反応性溶媒と接触しないので、従来の技術に反して、ゲルの内部表面上にSi−OR基の形成は不可能である。
【0145】
実際のシリル化中に有機溶媒が存在すると、ゲルの反応性OH基への有機溶媒の付加反応が起こる。これは、OH基とシリル化剤との完全な反応の可能性を阻害する。
【0146】
本発明におけるように、有機溶媒を全く使用しない場合、使用されるシリル化剤が空間的に到達できる全てのSi―OH基はシリル化剤と反応することができる。
【0147】
この方法により、内部表面を理論的に可能な被覆度に近い極めて高い被覆度で覆うことが可能である。このことは、同時に、ここで述べられたシリル化法が従来の方法に比べて非常に大量のシリル化剤がヒドロゲルの細孔内に入ることを可能としているという事実により支持されている。この方法によって、シリル化反応の平衡が完全に修飾表面の側に移行され得る。
【0148】
被覆度はエアロゲルの内部表面のnm当たりの有機表面基の数を意味している。
【0149】
以下に、例としてトリメチルシリル修飾エアロゲルを用いた被覆度についての例を挙げるが、これに限定されるものではない。
【0150】
平らな平面とするとトリメチルクロロシランを用いた多細孔性シリカの表面修飾では理論的にはトリメチルシリル基(TMS)が2.8nm−2となりうる。この値はTMS単位の立体的な大きさから計算でき、アンブレラ効果として、文献に記載されている。Si−C(0.189nm)およびC−H(0.108nm)結合距離およびTMS分子のファン デル ワールス半径より、必要な空間は約0.36nm/TMS分子と算定される。これを換算すると、被覆度は2.8TMS分子/nmに相当する(W. Urbaniak, F. Janowski, B. Marciniec, F. Wolf, React. Kinet. Catal. Lett. 1987, 34, 129; K. K. Unger, Journal of Chromatography Library 1979, 16, 64; E. V. Broun, A. Ya. Korolev, L. M. Vinogradov, R, V. Artamonova, T. V. Men'kova, Russ. J. Phys. Chem.1970, 44, 442)。
【0151】
表1は、本発明の方法により得られたエアロゲルの被覆度を示す。
表2は、公知の方法により得られたエアロゲルの被覆度を示す。
【0152】
この被覆度は下記の式により計算された。
被覆度=([C]/[BET])*K;単位[nm−2]、
K=6.022*1023/100*12*3*1018=167.28;単位:[g−1
[C]:重量%によるC含量
[BET]:BET比表面積;単位;[m/g]
ここで、用いられた測定方法によると、被覆度の値は10%以下の誤差を条件としている。
【0153】
【表1】

【0154】
【表2】

【0155】
ここで、内部表面積は、Brunauer、EmmettおよびTeller(BET)の方法に従って窒素吸収法によって決定する。BET法は測定パラメータによって異なる結果をもたらすので、比表面積は一定の方法で求めなければならない。本明細書における全てのBET比表面積は以下により決定したものである。
【0156】
BET測定はDIN66131の多点BET測定技術によるMicromeritics社のASAP2010BET測定装置により測定した。使用された試料量はエアロゲル約0.2gである。試料調製のため、エアロゲルは110℃で、少なくとも17時間真空中(10−2〜10−3mbar)揮発分を除去した。測定は、液体窒素の温度、77ケルビンで行った。比表面積は吸着等温式の0.05〜0.25の相対圧範囲(P/Po)内の5測定点から決定した。N分子の必要面積は0.162nmと仮定した。測定点は平衡圧の圧変動が±2%未満のとき、相対圧0.05;0.1;0.15;0.2および0.25で記録した。BETによる内部表面積の決定に使用した測定方法は、標準試料(認証済標準物質、アルミニウムオキサイドタイプ150、CRM、BAM−PM−104、連邦材料測定研究所、ベルリン(Federal Institute of Materials Research and Testing, Berlin))に対して最大誤差5%であった。
【0157】
得られた結果は本発明に従って製造したエアロゲル(表1参照)について、2.6〜3.3TMS単位/nmの範囲で、かなり高い被覆度である。公知技術により達成される被覆度は0.6〜2.4の範囲内である。
【0158】
本発明のエアロゲルは特に断熱材料として使用される。
【0159】
本発明の更なる目的は、通常の手段を表面修飾に使用し、別の溶媒による水の交換が不要である、有機修飾リオゲルの製造方法を提供することにある。
【0160】
この目的は驚くべきことに、
a)ヒドロゲルを初期装入物として導入するステップと、
b)ステップa)で得られたヒドロゲルに表面修飾を施すステップと、
を含む有機修飾リオゲルの製造方法によって達成される。
【0161】
ステップa)で得られるヒドロゲルは好ましくは表面シリル化を施される。
【0162】
エアロゲルの製造について上記したゲルの乾燥は、相当するリオゲルの調製では省略される。
【0163】
調製されたリオゲルは、その初期表面、疎水性および被覆度について乾燥エアロゲルと同じ性質を有している。
【0164】
差異は細孔に存在する媒体に関してのみ存在する。
【0165】
表面修飾またはシリル化の後に細孔に存在する媒体は、他のどの媒体とも交換することができる。例えばエタノールや水などの親水性媒体が優先される。水が特に好ましい。水の場合、例えば、以下のようにしてそれを行うことができる。
【0166】
細孔中の元の媒体の一部または全部を、前記媒体が水と混ざり得る場合は直接水と、またそれが水と不混和性または低混和性の場合は、アルコールなどの溶媒を用いて交換する。これは勿論、その表面が別の方法で修飾されたリオゲルでも可能である。
【0167】
リオゲルの細孔中の水の濃度は、好ましくは50〜100重量%の間であり、好ましくは50〜80重量%である。
【0168】
得られたゲルは、例えば、疎水性で、含水湿潤ゲルであり、種々の範囲に利用される。
【実施例】
【0169】
本発明のエアロゲル製造の方法を、それによって限定されない実施例を参照して以下により詳細に説明する。
【0170】
実施例1
10℃に冷却した7.5%濃度のHCl溶液425gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。1、2秒後に生じたヒドロゲルを85℃、30分間熟成させた。それを熱水3lで洗浄した。
【0171】
a)ヒドロゲル100gを少量のHCl溶液(ヒドロゲル中の水に約5重量%濃度のHCl)で僅かに酸性化し、ヘキサメチルジシロキサン200gおよび可溶化剤としてエタノール50gを加えた。混合物を室温で5時間攪拌した後、水相30mlを分離した。室温で更に24時間攪拌した後、更に水相10mlを分離した。可溶化剤としてエタノール20mlをさらに加え、室温で3日間攪拌した後、さらに水相45mlを分離した。ゲルを熱窒素気流下(1500l/時間、200℃)で1時間乾燥させた。得られたエアロゲルは密度0.14g/cmである。BET比表面積は665m/gである。λ値は0.016W/mKである。
【0172】
b)ヒドロゲル100gを少量のHCl水溶液(ヒドロゲル中の水に約2重量%濃度のHCl)で僅かに酸性にし、ヘキサメチルジシロキサン(HMDSO)200gを加えた。室温で10日間後、水相がHMDSO相の下に生じた。ゲルを熱窒素気流下(1500l/時間、200℃)で1時間乾燥させた。得られたエアロゲルは密度0.13g/cmである。BET比表面積は680m/gである。λ値は0.015W/mKである。
【0173】
実施例2
ナトリウム水ガラス溶液2l(SiO含量6重量%、NaO:SiOの比1:3.3)を、酸性イオン交換樹脂(スルホン酸基を有するスチレンジビニルベンゼンコポリマー、市販品名(R)Duolite C20)4lを詰めたジャケット付きガラスカラム(長さ=100cm、直径=8cm)に通した(約70ml/分)。カラムは約7℃で処理した。カラムの底端から流出するシリカ溶液はpH2.3であった。この溶液を1.0モルNaOH溶液でpH4.7にして重縮合させ、85℃で3時間熟成させた。
【0174】
a)ヒドロゲル150gを濃塩酸でゲルの細孔中の水がHCl濃度10重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lをフラスコ中で沸騰するまで加熱し、熱窒素気流下(50l/時間、100℃)で約30分間以上、80℃に加熱した湿潤ゲル(150g)上を通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られたエアロゲルは密度0.12g/cmである。BET比表面積は677m/gである。λ値は0.016W/mKである。
【0175】
b)ヒドロゲル150gを濃塩酸でゲルの細孔中の水がHCl濃度10重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150g)上を約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られたエアロゲルは密度0.14g/cmである。BET比表面積は654m/gである。λ値は0.015W/mKである。
【0176】
c)ヒドロゲル150gを濃塩酸でゲルの細孔中の水がHCl濃度15重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150g)上を約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られたエアロゲルは密度0.11g/cmである。BET比表面積は689m/gである。λ値は0.013W/mKである。
【0177】
d)ヒドロゲル150gを濃酢酸でゲルの細孔中の水が酢酸濃度約15重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150g)上を約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られたエアロゲルは密度0.14g/cmである。BET比表面積は644m/gである。λ値は0.015W/mKである。
【0178】
e)シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃塩酸100mlをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150ml)上を熱窒素気流下(50l/時間、100℃)に約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.13g/cmである。BET比表面積は680m/gである。λ値は0.015W/mKである。
【0179】
f)シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃塩酸100mlをフラスコ中で沸騰するまで加熱し、生成したガス混合物を、80℃に加熱した湿潤ゲル(150ml)上を通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.12g/cmである。BET比表面積は670m/gである。λ値は0.013W/mKである。
【0180】
g)シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃塩酸10mlをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150ml)上を熱窒素気流下(50l/時間、100℃)に約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.16g/cmである。BET比表面積は625m/gである。λ値は0.015W/mKである。
【0181】
h)シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃塩酸10mlをフラスコ中で沸騰するまで加熱し、生成したガス混合物を、80℃に加熱した湿潤ゲル(150g)上を通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.135g/cmである。BET比表面積は672m/gである。λ値は0.013W/mKである。
【0182】
i)シリル化するために、トリメチルクロロシラン(TMCS)1lをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150ml)上を熱窒素気流下(50l/時間、100℃)に約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.11g/cmである。BET比表面積は685m/gである。λ値は0.013mKである。
【0183】
j)シリル化するために、トリメチルクロロシラン(TMCS)1lをフラスコ中で沸騰するまで加熱し、生じたガスを、80℃に加熱した湿潤ゲル(150ml)上を通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.115g/cmである。BET比表面積は615m/gである。λ値は0.013mKである。
【0184】
k)シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃酢酸100mlをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150ml)上を熱窒素気流下(50l/時間、100℃)で約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.15g/cmである。BET比表面積は635m/gである。λ値は0.014W/mKである。
【0185】
l)シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃酢酸100mlをフラスコ中で沸騰するまで加熱し、生成したガス混合物を、80℃に加熱した湿潤ゲル(150ml)上を通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.135g/cmである。BET比表面積は673m/gである。λ値は0.013W/mKである。
【0186】
m)シリル化するために、トリメチルシロキサン(MeSiOH)1lおよび濃HCl溶液100mlをフラスコ中で沸騰するまで加熱し、生成したガス混合物を、80℃に加熱した湿潤ゲル(150ml)上を熱窒素気流下(50l/時間、100℃)で約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。得られた透明なエアロゲルは密度0.13g/cmである。BET比表面積は645m/gである。λ値は0.015W/mKである。
【0187】
n)10℃に冷却した7.5%濃度のHCl溶液425gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。数秒後に生じたヒドロゲルを85℃で30分間熟成させた。それを熱水3lで洗浄した。シリル化するために、ヘキサメチルジシロキサン(HMDSO)1lおよび濃HCl溶液100mlをフラスコ中で沸騰するまで加熱し、80℃に加熱した湿潤ゲル(150ml)上を熱窒素気流下(50l/時間、100℃)で約30分かけて通過させた。ゲルを熱窒素気流中(1500l/時間、200℃)で1時間乾燥させた。
【0188】
【表3】

【0189】
実施例3
10℃に冷却した7.5%濃度のHCl溶液425gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。数秒後に生じたヒドロゲルを85℃で30分間熟成させた。それを熱水3lで洗浄した。
【0190】
a)ヒドロゲル100gを濃塩酸でゲルの細孔中の水がHCl濃度10重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン250gをヒドロゲルに加え、混合物を80℃で4時間加熱した。加熱中に、約90gの水相がHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られたエアロゲルは密度0.12g/cmである。BET比表面積は676m/gである。λ値は0.013W/mKである。
【0191】
b)ヒドロゲル100gを濃塩酸でゲルの細孔中の水がHCl濃度15重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン250gをヒドロゲルに加え、混合物を80℃で2時間加熱した。加熱中に、約100gの水相がHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られたエアロゲルは密度0.11g/cmである。BET比表面積は678m/gである。λ値は0.013W/mKである。
【0192】
c)ヒドロゲル100gを濃塩酸でゲルの細孔中の水がHCl濃度20重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン250gをヒドロゲルに加え、混合物を80℃で1.5時間加熱した。加熱中に、約100gの水相がHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0193】
【表4】

【0194】
d)ヒドロゲル100gを濃塩酸でゲルの細孔中の水がHCl濃度20重量%になるまで洗浄した。シリル化するために、ヘキサメチルジシロキサン250gをヒドロゲルに加え、混合物を60℃で3時間加熱した。加熱中に、約80gの水相がHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られたエアロゲルは密度0.13g/cmである。BET比表面積は645m/gである。λ値は0.012W/mKである。
【0195】
実施例4
ナトリウム水ガラス溶液2l(SiO含量6重量%、NaO:SiOの比1:3.3)を、酸性イオン交換樹脂(スルホン酸基を有するスチレンジビニルベンゼンコポリマー、市販品名(R)Duolite C20)4lを詰めたジャケット付きガラスカラム(長さ=100cm、直径8cm)に通した(約70ml/分)。カラムは約7℃で操作した。カラムの底端から流出するシリカ溶液はpH2.3であった。この溶液を1.0モルNaOH溶液でpH4.7にして重縮合させ、85℃で3時間熟成させた。
【0196】
a)シリル化するために、トリメチルクロロシラン(140ml)105gをヒドロゲル100gに加えた。ガス(HCl)を激しく放出すると共に水相(濃HCl、120ml)がHMDSO相の下に生じた。15分後、疎水化ゲルをHMDSO相(106ml、HMDSO)から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行う。得られた透明なエアロゲルは密度0.10g/cmである。BET比表面積は676m/gである。λ値は0.011W/mKである。
【0197】
b)シリル化するために、ヒドロゲル100gをヘキサメチルジシロキサン100mlに懸濁し、懸濁液をトリメチルクロロシラン(42ml)31.5gと共に30分間還流下加熱した。ガス(HCl)を放出すると共に水相が20分間の内にHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られた透明なエアロゲルは密度0.13g/cmである。BET比表面積は680m/gである。λ値は0.013W/mKである。
【0198】
c)シリル化するために、ヒドロゲル100gをヘキサメチルジシロキサン(HMDSO)100mlに懸濁し、トリメチルクロロシラン(70ml)52.5gを加えた。ガス(HCl)を放出すると共に水相がHMDSO相の下に生じた。25分後、疎水化ゲルをHMDSO相(153ml、HMDSO)から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られた透明なエアロゲルは密度0.12g/cmである。BET比表面積は666m/gである。λ値は0.013W/mKである。
【0199】
d)シリル化するために、ヒドロゲル100gをヘキサメチルジシロキサン(HMDSO)100mlに懸濁し、トリメチルクロロシラン(140ml)105gを加えた。ガス(HCl)を激しく放出すると共に水相(濃HCl、120ml)がHMDSO相の下に生じた。15分後、疎水化ゲルをHMDSO相(206ml、HMDSO)から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られた透明なエアロゲルは密度0.10g/cmである。BET比表面積は676m/gである。λ値は0.011W/mKである。
【0200】
e)シリル化するために、ヒドロゲル100gをヘキサメチルジシロキサン(HMDSO)100mlに懸濁し、トリメチルクロロシラン(10モル)1050gを加えた。ガス(HCl)を激しく放出すると共にゲルは疎水化した。10分後、疎水化ゲルをHMDSO相(4.5モル、HMDSO)から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られた透明なエアロゲルは密度0.10g/cmである。BET比表面積は676m/gである。λ値は0.011W/mKである。
【0201】
f)ヒドロゲルを濃塩酸でゲルの細孔中の水がHCl濃度10重量%になるまで洗浄した。シリル化するために、このヒドロゲル100gをヘキサメチルジシロキサン100mlに懸濁し、トリメチルクロロシラン(42ml)31.5gを加えた。ガス(HCl)を放出すると共に水相が1時間の内にHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0202】
【表5】

【0203】
実施例5
10℃に冷却した7.5%濃度のHCl溶液425gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。数秒後に生じたヒドロゲルを85℃で30分間熟成させた。それを熱水3lで洗浄した。
【0204】
a)ヒドロゲルを濃塩酸でゲルの細孔中の水がHCl濃度15%になるまで洗浄した。シリル化するために、このヒドロゲル100gをヘキサメチルジシロキサン100mlに懸濁し、懸濁液をトリメチルクロロシラン(42ml)31.5gと還流下加熱した。ガス(HCl)を放出すると共に水相がHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0205】
【表6】

【0206】
b)シリル化するために、ヒドロゲル100gをヘキサメチルジシロキサン(HMDSO)100mlに懸濁し、トリメチルクロロシラン(140ml)105gを加えた。ガス(HCl)を激しく放出すると共に水相(120ml、濃HCl)がHMDSO相の下に生じた。15分後、疎水化ゲルをHMDSO相(206ml、HMDSO)から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0207】
【表7】

【0208】
実施例6
ナトリウム水ガラス溶液2l(SiO含量6重量%、NaO:SiOの比1:3.3)を、酸性イオン交換樹脂(スルホン酸基を有するスチレンジビニルベンゼンコポリマー、市販品名(R)Duolite C20)4lを詰めたジャケット付きガラスカラム(長さ=100cm、直径8cm)に通した(約70ml/分)。カラムは約7℃で操作した。カラムの底端から流出するシリカ溶液はpH2.3であった。この溶液を1.0モルNaOH溶液でpH4.7にして重縮合させ、85℃で3時間熟成させた。
【0209】
a)HClガスをヒドロゲル100gに、HCl水溶液約15重量%濃度がゲル中に達成されるまで(約5分)、通過させた。溶解熱のために、ゲルは熱くなったので、水が幾分か蒸発し、ゲルは約10〜20体積%縮小した。そしてヒドロゲルは外表面が乾燥された。シリル化するために、ヘキサメチルジシロキサン250gをヒドロゲルに加え、混合物を80℃で2時間加熱した。加熱中に、約100gの水相がHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られたエアロゲルは密度0.12g/cmである。BET比表面積は666m/gである。λ値は0.014W/mKである。
【0210】
b)HClガスをヒドロゲル100gに、HCl水溶液約15重量%濃度がゲル中に達成されるまで(約5分)、通過させた。溶解熱のために、ゲルは熱くなったので、水が幾分か蒸発し、湿潤ゲルは約10〜20体積%縮小した。そしてヒドロゲルは外表面が乾燥した。シリル化するために、ヒドロゲルをヘキサメチルジシロキサン100mlに懸濁し、トリメチルクロロシラン(42ml)31.5gを加えた。水性HCl含有相が1時間の内にHMDSO相の下に生じた。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られた透明なエアロゲルは密度0.12g/cmである。BET比表面積は656m/gである。λ値は0.013W/mKである。
【0211】
実施例7
10℃に冷却した7.5%濃度のHCl溶液425gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。数秒後に生じたヒドロゲルを85℃で30分間熟成させ、以下のように処理した。
【0212】
a)濃HCl水溶液300mlをNaCl含有ヒドロゲル150gにゆっくりと通過させた。水溶液が抜け切った後に、酸性化したヒドロゲルをシリル化のためにHMDSO100g中に懸濁し、そしてTMCS40gを加えた。30分後、疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0213】
【表8】

【0214】
b)2倍希釈濃HCl水溶液300mlをNaCl含有ヒドロゲル150gにゆっくりと通過させた。水溶液が抜け切った後に、酸性化したヒドロゲルをシリル化のためにHMDSO100g中に懸濁し、TMCS40gを加えた。60分後、疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0215】
【表9】

【0216】
c)濃HCl水溶液1lをNaCl含有ヒドロゲル150gにゆっくりと通過させた。水溶液が抜け切った後に、酸性化したヒドロゲルをシリル化のためにHMDSO100g中に懸濁し、そしてTMCS40gを加えた。30分後、疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0217】
【表10】

【0218】
d)HClガスをNaCl含有ヒドロゲル100gに、ゲル中でHCl水溶液濃度が約15重量%に達成するまで(約5分)、通過させた。溶解熱のために、ゲルは熱くなったので、水が幾分か蒸発し、湿潤ゲルは約10〜20体積%縮小した。そしてヒドロゲルは外表面が乾燥された。
【0219】
実験1、2、3および4:
シリル化するために、ヒドロゲルをヘキサメチルジシロキサン100mlに懸濁し、トリメチルクロロシラン31.5gを加えた。
【0220】
実験5:
シリル化するために、ヒドロゲルをヘキサメチルジシロキサン100mlに懸濁し、トリメチルクロロシラン120g(1.1モル)を加えた。
【0221】
実験6および7:
シリル化するために、ヒドロゲルをヘキサメチルジシロキサン100mlに懸濁し、トリメチルクロロシラン140g(1.4モル)を加えた。
【0222】
実験8:
シリル化するために、ヘキサメチルジシロキサン250mlをヒドロゲルに加え、混合物を80℃で2時間加熱した。
【0223】
【表11】

【0224】
全ての実験において、疎水化ゲルをHMDSO相から30分後に取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0225】
実施例8:
7℃に冷却した水641g(35.6モル)にゆっくりと四塩化ケイ素(SiCl)135g(0.8モル、91.2ml)(7℃に冷却)を加えた。熱を発生しながら生成された湿潤ゲルは、SiO計算濃度6.1重量%であった。
【0226】
ゲルは50℃にて、実験1、2および3において30分間、実験4においては2時間、熟成させた。
【0227】
シリル化するために、ヒドロゲル100gをヘキサメチルジシロキサン(HMDSO)100mlに懸濁し、トリメチルクロロシラン52.5g(0.5モル、70ml)を加えた。数分以内にHMDSO相の下に水相が形成された。30分後、疎水化したHMDSO−湿潤ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0228】
【表12】

【0229】
実施例9:
a)10℃に冷却した7.5%濃度のHCl溶液424gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。数秒後に生じたヒドロゲルを85℃で30分間熟成させ、熱水3lで洗浄した。ヒドロゲル100gをヘキサメチルジシロキサン(HMDSO)140ml中に懸濁し、HClガス流(約40g)をこの懸濁液に30分間通過させた。この処理中に懸濁液の温度は82℃に上昇した。同時に、水性HCl含有相120gを分離した。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られたエアロゲルは密度0.124g/cmである。BET比表面積は673m/gである。C含量は12.0重量%である。
【0230】
b)10℃に冷却した7.5%濃度のHCl溶液425gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。数秒後に生じたヒドロゲルを85℃で30分間熟成させ、以下のように処理した。NaCl含有ヒドロゲル(ヒドロゲル100g中NaCl4.3g)100gをヘキサメチルジシロキサン(HMDSO)150ml中に懸濁し、HClガス流(約46g)をこの懸濁液に45分間通過させた。この処理中に懸濁液の温度は75℃に上昇した。同時に、水性HCl含有相120gを分離した。疎水化ゲルをHMDSO相から取り出し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。得られたエアロゲルは密度0.115g/cmである。BET比表面積は488m/gである。C含量は9.5重量%である。NaCl濃度はエアロゲルを基にして6.4重量%である。
【0231】
比較例1:
(US−A−3,015,645またはGB−A−682,574による)
HCl(25重量%)70gを水180gで稀釈し、8℃に冷却し、初期装入物として導入した。水ガラス溶液(33.33重量%水ガラス溶液211.8g、NaO:SiOの比1:3.3、水38.2gで稀釈)を激しく攪拌しながら、ゆっくりとHCl溶液に加えた。混合物ゲルのpHは6.9であった。室温で30分間熟成の後、ゲルを粉砕し、熱水で塩素イオンがなくなるまで(ゲル中の塩素イオン0.15重量%)洗浄した。次いで、ゲル中の水分含量が1重量%未満になるまでアセトンにより溶媒交換した。さらに、アセトンを四塩化炭素に交換した。ゲル327gを四塩化炭素に懸濁し、トリメチルクロロシラン(TMCS)262gをシリル化のために加えた。2時間還流下に沸騰させた後、シリル化ゲルを四塩化炭素で過剰のTMCSがなくなるまで洗浄し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0232】
【表13】

【0233】
比較例2:
(EP−A−0 658 513による)
ナトリウム水ガラス溶液2l(SiO含量6重量%、NaO:SiOの比1:3.3)を、酸性イオン交換樹脂(スルホン酸基を有するスチレンジビニルベンゼンコポリマー、市販品名(R)Duolite C20)4lを詰めたジャケット付きガラスカラム(長さ=100cm、直径8cm)に通した(約70ml/分)。カラムは約7℃で操作した。カラムの底端から流出するシリカ溶液はpH2.3であった。この溶液を1.0モルNaOH溶液でpH4.7にして重縮合させ、85℃で3時間熟成させた。湿潤ゲルをエタノールで、全ての水がエタノールで交換されるまで洗浄した。そしてn−ヘプタンで全てのエタノールがn−ヘプタンで交換されるまで洗浄した。シリル化のために、トリメチルクロロシラン10重量%をn−ヘプタン中の湿潤ゲル100gに、50℃にて12時間加えた。そして、ゲルをn−ヘプタンで過剰のTMCSがなくなるまで洗浄し、乾燥させた。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0234】
【表14】

【0235】
比較例3:
(DE−A−195 41 715による)
7℃に冷却したナトリウム水ガラス溶液707g(SiO含量17重量%、NaO:SiOの比1:3.3)を、連続して0℃に冷却しながら、0℃に冷却してあった25%濃度HSO、236gに加えた。この添加中pH1.6となった。沈殿したNaSO・10HOを吸引フィルタを用いて0℃にてシリカゾルから分離し、シリカゾルをH80mlで稀釈した。得られたシリカゾルに、攪拌しながら5℃で、1N−NaOH溶液26mlを加えて、pH4.7にした。得られたヒドロゲルを85℃にて2.5時間熟成させ、熱水2lで洗浄し、水をアセトンでゲルの水分含量が2重量%以下になるまで抽出した。
【0236】
実験1、2および3:
アセトン含有ゲルをトリメチルクロロシラン(TMCS)5重量%で、50℃にて3時間シリル化し、アセトン2lで洗浄した。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0237】
実験4、5および6:
アセトン含有ゲルをトリメチルクロロシラン(TMCS)10重量%で、50℃にて3時間シリル化し、アセトン2lで洗浄した。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0238】
【表15】

【0239】
比較例4:
(DE−A−44 04 701およびDE−A−195 06 141による)
ナトリウム水ガラス溶液2l(SiO含量6重量%、NaO:SiOの比1:3.3)を、酸性イオン交換樹脂(スルホン酸基を有するスチレンジビニルベンゼンコポリマー、市販品名(R)Duolite C20)4lを詰めたジャケット付きガラスカラム(長さ=100cm、直径8cm)に通した(約70ml/分)。カラムは約7℃で操作した。カラムの底端から流出するシリカ溶液はpH2.3であった。この溶液を1.0モルNaOH溶液でpH4.7にして重縮合させ、85℃で3時間熟成した。
【0240】
実験1〜10:
湿潤ゲルをアセトンでゲル中の水分含量が2重量%以下になるまで抽出した。アセトン含有ゲルをトリメチルクロロシラン(TMCS)5重量%で、50℃にて5時間シリル化し、アセトン2lで洗浄した。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0241】
【表16】

【0242】
実験11〜20:
湿潤ゲルをアセトンでゲル中の水分含量が2重量%以下になるまで抽出した。アセトン含有ゲルをトリメチルクロロシラン(TMCS)10重量%で、50℃にて5時間シリル化し、アセトン2lで洗浄した。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0243】
【表17】

【0244】
実験21〜26
湿潤ゲルをイソプロパノールでゲル中の水分含量が2重量%以下になるまで抽出した。イソプロパノール含有ゲルをトリメチルクロロシラン(TMCS)10重量%で、70℃にて5時間シリル化し、イソプロパノール2lで洗浄した。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0245】
【表18】

【0246】
比較例5:
(DE−A−196 31 267による)
10℃に冷却した7.5%濃度のHCl溶液424gに、同様に10℃に冷却したナトリウム水ガラス溶液(SiO、13重量%含有、NaO:SiOの比1:3.3)712gを滴下した。pH4.7となった。1、2秒後に生じたヒドロゲルを85℃、30分間熟成させ、熱水3lで洗浄した。湿潤ゲルをアセトンでゲル中の水分含量が2重量%以下になるまで抽出した。アセトン含有ゲルをトリメチルクロロシラン(TMCS)5重量%で、50℃にて5時間シリル化し、アセトン2lで洗浄した。乾燥は熱窒素気流中(1500l/時間、200℃)で1時間行った。
【0247】
【表19】

【0248】
熱伝導率は熱線法(例えば、B. O. Nielsson, G. Rueschenpoehler, J. Gross, J. Fricke, High Temperatures-High Pressures, Vol.21, 267-274(1989)参照)を用いて測定した。
【0249】
リオゲル製造のための本発明の方法は、記載した実施例に基づくエアロゲル製造について、それによって限定されることなく、より詳細に記載することができる。相違点は、全ての実施例において、上記した乾燥が省略されるだけである。

【特許請求の範囲】
【請求項1】
下記ステップからなる有機修飾エアロゲルの製造方法。
a)シリカ系ヒドロゲルをpH3以上で形成するステップ、
b)ステップa)で形成したシリカ系ヒドロゲルを、シリル化剤と混合することにより表面修飾に付して表面修飾ゲルを形成するステップ、および、
c)表面修飾ゲル中に存在するゲル液体を、ゲル液体の臨界温度及び圧力未満で乾燥することによって、除去するステップ。
【請求項2】
ステップa)で形成したシリカ系ヒドロゲルを、熟成、網目の捕強及び洗浄からなる群から選ばれる中間処理ステップの後、表面修飾に付する請求項1に記載の方法。
【請求項3】
テップb)の表面修飾を、水を他の溶媒で置換することなしに行う請求項1または2に記載の方法。
【請求項4】
ステップb)で得られた表面修飾ゲルを、洗浄および結晶化した塩の除去からなる群から選ばれる追加処理ステップの後に乾燥する請求項1〜3のいずれか1項に記載の方法。
【請求項5】
ステップa)において、シリカ系ヒドロゲルを、pH3〜8の間で形成する請求項1〜4のいずれか1項に記載の方法。
【請求項6】
ステップa)において、シリカ系ヒドロゲルを、水ガラス水溶液のpHを低下させて形成する請求項1〜5のいずれか1項に記載の方法。
【請求項7】
ステップa)において、水ガラス水溶液のpH低下を、pH3までとする請求項6に記載の方法。
【請求項8】
ステップa)において、水ガラス水溶液への酸の添加をpH8以上で止め、その後pH3〜8の間に設定してシリカ系ヒドロゲルを形成する請求項7に記載の方法。
【請求項9】
ステップa)において、水ガラス水溶液に酸を加えた後に塩基を加えないで、シリカ系ヒドロゲルを生成させる請求項1〜5のいずれか1項に記載の方法。
【請求項10】
ステップa)およびb)を半連続プロセスで行う請求項1〜5のいずれか1項に記載の方法。
【請求項11】
ステップa)およびb)を連続プロセスで行う請求項1〜5のいずれか1項に記載の方法。
【請求項12】
酸の連続または半連続流を水ガラス水溶液の連続または半連続流と混合する請求項10または11に記載の方法。
【請求項13】
酸の流れを、混合ノズルを通して、水ガラス水溶液と混合する請求項12に記載の方法。
【請求項14】
ステップb)が、疎水性ゲルを水に実質的に不溶性の液相中に生成させ、該液相はシリカ系ヒドロゲルからの水により生成した水相から分離されるものである請求項1〜13のいずれか1項に記載の方法。
【請求項15】
シリル化剤が少なくともトリメチルクロロシランを含み、前記液相が少なくともヘキサメチルジシロキサンを含む請求項14に記載の方法。
【請求項16】
少なくともヘキサメチルジシロキサンの部分が実質的にリサイクルされる請求項15に記載の方法。
【請求項17】
シリカ系ヒドロゲルが、酸性イオン交換樹脂、鉱酸または塩酸溶液により水ガラス水溶液をpH3以下にし、得られたケイ酸を塩基に加えることにより重縮合してSiOゲルを形成することによって調製される請求項1〜9のいずれか1項に記載の方法。
【請求項18】
形成されたSiOゲルを水で洗浄していかなる電解質をも除去する請求項17に記載の方法。
【請求項19】
シリカ系ヒドロゲルが、少なくとも一つの有機および/または無機酸の補助によりシリカゾルの中間段階を経て水ガラス水溶液から得ることにより調製される請求項17に記載の方法。
【請求項20】
シリカ系ヒドロゲルが、四塩化ケイ素の加水分解および重縮合により得られる請求項17に記載の方法。
【請求項21】
イオン性化合物、不透明化剤および繊維から選ばれる添加物がゲルの調製前および/または調製中に加えられる請求項17〜20のいずれか1項に記載の方法。
【請求項22】
ステップa)で得られたシリカ系ヒドロゲルが前記ステップb)における表面修飾される前に熟成される請求項1〜21のいずれか1項に記載の方法。
【請求項23】
ステップb)における表面修飾がシリル化剤による表面シリル化である請求項1〜22のいずれか1項に記載の方法。
【請求項24】
シリル化剤が、液状においておよび/またはガスあるいは蒸気として使用される請求項23に記載の方法。
【請求項25】
シリル化剤が、式R4−nSiClまたはR4−nSi(OR(式中n=1〜4、そしてRおよびRは互いに独立して同じかまたは異なり、それぞれ水素原子または直鎖、分岐或いは環式のC〜C18−アルキルまたはC〜C14−アリール基である)の少なくとも一つのシランからなる請求項23または24に記載の方法。
【請求項26】
シリル化剤がトリメチルクロロシランである請求項25に記載の方法。
【請求項27】
シリル化剤が、下記式Iのジシロキサンおよび下記式IIのジシラザンから選ばれる少なくとも一つである請求項23または24に記載の方法。
Si―O―SiR (I)
Si―N(H)―SiR (II)
(式中、基Rは互いに独立して同じかまたは異なり、それぞれ水素原子または直鎖、分岐或いは環式のC〜C18−アルキルまたはC〜C14−アリール基である。)
【請求項28】
ステップb)で用いられるシリル化剤が、対称形のジシロキサンである請求項27に記載の方法。
【請求項29】
ステップb)で用いられるシリル化剤が、全ての基Rが同一のジシロキサンである請求項27または28に記載の方法。
【請求項30】
シリル化剤が、ヘキサメチルジシロキサンである請求項27〜29のいずれか1項に記載の方法。
【請求項31】
少なくとも1つの酸および/または塩基が表面修飾前にシリカ系ヒドロゲルに初期装入物として導入される請求項1〜30のいずれか1項に記載の方法。
【請求項32】
酸が塩酸である請求項31に記載の方法。
【請求項33】
シリカ系ヒドロゲルが、シリル化剤またはシリル化剤類に最初に導入され、次いで少なくとも一つの酸および/または塩基が加えられる請求項1〜32のいずれか1項に記載の方法。
【請求項34】
シリル化剤がヘキサメチルジシロキサンである請求項33に記載の方法。
【請求項35】
塩酸が酸として使用される請求項33または34に記載の方法。
【請求項36】
表面修飾剤が表面修飾前および/または表面修飾中に、酸により生成する請求項1〜35のいずれか1項に記載の方法。
【請求項37】
表面修飾が触媒により加速される請求項1〜36のいずれか1項に記載の方法。
【請求項38】
少なくとも一つのキャリアーガスまたはキャリアーガス流が、前記ステップb)で表面修飾剤に加えて使用される請求項1〜34のいずれか1項に記載の方法。
【請求項39】
シリカ系ヒドロゲルの細孔中の水の一部が使用される表面修飾剤と反応して水不溶性化合物を形成する請求項1〜38のいずれか1項に記載の方法。
【請求項40】
水不溶性化合物としてヘキサメチルジシロキサンが形成される請求項39に記載の方法。
【請求項41】
シリカ系ヒドロゲルの外表面が、表面修飾に先立って乾燥される請求項1〜40のいずれか1項に記載の方法。
【請求項42】
外表面が少なくとも一つのガスにより乾燥される請求項41に記載の方法。
【請求項43】
外表面が塩酸ガスにより乾燥される請求項41または42に記載の方法。
【請求項44】
外表面がヘキサメチルジシロキサンにより乾燥される請求項41に記載の方法。
【請求項45】
表面修飾ゲルが、ステップc)の前にプロトン性または非プロトン性溶媒で洗浄される請求項1〜44のいずれか1項に記載の方法。
【請求項46】
表面修飾ゲルが、ステップc)の前にシリル化剤で洗浄される請求項1〜45のいずれか1項に記載の方法。
【請求項47】
ステップa)で得られたシリカ系ヒドロゲルが、シリル化前に、式R4−nSi(OR(式中、n=2〜4、そしてRおよびRは互いに独立して水素原子または直鎖または分岐のC−Cアルキル、シクロヘキシルまたはフェニル基である)の縮合し得るオルトシリケートの溶液、あるいはケイ酸水溶液と反応せしめられる請求項15〜46のいずれか1項に記載の方法。
【請求項48】
式R4−nSi(OR(式中、n=2〜4、そしてRおよびRは互いに独立して水素原子または直鎖または分岐のC−Cアルキル、シクロヘキシルまたはフェニル基である)の縮合し得るオルトシリケートが、アルキルおよび/またはアリールオルトシリケートである請求項47に記載の方法。
【請求項49】
表面修飾が、イオン性化合物、不透明化剤および繊維から選ばれる添加物の存在下、ヒドロゲル中で行われる請求項1〜48のいずれか1項に記載の方法。
【請求項50】
イオン性化合物が、NaClである請求項49に記載の方法。
【請求項51】
不透明化剤が、IR不透明化剤である請求項49に記載の方法。
【請求項52】
Si―OR基を含まない、請求項1〜51のいずれか1項の方法により製造された、有機修飾エアロゲル。
【請求項53】
表面修飾された有機表面基によるエアロゲルの内表面の被覆度が理論的に可能な値の少なくとも90%である、請求項1〜51のいずれか1項の方法により製造された、有機修飾エアロゲル。
【請求項54】
表面修飾が、表面シリル化による請求項53に記載の有機修飾エアロゲル。
【請求項55】
少なくとも2.6トリメチルシリル基/nmの被覆度を有する請求項53または54に記載の有機修飾エアロゲル。
【請求項56】
イオン性化合物、不透明化剤および繊維から選ばれる添加物を含む請求項52〜55のいずれか1項に記載の有機修飾エアロゲル。
【請求項57】
イオン性化合物が、NaClである請求項56に記載の有機修飾エアロゲル。
【請求項58】
不透明化剤が、IR不透明化剤である請求項56に記載の有機修飾エアロゲル。
【請求項59】
600m/g以下のBET内部表面積を有する請求項52〜58のいずれか1項に記載の有機修飾エアロゲル。
【請求項60】
500m/g以下のBET内部表面積を有する請求項52〜59のいずれか1項に記載の有機修飾エアロゲル。
【請求項61】
12mW/mKより小さい熱伝導度を有する、請求項1〜51のいずれか1項の方法により製造された、有機修飾エアロゲル。
【請求項62】
ケイ酸塩を基本とした請求項54〜61のいずれか1項に記載の有機修飾エアロゲル。
【請求項63】
請求項52〜62のいずれか1項に記載の有機修飾エアロゲルの断熱材料としての使用。
【請求項64】
請求項1〜51のいずれか1項に記載の有機修飾エアロゲルの製造方法において、ステップa)にてシリカ系ヒドロゲルを得、そしてステップb)にてステップa)で得られたシリカ系ヒドロゲルを表面修飾に付し、ステップc)の乾燥を行わないことを特徴とする有機修飾リオゲルの製造方法。
【請求項65】
Si―OR基を含まない、請求項64に記載の方法で製造された、有機修飾リオゲル。
【請求項66】
表面修飾により適用された有機表面基によるリオゲルの内表面の被覆度が理論的に可能な値の少なくとも90%である、請求項64に記載の方法で製造された、有機修飾リオゲル。
【請求項67】
表面修飾が表面シリル化である、請求項66に記載の有機修飾リオゲル。
【請求項68】
ヒドロゲルである請求項65〜67のいずれか1項に記載の有機修飾リオゲル。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−144428(P2012−144428A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2012−40061(P2012−40061)
【出願日】平成24年2月27日(2012.2.27)
【分割の表示】特願平10−524278の分割
【原出願日】平成9年11月26日(1997.11.26)
【出願人】(307042008)カボット コーポレイション (1)
【Fターム(参考)】