説明

核酸の合成方法

【課題】複雑な温度制御が不要な核酸合成方法の提供を課題とする。
【解決手段】新規な構造のオリゴヌクレオチドと、それをプライマーとする核酸の合成方法である。このオリゴヌクレオチドは、プライマーの5'側に、このプライマーを合成起点として合成される領域と実質的に同じ塩基配列を備える。単純な試薬構成で等温反応に基づく核酸の合成を実現する。また、この核酸合成方法に基づいて、高い特異性を持った核酸の合成方法を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、核酸の増幅方法として有用な、特定の塩基配列で構成される核酸を合成する方法に関する。
【背景技術】
【0002】
核酸塩基配列の相補性に基づく分析方法は、遺伝的な特徴を直接的に分析することが可能である。そのため、遺伝的疾患、癌化、微生物の識別等には非常に有力な手段である。また遺伝子そのものを検出対象とするために、例えば培養のような時間と手間のかかる操作を省略できる場合もある。
【0003】
とはいえ試料中に存在する目的の遺伝子量が少ない場合の検出は一般に容易ではなく、標的遺伝子そのものを、あるいは検出シグナル等を増幅することが必要となる。標的遺伝子を増幅する方法の一つとしてPCR(Polymerase Chain Reaction)法が知られている(Science、230、1350-1354、1985)。PCR法は、in vitroにおける核酸の増幅技術として現在最も一般的な方法である。その指数的な増幅効果に基づく高い感度により優れた検出方法として定着した。また、増幅生成物をDNAとして回収できることから、遺伝子クローニングや構造決定などの遺伝子工学的手法を支える重要なツールとして幅広く応用されている。しかしPCR法においては、実施のために特別な温度調節装置が必要なこと;増幅反応が指数的に進むことから定量性に問題があること;試料や反応液が外部からの汚染を受け、誤って混入した核酸が鋳型として機能してしまうコンタミネーションの影響を受け易いこと等の問題点が指摘されている。
【0004】
ゲノム情報の蓄積に伴って、1塩基多型(SNPs; single nucleotide polymorphism)の解析が注目されている。プライマーの塩基配列にSNPsを含むように設計することによってPCRを利用したSNPsの検出が可能である。すなわち、反応生成物の有無によってプライマーに相補的な塩基配列の有無を知ることができる。しかしPCRにおいては、万が一誤って相補鎖合成が行われてしまった場合には、その生成物が以降の反応の鋳型として機能して誤った結果を与える原因となる。現実には、プライマーの末端における1塩基の相違のみでは、PCRを厳密に制御することは難しいといわれている。したがって、PCRをSNPsの検出に利用するには特異性の改善が必要とされている。
【0005】
一方リガーゼに基づく核酸合成方法も実用化されている。LCR法(Ligase Chain Reaction、 Laffler TG; Carrino JJ; Marshall RL; Ann. Biol. Clin. (Paris)、1993、 51:9、 821-6)は、検出対象となる配列上において隣接する2つのプローブをハイブリダイズさせ、リガーゼによって両者を連結する反応が基本原理になっている。標的塩基配列が存在しない場合には2つのプローブを連結することはできないので、連結生成物の存在は標的塩基配列の指標となる。LCR法も合成した相補鎖と鋳型との分離に温度制御が必要となることから、PCR法と同じ問題点を伴っている。LCRについては、隣接するプローブの間にギャップを設け、これをDNAポリメラーゼで充填する工程を加え特異性を改善する方法も報告されている。しかし、この改良方法によって期待できるのは特異性のみであり、温度制御を要求する点については依然として課題を残している。しかも、必要な酵素が増えるため、コストを犠牲にしているといえる。
【0006】
検出対象配列を鋳型として相補的な配列を持つDNAを増幅する方法には、SDA法(Strand Displacement Amplification) [Proc.Natl.Acad.Sci.USA、89、392-396;1992] [Nucleic Acid.Res.、20、1691-1696;1992]と呼ばれる方法も知られている。SDA法は、ある塩基配列の3'側に相補的なプライマーを合成起点として相補鎖合成を行うときに、5'側に2本鎖の領域が有るとその鎖を置換しながら相補鎖の合成を行う特殊なDNAポリメラーゼを利用する方法である。なお以下本明細書において単に5'側、あるいは3'側と表現するときには、いずれも鋳型となっている方の鎖における方向を意味している。5'側の2本鎖部分が新たに合成された相補鎖によって置換(displacement)されることからSDA法と呼ばれている。SDA法では、プライマーとしてアニールさせた配列に予め制限酵素認識配列を挿入しておくことによって、PCR法においては必須となっている温度変化工程の省略を実現できる。すなわち、制限酵素によってもたらされるニックが相補鎖合成の起点となる3'-OH基を与え、そこから鎖置換合成を行うことによって先に合成された相補鎖が1本鎖として遊離して次の相補鎖合成の鋳型として再利用される。このようにSDA法はPCR法で必須となっていた複雑な温度制御を不要とした。
【0007】
しかし、SDA法では鎖置換型のDNAポリメラーゼに加え、必ずニックをもたらす制限酵素を組み合わせる必要がある。必要な酵素が増えるということは、コストアップの要因である。また、用いる制限酵素によって2本鎖の切断ではなくニックの導入(すなわち一方の鎖だけの切断)を行うために、一方の鎖には酵素消化に耐性を持つように合成の際の基質としてαチオdNTPのようなdNTP誘導体を利用しなければならない。このため、SDAによる増幅産物は天然の核酸とは異なった構造となり、制限酵素による切断や、増幅産物の遺伝子クローニングへの応用といった利用は制限される。またこの点においてもコストアップの要因を伴っているといえる。加えて、未知の配列にSDA法を応用するときには、合成される領域の中にニック導入のための制限酵素認識配列と同じ塩基配列が存在する可能性を否定できない。このようなケースでは完全な相補鎖の合成が妨げられる心配がある。
【0008】
複雑な温度制御を不要とする核酸の増幅方法として、NASBA(Nucleic Acid Sequence-based Amplification、TMA/Transcription Mediated Amplification法とも呼ばれる)が公知である。NASBAは、標的RNAを鋳型としてT7プロモーターを付加したプローブでDNAポリメラーゼによるDNA合成を行い、これを更に第2のプローブで2本鎖とし、生成する2本鎖DNAを鋳型としてT7 RNAポリメラーゼによる転写を行わせて多量のRNAを増幅する反応系である(Nature、350、91-92、1991)。NASBAは2本鎖DNAを完成するまでにいくつかの加熱変性工程を要求するが、以降のT7 RNAポリメラーゼによる転写反応は等温で進行する。しかし、逆転写酵素、RNaseH、DNAポリメラーゼ、そしてT7 RNAポリメラーゼといった複数の酵素の組み合わせが必須となることから、SDAと同様にコストの面では不利である。また複数の酵素反応を行わせるための条件設定が複雑なので、一般的な分析方法として普及させることが難しい。このように公知の核酸増幅反応においては、複雑な温度制御の問題点、あるいは複数の酵素が必要となることといった課題が残されている。
【0009】
更に、これらの公知の核酸合成反応について、特異性やコストを犠牲にすることなく核酸の合成効率を更に向上させる試みについては、ほとんど報告が無い。たとえば、RCA(Rolling-circle amplification)と呼ばれる方法では、標的塩基配列の存在下でパドロックプローブ(padlock probe)に相補的な塩基配列が連続した1本鎖のDNAを継続して合成できることが示された(非特許文献1)。RCAでは、1本のオリゴヌクレオチドの5'末端と3'末端がLCRにおける隣接プローブを構成する特殊な構造のパドロックプローブが利用される。そして鎖置換型の相補鎖合成反応を触媒するポリメラーゼを組み合わせることにより、標的塩基配列の存在下でライゲーションされ環化したパドロックプローブを鋳型とする連続的な相補鎖合成反応がトリガーされる。同じ塩基配列からなる領域が繰り返し連続した構造を持った1本鎖核酸が生成される。この1本鎖核酸に対して更にプライマーをアニールさせてその相補鎖の合成を行って、高度な増幅を実現している。しかし、複数の酵素が必要な点は依然として残された課題である。また、相補鎖合成のトリガーは、2つの隣接領域の連結反応に依存しており、その特異性は原理的にLCRと同じレベルである。
【0010】
3'-OHの供給という課題に対しては、3'末端に同一鎖上の塩基配列に相補的な配列を持たせ、末端でへアピンループを形成させる方法が公知である(非特許文献2)。このようなへアピンループからは、自身を鋳型とした相補鎖合成が行われ、相補的な塩基配列で構成された1本鎖の核酸を生成する。たとえばPCT/FR95/00891(特許文献1)では、相補的な塩基配列を連結した末端部分で同一鎖上にアニールする構造を実現している。しかしこの方法では、末端が相補鎖との塩基対結合(base pairing)を解消して改めて同一鎖上で塩基対結合を構成するステップが必須である。このステップは塩基対結合を伴う相補的な塩基配列同士の末端における微妙な平衡状態に依存して進むとされている。すなわち、相補鎖との塩基対結合と、同一鎖上での塩基対結合との間で維持される平衡状態を利用し、同一鎖上の塩基配列とアニールしたもののみが相補鎖合成の起点となる。したがって、高度な反応効率を達成するためには、厳密な反応条件の設定が求められるものと考えられる。更にこの先行技術においては、プライマー自身がループ構造を作っている。そのためプライマーダイマーがいったん生成すると、標的塩基配列の有無にかかわらず自動的に増幅反応が開始され非特異的な合成産物を形成してしまう。これは重大な問題点といえる。更に、プライマーダイマーの生成とそれに伴う非特異的な合成反応によるプライマーの消費が、目的とする反応の増幅効率の低下につながる。
【0011】
その他に、DNAポリメラーゼに対して鋳型とならない領域を利用して同一鎖にアニールする3'末端構造を実現した報告(特許文献2)がある。この報告も末端部分における動的平衡を利用している点、あるいはプライマーダイマー形成にともなう非特異的な合成反応の可能性においては先のPCT/FR95/00891と同様の問題点を持つ。更に、DNAポリメラーゼの鋳型とならない特殊な領域をプライマーとして用意しなければならない。
【0012】
また前記NASBAの原理を応用した各種のシグナル増幅反応においては、2本鎖のプロモーター領域を供給するためにしばしば末端でヘアピン状の構造を伴ったオリゴヌクレオチドが利用される(特許文献3)。しかしこれらは、相補鎖合成の3'-OHの連続的な供給を可能とするものではない。更に(特許文献4)においては、RNAポリメラーゼによって転写されるDNA鋳型を得ることを目的として同一鎖上に3'末端をアニールさせたヘアピンループ構造が利用されている。この方法では、RNAへの転写と、RNAからDNAへの逆転写を利用して鋳型の増幅が行われる。しかし、この方法も複数の酵素を組み合わせなければ反応系を構成できない。
【0013】
【特許文献1】PCT/FR95/00891
【特許文献2】EP713922
【特許文献3】特開平5-211873号公報
【特許文献4】特表平10-510161公報(WO96/17079)
【非特許文献1】Paul M.Lizardi et al、Nature Genetics 19、 225-232、 July、1998
【非特許文献2】Gene 71、29-40、1988
【発明の開示】
【発明が解決しようとする課題】
【0014】
本発明の課題は、新規な原理に基づく核酸の合成方法を提供することである。より具体的には、低コストで効率的に配列に依存した核酸の合成を実現することができる方法を提供することである。すなわち、単一の酵素を用い、しかも等温反応条件の下でも核酸の合成と増幅を達成することができる方法の提供が、本発明の課題である。更に本発明は、公知の核酸合成反応原理では達成することが困難な高い特異性を実現することができる核酸の合成方法、並びにこの合成方法を応用した核酸の増幅方法の提供を課題とする。
【課題を解決するための手段】
【0015】
本発明者らは、まず鎖置換型の相補鎖合成を触媒するポリメラーゼの利用が、複雑な温度制御に依存しない核酸合成に有用であることに着目した。このようなDNAポリメラーゼは、SDAやRCAでも利用された酵素である。しかし、たとえこのような酵素を用いたとしても、公知のプライマーに基づく手法では、たとえばSDAのように合成起点となる3'-OHを供給するために常に他の酵素反応が要求される。
【0016】
そこで本発明者らは、公知のアプローチとはまったく異なる角度から3'-OHの供給について検討した。その結果、特殊な構造を持ったオリゴヌクレオチドを利用することによって、付加的な酵素反応に頼らずとも3'-OHの供給が可能となることを見出し本発明を完成した。すなわち本発明は、以下の核酸の合成方法、更にはこの核酸合成方法を応用した核酸の増幅方法、ならびにこれらの方法を可能とする新規なオリゴヌクレオチドに関する。
【0017】
〔1〕 領域F3c、領域F2c、および領域F1cを3'側からこの順で含む鋳型核酸と以下の要素を含む反応液を混合し、実質的に等温で反応させることを特徴とする、1本鎖上に相補的な塩基配列が交互に連結された核酸の合成方法。
i) 前記F2cに相補的な塩基配列を持つ領域の5'側に前記F1cと同一の塩基配列を持つ領域を連結して含むオリゴヌクレオチド
ii) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cに相補的な塩基配列を含むオリゴヌクレオチド
iii) 前記F3cに相補的な塩基配列を持つオリゴヌクレオチド
iv) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cの3'側に位置する任意の領域R3cに相補的な塩基配列を持つオリゴヌクレオチド
v) 鎖置換型の相補鎖合成反応を触媒するDNAポリメラーゼ、および
vi) 要素v)の基質となるヌクレオチド
【0018】
〔2〕 ii)のオリゴヌクレオチドが、i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cとその5'側に位置する領域R1cに対し、前記R2cと相補な塩基配列を持つ領域の5'側に前記R1cと同じ塩基配列を持つ領域を連結して含むオリゴヌクレオチドで構成されるプライマーである上記〔1〕に記載の方法。
【0019】
〔3〕 以下のオリゴヌクレオチドで構成されるプライマーを含む、1本鎖上に相補的な塩基配列が交互に連結された核酸の合成用プライマーセット。
領域F3c、領域F2c、および領域F1cを3'側からこの順で含む鋳型核酸に対し、
i) 前記F2cに相補的な塩基配列を持つ領域の5'側に前記F1cと同一の塩基配列を持つ領域を連結して含むオリゴヌクレオチド
ii) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cに相補的な塩基配列を含むオリゴヌクレオチド
iii) 前記F3cに相補的な塩基配列を持つオリゴヌクレオチド
iv) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cの3'側に位置する任意の領域R3cに相補的な塩基配列を持つオリゴヌクレオチド
【0020】
〔4〕 ii)のオリゴヌクレオチドが、i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cとその5'側に位置する領域R1cに対し、前記R2cと相補的な塩基配列を持つ領域の5'側に前記R1cと同じ塩基配列を持つ領域を連結して含むオリゴヌクレオチドで構成されるプライマーである上記〔3〕に記載のプライマーセット。
【発明の効果】
【0021】
本発明による新規なオリゴヌクレオチドとそれを用いた核酸の合成方法により、複雑な温度制御の不要な1本鎖上に交互に相補的な塩基配列が連結した核酸の合成方法が提供される。本発明に基づくオリゴヌクレオチドをプライマーとして合成される相補鎖は、常にその3'末端が自身を鋳型とする新たな相補鎖合成の合成起点となる。このとき、新たなプライマーのアニールをもたらすループの形成を伴い、この部分からの相補鎖合成によって先に合成された自身を鋳型とする相補鎖合成反応の生成物は再び置換され塩基対結合が可能な状態となる。このようにして得ることができる自身を鋳型として合成された核酸は、たとえばSDAのような公知の核酸合成方法との組み合わせによって、それらの核酸合成効率の向上に貢献する。
【0022】
更に本発明の望ましい態様によれば、単に公知の核酸合成方法の効率向上を達成するのみならず、複雑な温度制御を必要としない、しかも高度な増幅効率を期待でき、更には高い特異性を達成できる新規な核酸の合成方法が提供される。すなわち、本発明に基づくオリゴヌクレオチドを鋳型鎖とその相補鎖に対して適用することによって、1本鎖上に相補的な塩基配列が交互に連結された核酸が連続して合成されるようになる。この反応は、原理的には合成に必要な出発材料が枯渇するまで続き、その間にループ部分から合成を開始した新たな核酸を生成し続ける。こうして、ループにアニールしたオリゴヌクレオチドからの伸長が、長い1本鎖核酸(すなわち、複数組の相補的な塩基配列が連結したもの)の伸長のための3'-OHを供給する鎖置換を行う。一方、長い1本鎖の3'-OHは自身を鋳型とする相補鎖合成反応を行うことによって自身の伸長を達成すると同時に、ループから合成開始した新たな相補鎖の置換を行う。このような増幅反応工程が、高い特異性を維持しながら等温条件下で進行する。
【0023】
本発明におけるオリゴヌクレオチドは、2つの連続した領域が設計どおりに配置されているときにはじめて本発明による核酸合成反応のためのプライマーとして機能する。このことが、特異性の維持に大きく貢献する。たとえばPCRでは、2つのプライマーの意図した位置関係とは無関係に、非特異的なミスアニールにより、非特異的増幅反応が開始してしまうことと比べれば、本発明では高い特異性が期待できることは容易に説明できる。この特徴を利用してSNPsを高い感度で精確に検出することができる。
【0024】
本発明の特徴は、このような反応がごく単純な試薬構成で容易に達成できることにある。たとえば本発明によるオリゴヌクレオチドは、特殊な構造を持つとは言えそれは塩基配列の選択の問題であって、物質としては単なるオリゴヌクレオチドである。また、望ましい態様においては、鎖置換型の相補鎖合成反応を触媒するDNAポリメラーゼのみで反応を進めることができる。更に、RNAを鋳型として本発明を実施する場合には、Bca DNAポリメラーゼのような逆転写酵素活性と鎖置換型のDNAポリメラーゼ活性を併せ持つDNAポリメラーゼを利用することによって、全ての酵素反応を単一の酵素によって行うことができる。このようなシンプルな酵素反応で高度な核酸の増幅反応を実現する反応原理はこれまでに知られていない。あるいは、SDA等の公知の核酸合成反応に適用するとしても、本発明との組み合わせによって新たな酵素が必要となるようなことはなく、単に本発明に基づくオリゴヌクレオチドを組み合わせるだけで各種反応系への適応が可能である。したがて、本発明による核酸合成方法は、コストの点においても有利といえる。以上述べたように、本発明の核酸の合成方法とそのためのオリゴヌクレオチドは、操作性(温度制御不要)、合成効率の向上、経済性、そして高い特異性という、複数の困難な課題を同時に解決する新たな原理を提供する。
【発明を実施するための最良の形態】
【0025】
本発明において合成の目的としている1本鎖上に相補的な塩基配列が交互に連結された核酸とは、1本鎖上に互いに相補的な塩基配列を隣り合せに連結した核酸を意味する。更に本発明においては、相補的な塩基配列の間にループを形成するための塩基配列を含まなければならない。本発明においては、この配列をループ形成配列と呼ぶ。そして本発明によって合成される核酸は、実質的に前記ループ形成配列によって連結された互いに相補的な塩基配列で構成される。なお一般的には、それが部分的に塩基対結合を伴っているかどうかにかかわらず、塩基対結合を解離させたときに2つ以上の分子に分離しないものを1本鎖と呼ぶ。相補的な塩基配列は、同一鎖上で塩基対結合を形成することができる。本発明による1本鎖上に相補的な塩基配列が交互に連結した核酸を、同一鎖上で塩基対結合させることによって得ることができる分子内塩基対結合生成物は、見かけ上2本鎖を構成する領域と、塩基対結合を伴わないループ部分を与える。
【0026】
すなわち、本発明における1本鎖上に相補的な塩基配列が交互に連結した核酸とは、同一鎖上でアニールすることが可能な相補的な塩基配列を含み、そのアニール生成物は折れ曲がったヒンジ部分に塩基対結合を伴わないループを構成する1本鎖核酸と定義することもできる。そして塩基対結合を伴わないループには、相補的な塩基配列を持つヌクレオチドがアニールすることができる。ループ形成配列は任意の塩基配列であることができる。置換のための相補鎖合成を開始することができるように塩基対結合が可能であり、望ましくは特異的なアニーリングを達成するために他の領域に存在する塩基配列から識別可能な配列を備える。たとえば望ましい態様においては、鋳型となる核酸に由来し同一鎖上でアニールする領域(すなわちF1cやR1c)の更に3'側に位置する領域F2c(あるいはR2c)と実質的に同じ塩基配列を含む。
【0027】
本発明において、実質的に同じ塩基配列とは、次のように定義される。すなわち、ある配列を鋳型として合成された相補鎖が、目的の塩基配列に対してアニールし相補鎖合成の起点を与えるとき、このある配列は目的の塩基配列に対して実質的に同一である。たとえばF2に対して実質的に同一な塩基配列とは、F2とまったく同一な塩基配列に加えて、F2にアニールして相補鎖合成の起点となりうる塩基配列を与える鋳型として機能する塩基配列を含む。本発明における用語「アニール」は、核酸がワトソン−クリックの法則に基づく塩基対結合によって2本鎖構造を形成することを意味する。したがって、塩基対結合を構成する核酸鎖が1本鎖であっても、分子内の相補的な塩基配列が塩基対結合を形成すれば、アニールである。本発明において、アニールとハイブリダイズは、核酸が塩基対結合による2本鎖構造を構成する点で同義である。
【0028】
本発明による核酸を構成する相補的な塩基配列の数は、少なくとも1組である。本発明の望ましい態様によれば、その整数倍となることもある。そしてこの場合、理論的には本発明における前記核酸を構成する相補的な塩基配列のペアの数に上限はない。本発明の合成生成物である核酸が複数組の相補的な塩基配列で構成されるとき、この核酸は同じ塩基配列の繰り返しからなる。
【0029】
本発明によって合成される1本鎖上に相補的な塩基配列が交互に連結した核酸は、必ずしも天然の核酸と同じ構造を取る必要はない。核酸重合化酵素の作用によって核酸を合成するときに基質としてヌクレオチド誘導体を利用すれば、核酸の誘導体の合成が可能なことは公知である。このようなヌクレオチド誘導体には、ラジオアイソトープで標識したヌクレオチドや、ビオチンやジゴキシンのような結合性リガンドで標識したヌクレオチド誘導体などが用いられる。これらのヌクレオチド誘導体を用いることにより、生成物である核酸誘導体の標識が達成される。あるいは、蛍光性のヌクレオチドを基質として用いることによって、生成物である核酸を蛍光性の誘導体とすることができる。更にこの生成物は、DNAであることもできるし、RNAとすることもできる。いずれを生成するかは、プライマーの構造、重合のための基質の種類、そして核酸の重合を行う重合化試薬との組み合わせによって決定される。
【0030】
上記の構造を持った核酸の合成は、鎖置換活性を持ったDNAポリメラーゼと、3'末端に同一鎖上の一部F1cにアニールすることができる領域F1を備え、この領域F1が同一鎖上のF1cにアニールすることによって、塩基対結合が可能な領域F2cを含むループを形成することができる核酸によって開始することができる。へアピンループを形成させて自身を鋳型(template)とする相補鎖合成反応の報告は多いが、本発明においてはヘアピンループ部分に塩基対結合を可能とする領域を備えており、この領域を相補鎖合成に利用している点において新規である。この領域を合成起点とすることにより、先に自身を鋳型として合成された相補鎖が置換される。そして置換された鎖の3'側に存在する領域R1c(任意の領域)が塩基対結合可能な状態となる。このR1cに相補的な塩基配列を持つ領域がアニールして相補鎖合成を行われ、結果としてF1からR1cにいたる塩基配列とその相補鎖とがループ形成配列を介して交互に結合した核酸(2分子)が生成する。本発明において、たとえば前記R1cのように任意に選択される領域は、その領域に相補的な塩基配列を持つポリヌクレオチドをアニールすることができ、そしてそのポリヌクレオチドを合成起点として合成される相補鎖が本発明に必要な機能を備えている限り、任意の領域から選択することができる。
【0031】
更に本発明では、核酸という用語を用いる。本発明において核酸とは、一般的にはDNAとRNAの双方を含む。しかしながら、構成ヌクレオチドが人工的な誘導体に置換されているものや、あるいは天然のDNAやRNAが修飾されたものであっても、相補鎖合成のための鋳型として機能する限り、本発明の核酸に含まれる。本発明の核酸は、一般に生物学的な試料に含まれる。生物学的試料とは、動物、植物、あるいは微生物の組織、細胞、培養物、排泄物あるいはそれらの抽出物を示すことができる。本発明の生物学的試料には、ウイルスやマイコプラズマのような細胞内寄生体のゲノムDNA、あるいはRNAが含まれる。また本発明の核酸は、前記生物学的試料に含まれる核酸から誘導されたものであってもよい。たとえば、mRNAをもとに合成されたcDNAや、生物学的試料に由来する核酸をもとに増幅された核酸は、本発明における核酸の代表的なものである。
【0032】
本発明の特徴となっている、3'末端に同一鎖上の一部F1cにアニールすることができる領域F1を備え、この領域F1が同一鎖上のF1cにアニールすることによって、塩基対結合が可能な領域F2cを含むループを形成することができる核酸は、様々な方法によって得ることができる。もっとも望ましい態様においては、次の構造を持ったオリゴヌクレオチドを利用した相補鎖合成反応に基づいてその構造を与えることができる。
【0033】
すなわち本発明において有用なオリゴヌクレオチドとは、少なくとも以下の2つの領域X2およびX1cとで構成され、X2の5'側にX1cが連結されたオリゴヌクレオチドからなる。
X2:特定の塩基配列を持つ核酸の領域X2cに相補的な塩基配列を持つ領域
X1c:特定の塩基配列を持つ核酸における領域X2cの5'側に位置する領域X1cと実質的に同じ塩基配列を持つ領域
【0034】
ここで、本発明のオリゴヌクレオチドの構造を決定する特定の塩基配列を持つ核酸とは、本発明のオリゴヌクレオチドをプライマーとして利用するときに、その鋳型となる核酸を意味する。本発明の合成方法に基づいて核酸の検出を行う場合には、特定の塩基配列を持つ核酸とは、検出対象、あるいは検出対象から誘導された核酸である。特定の塩基配列を持つ核酸は、少なくともその一部の塩基配列が明らかとなっている、あるいは推測が可能な状態にある核酸を意味する。塩基配列を明らかにすべき部分とは、前記領域X2cおよびその5'側に位置する領域X1cである。この2つの領域は、連続する場合、そして離れて存在する場合とを想定することができる。両者の相対的な位置関係により、生成物である核酸が自己アニールしたときに形成されるループ部分の状態が決定される。また、生成物である核酸が分子間のアニールではなく自己アニールを優先的に行うためには、両者の距離が不必要に離れないほうが望ましい。したがって、両者の位置関係は、通常0-500塩基分の距離を介して連続するようにするのが望ましい。ただし、後に述べる自己アニールによるループの形成において、両者があまりにも接近している場合には望ましい状態のループの形成を行うには不利となるケースも予想される。ループにおいては、新たなオリゴヌクレオチドのアニールと、それを合成起点とする鎖置換を伴う相補鎖合成反応がスムーズに開始できる構造が求められる。したがってより望ましくは、領域X2cおよびその5'側に位置する領域X1cとの距離が、0〜100塩基、さらに望ましくは10〜70塩基となるように設計する。なおこの数値はX1cとX2を含まない長さを示している。ループ部分を構成する塩基数は、更にX2に相当する領域を加えた長さとなる。
【0035】
なお本発明に基づくオリゴヌクレオチドを構成する塩基配列の特徴付けのために用いられる同一、あるいは相補的という用語は、いずれも完全に同一、あるいは完全に相補的であることを意味しない。すなわち、ある配列と同一とは、ある配列に対してアニールすることができる塩基配列に対して相補的な配列をも含むことができる。他方、相補的とは、ストリンジェントな条件下でアニールすることができ、相補鎖合成の起点となる3'末端を提供することができる配列を意味する。
【0036】
上記特定の塩基配列を持つ核酸に対して本発明によるオリゴヌクレオチドを構成する領域X2およびX1cは、通常は重複することなく連続して配置される。あるいはもしも両者の塩基配列に共通の部分があるのであれば、部分的に両者を重ねて配置することもできる。X2はプライマーとして機能する必要があることから、常に3'末端となるようにしなければならない。一方X1cは、後に述べるように、これを鋳型として合成された相補鎖の3'末端にプライマーとしての機能を与える必要があることから、5'末端に配置する。このオリゴヌクレオチドを合成起点として得られる相補鎖は、次のステップにおいては逆向きからの相補鎖合成の鋳型となり、最終的には本発明によるオリゴヌクレオチド部分も鋳型として相補鎖に写し取られる。写し取られることによって生じる3'末端は塩基配列X1を備えており、同一鎖上のX1cにアニールするとともに、ループを形成する。
【0037】
本発明においてオリゴヌクレオチドとは、相補的な塩基対結合を形成できること、そしてその3'末端において相補鎖合成の起点となる-OH基を与えること、の2つの条件を満たすものを意味する。したがって、そのバックボーンは必ずしもホスホジエステル結合によるものに限定されない。たとえばPではなくSをバックボーンとしたホスホチオエート体やペプチド結合に基づくペプチド核酸からなるものであることもできる。また、塩基は、相補的な塩基対結合を可能とするものであれば良い。天然の状態では、一般にはACTGおよびUの5種類となるが、たとえばブロモデオキシウリジン(bromodeoxyuridine)といった類似体であることもできる。本発明に用いるオリゴヌクレオチドは、合成の起点となるのみならず、相補鎖合成の鋳型としても機能するものであることが望ましい。なお、本発明においてはオリゴヌクレオチドを含む用語としてポリヌクレオチドを用いる。用語ポリヌクレオチドは、その鎖長を制限しない場合に用い、オリゴヌクレオチドは比較的短い鎖長のヌクレオチド重合体を意味する用語として用いられる。
【0038】
本発明によるオリゴヌクレオチドは、以下に述べる各種の核酸合成反応において、与えられた環境の下で必要な特異性を維持しながら相補鎖との塩基対結合を行うことができる程度の鎖長を持つ。具体的には、5-200塩基、より望ましくは10-50塩基対とする。配列依存的な核酸合成反応を触媒する公知のポリメラーゼが認識するプライマーの鎖長が、最低5塩基前後であることから、アニールする部分の鎖長はそれ以上である必要がある。加えて、塩基配列としての特異性を期待するためには、確率的に10塩基以上の長さを利用するのが望ましい。一方、あまりにも長い塩基配列は化学合成によって調製することが困難となることから、前記のような鎖長が望ましい範囲として例示される。なお、ここで例示した鎖長はあくまでも相補鎖とアニールする部分の鎖長である。後に述べるように、本発明によるオリゴヌクレオチドは最終的には少なくとも2つの領域に個別にアニールすることができる。したがって、ここに例示する鎖長は、オリゴヌクレオチドを構成する各領域の鎖長と理解するべきである。
【0039】
更に、本発明によるオリゴヌクレオチドは、公知の標識物質によって標識することができる。標識物質としては、ジゴキシンやビオチンのような結合性リガンド、酵素、蛍光物質や発光物質、あるいは放射性同位元素などを示すことができる。あるいは、オリゴヌクレオチドを構成する塩基を蛍光性のアナログに置換する技術(WO95/05391、 Proc.Natl.Acad.Sci.USA、91、6644-6648、1994)も公知である。
【0040】
この他本発明によるオリゴヌクレオチドは、それ自身を固相に結合させておくこともできる。あるいは、オリゴヌクレオチドの任意の部分にビオチンのような結合性のリガンドで標識しておき、これを固相化アビジンのような結合パートナーによって間接的に固相化することもできる。固相化オリゴヌクレオチドを合成開始点とする場合には、核酸の合成反応生成物が固相に捕捉されることから、分離が容易となる。分離された生成物に対して、核酸特異的な指示薬や、あるいは更に標識プローブをハイブリダイズさせることによって、検出を行うこともできる。あるいは、任意の制限酵素で消化することによって、目的とする核酸の断片を回収することもできる。
【0041】
本発明において用いられる鋳型という用語は、相補鎖合成の鋳型となる側の核酸を意味する。鋳型に相補的な塩基配列を持つ相補鎖は、鋳型に対応する鎖としての意味を持つが、両者の関係はあくまでも相対的なものに過ぎない。すなわち、相補鎖として合成された鎖は、再び鋳型として機能することができる。つまり、相補鎖は鋳型になることができる。
【0042】
本発明に有用なオリゴヌクレオチドは前記2つの領域のみならず、更に付加的な領域を含むことができる。X2とX1cとがそれぞれ3'末端と5'末端に配置される一方、両者の間に任意の配列を介在させることが可能である。それは、たとえば制限酵素認識配列、RNAポリメラーゼが認識するプロモーター、あるいはリボザイムをコードするDNA等であることができる。制限酵素認識配列とすることにより、本発明の合成産物である1本鎖上に相補的な塩基配列が交互に連結された核酸を同じ長さを持った2本鎖核酸に切りそろえることができるようになる。RNAポリメラーゼが認識するプロモーター配列を配置すれば、本発明の合成生成物を鋳型として更にRNAへの転写が行われる。このときに、更にリボザイムをコードするDNAを配置すれば、転写生成物を自身で切断する系が実現する。なお、これらの付随的な塩基配列はいずれも2本鎖となった場合に機能するものである。したがって、本発明による1本鎖の核酸がループを形成しているときには、これらの配列は機能しない。核酸の伸長が進み、ループを含まない状態で相補的な塩基配列を持つ鎖とアニールした状態になったときにはじめて機能する。
【0043】
本発明に基づくオリゴヌクレオチドに対して、合成された領域の転写を可能とする方向でプロモーターを組み合わせた場合、同じ塩基配列を繰り返す本発明に基づく反応生成物は、高度に効率的な転写系を実現する。これを適当な発現系と組み合わせることによって、タンパク質への翻訳も可能である。すなわち、細菌や動物細胞内で、あるいはin vitroでの転写とタンパク質への翻訳に利用することができる。
【0044】
上記のような構造の本発明によるオリゴヌクレオチドは、化学的に合成することができる。あるいは天然の核酸を制限酵素などによって切断し、上記のような塩基配列で構成されるように改変する、あるいは連結することも可能である。
【0045】
本発明による核酸の合成方法において有用な上記オリゴヌクレオチドを利用し、鎖置換活性を持ったDNAポリメラーゼと組み合わせて合成を行う反応について、基本的な原理を図5−6を参考にしながら以下に説明する。上記オリゴヌクレオチド(図5におけるFA)は、まずX2(F2に相当)が鋳型となる核酸にアニールし相補鎖合成の起点となる。図5においてはFAを起点として合成された相補鎖がアウタープライマー(F3)からの相補鎖合成(後述)によって置換され、1本鎖(図5−A)となっている。得られた相補鎖に対して更に相補鎖合成を行うと、このとき図5−Aの相補鎖として合成される核酸の3'末端部分は、本発明によるオリゴヌクレオチドに相補的な塩基配列を持つ。つまり、本発明のオリゴヌクレオチドは、その5'末端部分に領域X1c(F1cに相当)と同じ配列を持つことから、このとき合成される核酸の3'末端部分はその相補配列X1(F1)を持つことになる。図5は、R1を起点として合成された相補鎖がアウタープライマーR3を起点とする相補鎖合成によって置換される様子を示している。置換によって3'末端部分が塩基対結合が可能な状態となると、3'末端のX1(F1)は、同一鎖上のX1c(F1c)にアニールし、自己を鋳型とした伸長反応が進む(図5−B)。そしてその3'側に位置するX2c(F2c)を塩基対結合を伴わないループとして残す。このループには本発明によるオリゴヌクレオチドのX2(F2)がアニールし、これを合成起点とする相補鎖合成が行われる(図5−B)。このとき、先に合成された自身を鋳型とする相補鎖合成反応の生成物が、鎖置換反応によって置換され塩基対結合が可能な状態となる。
【0046】
本発明によるオリゴヌクレオチドを1種類、そしてこのオリゴヌクレオチドをプライマーとして合成された相補鎖を鋳型として核酸合成を行うことが可能な任意のリバースプライマーを用いた基本的な構成によって、図6に示すような複数の核酸合成生成物を得ることができる。図6からわかるとおり、(D)が本発明において合成の目的となっている1本鎖上に相補的な塩基配列が交互に連結された核酸である。他方の生成物(E)は、加熱変性などの処理によって1本鎖とすれば再び(D)を生成するための鋳型となる。また2本鎖状態にある核酸である生成物(D)は、もしも加熱変性などによって1本鎖にされた場合、もとの2本鎖とはならずに高い確率で同一鎖内部でのアニールが起きる。なぜならば、同じ融解温度(Tm)を持つ相補配列ならば、分子間(intermolecular)反応よりも分子内(intramolecular)反応のほうがはるかに優先的に進むためである。同一鎖上でアニールした生成物(D)に由来する1本鎖は、それぞれが同一鎖内でアニールして(B)の状態に戻るので、更にそれぞれが1分子づつの(D)と(E)を与える。これらの工程を繰り返すことによって、1本鎖上に相補的な塩基配列が交互に連結された核酸を次々に合成していくことが可能である。1サイクルで生成される鋳型と生成物が指数的に増えていくので、たいへん効率的な反応となる。
【0047】
ところで図5−(A)の状態を実現するためには、はじめに合成された相補鎖を少なくともリバースプライマーがアニールする部分において塩基対結合が可能な状態にしなければならない。このステップは任意の方法によって達成することができる。すなわち、最初の鋳型に対して本発明のオリゴヌクレオチドがアニールする領域F2cよりも更に鋳型上で3'側の領域F3cにアニールするアウタープライマー(F3)を別に用意する。このアウタープライマーを合成起点として鎖置換型の相補鎖合成を触媒するポリメラーゼによって相補鎖合成を行えば、本発明の前記F2cを合成開始点として合成された相補鎖は置換され、やがてR1がアニールすべき領域R1cを塩基対結合が可能な状態とする(図5)。鎖置換反応を利用することによって、ここまでの反応を等温条件下で進行させることができる。
【0048】
アウタープライマーを利用する場合には、F2cからの合成よりも後にアウタープライマー(F3)からの合成が開始される必要がある。最も単純な方法はインナープライマーの濃度をアウタープライマーの濃度よりも高くすることである。具体的には、通常2〜50倍、望ましくは4〜10倍の濃度差でプライマーを用いることにより、期待どおりの反応を行わせることができる。またアウタープライマーの融解温度(Tm)をインナープライマーのX1(F1やR1に相当)領域のTmより低くなるように設定することによって合成のタイミングをコントロールすることもできる。すなわち、(アウタープライマーF3:F3c)≦(F2c/F2)≦(F1c/F1)、あるいは(アウタープライマー/鋳型における3'側の領域)≦(X2c:X2)≦(X1c:X1)である。なおここで(F2c/F2)≦(F1c/F1)としたのは、F2がループ部分にアニールするよりも先にF1c/F1間のアニールを行わせるためである。F1c/F1間のアニールは分子内の反応なので優先的に進む可能性が高い。しかしより望ましい反応条件を与えるためにTmを考慮することには意義がある。同様の条件は、リバースプライマーの設計においても考慮すべきであることは言うまでもない。このような関係とすることにより、確率的に理想的な反応条件を達成することができる。融解温度(Tm)は、他の条件が一定であればアニールする相補鎖の長さと塩基対結合を構成する塩基の組み合わせによって理論的に算出することができる。したがって当業者は、本明細書の開示に基づいて望ましい条件を容易に導くことができる。
【0049】
更にアウタープライマーのアニールのタイミングを調整するために、コンティギュアス スタッキング(contiguous stacking)と呼ばれる現象を応用することもできる。コンティギュアス スタッキングとは、単独ではアニールすることができないオリゴヌクレオチドが2本鎖部分に隣接することによってアニールが可能となる現象である(Chiara Borghesi-Nicoletti et.al. Bio Techniques 12、 474-477(1992)。つまり、アウタープライマーをF2c(X2c)に隣接させ、単独ではアニールできないように設計しておくのである。こうすれば、F2c(X2c)がアニールしたときに初めてアウタープライマーのアニールが可能となるので、必然的にF2c(X2c)のアニールが優先されることになる。この原理に基づいて、一連の反応にプライマーとして必要なオリゴヌクレオチドの塩基配列を設定した例が実施例に記載されている。なお、この工程は加温による変性や、DNAヘリカーゼによって達成することもできる。
【0050】
F2c(X2c)を持つ鋳型核酸がRNAの場合には、異なる方法により図5−(A)の状態を実現することもできる。たとえば、このRNA鎖を分解してしまえば、R1は塩基対結合が可能な状態となる。すなわち、F2をRNAのF2cにアニールさせ、逆転写酵素によってDNAとして相補鎖合成を行う。次いで鋳型となったRNAをアルカリ変性やDNA/RNA2本鎖のRNAに作用するリボヌクレアーゼによる酵素処理によって分解すれば、F2から合成したDNAは1本鎖となる。DNA/RNA2本鎖のRNAを選択的に分解する酵素には、RNaseHや、一部の逆転写酵素が備えているリボヌクレアーゼ活性を利用することができる。こうして塩基対結合を可能としたR1cにリバースプライマーをアニールさせることができる。したがってR1cを塩基結合可能な状態とするためのアウタープライマーが不要となる。
【0051】
あるいは逆転写酵素が備えている鎖置換活性を利用して、先に述べたアウタープライマーによる鎖置換を行うこともできる。この場合は逆転写酵素のみで反応系を構成することができる。すなわち、RNAを鋳型として、そのF2cにアニールするF2からの相補鎖合成、更にその3'側に位置するF3cにアニールするアウタープライマーF3を合成起点とする相補鎖合成と置換とが、逆転写酵素で可能となる。逆転写酵素がDNAを鋳型とする相補鎖合成反応を行うものであれば、置換された相補鎖を鋳型としてそのR1cにアニールするR1を合成起点とする相補鎖合成、そして3'側に位置するR3cにアニールするR3を合成起点とする相補鎖合成と置換反応をも含めてすべての相補鎖合成反応が逆転写酵素によって進行する。あるいは、与えられた反応条件の下で逆転写酵素にDNA/DNA鎖の置換活性が期待できないときには、先に述べた鎖置換活性を持ったDNAポリメラーゼを組み合わせて用いても良い。以上のように、RNAを鋳型として第1の1本鎖核酸を得るという態様は、本発明における望ましい態様を構成する。逆に、鎖置換活性を有し、逆転写酵素活性を併せ持つBca DNA ポリメラーゼのようなDNAポリメラーゼを利用しても、同様にRNAからの第1の1本鎖核酸の合成のみならず、以降のDNAを鋳型とする反応も同一の酵素によって行うことができる。
【0052】
さて、以上のような反応系は前記リバースプライマーとして特定の構造を持つものを利用することによって、本発明に固有の様々なバリエーションをもたらす。もっとも効果的なバリエーションについて以下に述べる。すなわち、本発明のもっとも有利な態様においては、前記リバースプライマーとして、〔5〕に述べたような構成からなるオリゴヌクレオチドを用いるのである。〔5〕のオリゴヌクレオチドとは、すなわちF2をプライマーとして合成される相補鎖における任意の領域R2cをX2cとし、R1cをX1cとするオリゴヌクレオチドである。このようなリバースプライマーの利用により、ループの形成とこのループ部分からの相補鎖合成と置換という一連の反応が、センス鎖とアンチセンス鎖(フォーワード側とリバース側)の両方で起きるようになる。その結果、本発明による1本鎖上に相補的な塩基配列が交互に連結された核酸の合成方法の合成効率が飛躍的に向上すると共に、一連の反応を等温で実施可能とするものである。以下に、この態様をまとめた図1−図3に基づき、具体的に説明する。
【0053】
以下の態様においては、本発明に基づくオリゴヌクレオチドとして2種類を用意する。これを説明のためにFAとRAと名づける。FAとRAを構成する領域は、以下のとおりである。

【0054】
ここで、F2は鋳型となる核酸の領域F2cに相補的な塩基配列である。またR2はF2をプライマーとして合成される相補鎖に含まれる任意の領域R2cに相補的な塩基配列である。F1cとR1cはそれぞれ、F2cおよびR2cのそれぞれ下流に位置する任意の塩基配列である。ここでF2−R2間の距離は任意であって良い。相補鎖合成を行うDNAポリメラーゼの合成能力にも依存するが、好適な条件では1kbp程度の長さであっても十分に合成が可能である。より具体的には、Bst DNAポリメラーゼを用いた場合、F2/R2c間で800bp、望ましくは500bp以下の長さであれば確実に合成される。温度サイクルを伴うPCRでは、温度変化ストレスによる酵素活性の低下が長い塩基配列の合成効率を下げるとされている。本発明における望ましい態様では、核酸増幅工程における温度サイクルが不要となるので、長い塩基配列であっても合成、ならびに増幅を確実に達成することができる。
【0055】
まず鋳型となる核酸に対してFAのF2をアニールさせ、これを合成起点として相補鎖合成を行う。以下、図1の(4)にいたるまでは先に説明した本発明の基本的な態様(図5)と同様の反応工程となっている。図1の(2)でF3としてアニールしている配列は、先に説明したアウタープライマーである。このプライマーを合成起点として鎖置換型の相補鎖合成を行うDNAポリメラーゼで行うことにより、FAから合成した相補鎖は置換され、塩基対結合が可能な状態となる。
【0056】
(4)でR2cが塩基対結合が可能な状態となったところで、リバースプライマーとしてのRAがR2c/R2の組み合わせでアニールする。これを合成起点とする相補鎖合成は、FAの5'側末端であるF1cに至る部分まで行われる。この相補鎖合成反応に続いて、やはり置換用のアウタープライマーR3がアニールし、鎖置換を伴って相補鎖合成を行うことにより、RAを合成起点として合成された相補鎖が置換される。このとき置換される相補鎖は、RAを5'側に持ちFAに相補的な配列が3'末端に位置する。
【0057】
さて、こうして置換された1本鎖核酸の3'側には、同一鎖上のF1cに相補的な配列F1が存在する。F1は、同一分子内に並ぶF1cに速やかにアニールし、相補鎖合成が始まる。3'末端(F1)が同一鎖上のF1cにアニールするときに、F2cを含むループが形成されている。このループ部分は塩基対結合が可能な状態で維持されていることは、図2-(7)からも明らかである。F2cに相補的な塩基配列を持つ本発明のオリゴヌクレオチドFAは、このループ部分にアニールして相補鎖合成の起点となる(7)。ループ部分からの相補鎖合成は、先に開始したF1からの相補鎖合成の反応生成物を置換しながら進む。その結果、自身を鋳型として合成された相補鎖は、再び3'末端において塩基対結合が可能な状態となる。この3'末端は、同一鎖上のR1cにアニールしうる領域R1を3'末端に備えており、やはり同一分子内の速やかな反応により両者は優先的にアニールする。こうして、先に説明したFAを鋳型として合成された3'末端からの反応と同様の反応が、この領域でも進行する。結果として、本発明による1本鎖上に相補的な塩基配列が交互に連結された核酸は次々と相補鎖合成と置換とを継続し、その3'末端R1を起点とする伸長を続けることになる。3'末端R1の同一鎖へのアニールによって形成されるループには常にR2cが含まれることから、以降の反応で3'末端のループ部分にアニールするのは常にR2を備えたオリゴヌクレオチド(すなわちRA)となる。
【0058】
一方、自分自身を鋳型として伸長を継続する1本鎖の核酸に対して、そのループ部分にアニールするオリゴヌクレオチドを合成起点として相補鎖合成される核酸に注目すると、ここでも本発明による1本鎖上に相補的な塩基配列が交互に連結された核酸の合成が進行している。すなわち、ループ部分からの相補鎖合成は、たとえば図2−(7)においては、RAに達した時点で完了する。そして、この核酸の合成によって置換された核酸が相補鎖合成を開始(図3−(8))すると、やがてその反応はかつて合成起点であったループ部分に達して再び置換が始まる。こうしてループ部分から合成を開始した核酸も置換され、その結果同一鎖上にアニールすることができる3'末端R1を得る(図3−(10))。この3'末端R1は同一鎖のR1cにアニールして相補鎖合成を開始する。さて、この反応のFとRを読みかえれば、図2−(7)で起きている反応と同じである。したがって図3−(10)に示す構造は、自身の伸長と新たな核酸の生成を継続する新しい核酸として機能することができる。
【0059】
なお図3−(10)に示す核酸から開始する核酸の合成反応は、ここまで述べてきたものとは逆に常に3'末端F1を合成起点とする伸長となる。すなわち本発明においては、1つの核酸の伸長に伴って、これとは別に伸長を開始する新たな核酸を供給しつづける反応が進行する。更に鎖が伸長するのに従い、末端のみならず、同一鎖上に複数のループ形成配列がもたらされる。これらのループ形成配列は、鎖置換合成反応により塩基対形成可能な状態となると、オリゴヌクレオチドがアニールし、新たな核酸の生成反応の基点となる。末端のみならず鎖の途中からの合成反応も組み合わされることにより、さらに効率のよい増幅反応が達成されるのである。以上のようにリバースプライマーとして本発明に基づくオリゴヌクレオチドRAを組み合わせることによって、伸長とそれに伴う新たな核酸の生成が起きる。更に本発明においては、この新たに生成した核酸自身が伸長し、それに付随する更に新たな核酸の生成をもたらす。一連の反応は、理論的には永久に継続し、きわめて効率的な核酸の増幅を達成することができる。しかも本発明の反応は、等温条件のもとで行うことができる。
【0060】
このとき蓄積する反応生成物は、F1−R1間の塩基配列とその相補配列が交互に連結された構造を持つ。ただし繰り返し単位となっている配列の両端には、F2−F1(F2c−F1c)、またはR2−R1(R2c−R1c)の塩基配列で構成される領域が連続している。たとえば図3−(9)では、5'側から(R2−F2c)−(F1−R2c)−(R1−F1c)−(F2−R2c)という順序で連結された状態となる。これは、本発明に基づく増幅反応が、オリゴヌクレオチドを合成起点としてF2(またはR2)から開始し、続いて自身の3'末端を合成起点とするF1(またはR1)からの相補鎖合成反応によって伸長するという原理のもとに進行しているためである。
【0061】
さて、ここでは最も望ましい態様としてループ部分にアニールするオリゴヌクレオチドに本発明によるオリゴヌクレオチドFA、およびRAを用いた。しかし本発明による核酸の増幅反応は、これらの限られた構造を持ったオリゴヌクレオチドのみならず、ループからの相補鎖合成を開始できるオリゴヌクレオチドを利用しさえすれば実施することができる。つまり、伸長を続ける3'末端はループからの相補鎖合成によって置換されさえすれば、再びループ部分を与える。ループ部分から開始する相補鎖合成は、常に1本鎖上に相補的な塩基配列が交互に連結された核酸を鋳型としていることから、本発明で目的としている核酸の合成が可能なことは自明である。ただし、ここで合成される核酸は、置換後にループを形成して相補鎖合成は行うものの、以降のループを形成するための3'末端を持たないため、新たな鋳型としては機能できなくなる。したがって、FA、あるいはRAによって合成を開始した核酸と違って指数的な増幅は期待できない。このような理由から、FAやRAのような構造を持ったオリゴヌクレオチドは、本発明に基づく高度に効率的な核酸の合成に有用なのである。
【0062】
一連の反応は、鋳型となる1本鎖の核酸に対して、以下の成分を加え、FAおよびRAを構成する塩基配列が相補的な塩基配列に対して安定な塩基対結合を形成することができ、かつ酵素活性を維持しうる温度でインキュベートするだけで進行する。
・4種類のオリゴヌクレオチド:FA、RA、アウタープライマーF3、およびアウタープライマーR3、
・鎖置換型の相補鎖合成を行うDNAポリメラーゼ、
・DNAポリメラーゼの基質となるヌクレオチド
【0063】
したがって、PCRのような温度サイクルは必要無い。なおここでいう安定な塩基対結合とは、反応系に存在するオリゴヌクレオチドの少なくとも一部が相補鎖合成の起点を与えうる状態を意味する。安定な塩基対結合をもたらす望ましい条件は、たとえば融解温度(Tm)以下に設定することである。一般に融解温度(Tm)は、互いに相補的な塩基配列を持つ核酸の50%が塩基対結合した状態となる温度とされている。融解温度(Tm)以下に設定することは本発明の必須の条件ではないが、高度な合成効率を達成するためには考慮すべき反応条件の一つである。鋳型とすべき核酸が2本鎖である場合には、少なくともオリゴヌクレオチドがアニールする領域を塩基対結合が可能な状態とする必要がある。そのためには一般に加熱変性が行われるが、これは反応開始前の前処理として1度だけ行えば良い。
【0064】
この反応は、酵素反応に好適なpHを与える緩衝剤、酵素の触媒活性の維持やアニールのために必要な塩類、酵素の保護剤、更には必要に応じて融解温度(Tm)の調整剤等の共存下で行う。緩衝剤としては、Tris-HCl等の中性から弱アルカリ性に緩衝作用を持つものが用いられる。pHは使用するDNAポリメラーゼに応じて調整する。塩類としてはKCl、NaCl、あるいは(NH4)2SO4等が、酵素の活性維持と核酸の融解温度(Tm)調整のために適宜添加される。酵素の保護剤としては、ウシ血清アルブミンや糖類が利用される。更に融解温度(Tm)の調整剤には、ジメチルスルホキシド(DMSO)やホルムアミドが一般に利用される。融解温度(Tm)の調整剤を利用することによって、前記オリゴヌクレオチドのアニールを限られた温度条件の下で調整することができる。更にベタイン(N、N、N、-trimethylglycine)やテトラアルキルアンモニウム塩は、そのisostabilize作用によって鎖置換効率の向上にも有効である。ベタインは、反応液中0.2〜3.0M、好ましくは0.5〜1.5 M程度の添加により、本発明の核酸増幅反応の促進作用を期待できる。これらの融解温度の調整剤は、融解温度を下げる方向に作用するので、塩濃度や反応温度等のその他の反応条件を考慮して、適切なストリンジェンシーと反応性を与える条件を経験的に設定する。
【0065】
本発明においては、一連の反応が常に複数の領域の位置関係を維持した状態でなければ進行しないことが重要な特徴である。この特徴によって、非特異的な相補鎖合成に伴う非特異的な合成反応が効果的に防止できるのである。すなわち、たとえ何らかの非特異的な反応が起きたとしても、その生成物が以降の増幅工程に対して出発材料となる可能性を低く押さえることにつながるのである。またより多くの領域によって反応の進行が制御されているということは、類似した塩基配列の厳密な識別を可能とする検出系を自由に構成できる可能性をもたらす。
【0066】
この特徴を遺伝子変異の検出に利用することができる。本発明におけるアウタープライマーを用いる態様においては、このアウタープライマー2種、本発明のオリゴヌクレオチドからなるプライマー2種の合計4種のプライマーが用いられている。すなわち4種のオリゴヌクレオチドに含まれる6領域が設計通りに働かなければ本発明の合成反応は進行しない。 特に、相補鎖合成の起点となる各オリゴヌクレオチドの3'末端、および相補配列が合成起点となるX1c領域の5'末端の配列は重要である。そこで、この重要な配列を検出すべき変異に対応するように設計すれば、本発明による合成反応生成物を観察することによって、塩基の欠失や挿入といった変異の有無、あるいはSNPsのような遺伝子多型を総合的に分析することができる。より具体的には、変異や多型が予想される塩基が、相補鎖合成の起点となるオリゴヌクレオチドの3'末端付近(相補鎖が起点となる場合には5'末端付近)に相当するように設計するのである。相補鎖の合成起点となる3'末端や、その付近にミスマッチが存在すると核酸の相補鎖合成反応は著しく阻害される。本発明においては、反応初期の生成物における末端構造が繰り返し反応を行わなければ高度な増幅反応に結びつかない。したがって、たとえ誤った合成が行われたとしても、増幅反応を構成する相補鎖合成がいずれかの段階で常に妨げられるのでミスマッチを含んだままでは高度な増幅は起きない。結果的にミスマッチが増幅反応を効果的に抑制し、最終的には正確な結果をもたらすことになる。つまり本発明に基づく核酸の増幅反応は、より完成度の高い塩基配列のチェック機構を備えていると言うことができる。これらの特徴は、たとえば単純に2つの領域で増幅反応を行っているPCR法などでは期待しにくい利点である。
【0067】
更に本発明に用いるオリゴヌクレオチドを特徴付ける領域X1cは、相補配列が合成されてはじめて合成起点となり、この相補配列が、新たに合成された同一鎖内の配列X1にアニールすることにより、自己を鋳型とする合成反応が進行する。このため、たとえ先行技術でしばしば重要な問題となるいわゆるプライマーダイマーを生成しても、本オリゴヌクレオチドはループを形成しない。したがって、プライマーダイマーに起因する非特異的な増幅は原理的に生じ得ず、反応の特異性向上に貢献している。
【0068】
更に本発明によれば、F3(図1-(2))やR3(図2-(5))で示したアウタープライマーを組み合わせることによって、上記の一連の反応を等温条件下で行うことができる。すなわち本発明は、前記〔9〕に示した工程を含む1本鎖上に相補的な塩基配列が交互に連結された核酸を増幅する方法を提供するものである。この方法では、F2c/F2間、R2c/R2間、F1c/F1間、そしてR1c/R1間で安定なアニールが起きる温度条件が選択され、そして望ましくはF3c/F3間、ならびにR3c/R3間は、それぞれF2c/F2間、ならびにR2c/R2間のアニールに助けられるコンティギュアス スタッキング現象によってアニールするように設定される。
【0069】
本発明においては核酸の合成(synthesis)と増幅(amplification)という用語を用いる。本発明における核酸の合成とは、合成起点となったオリゴヌクレオチドからの核酸の伸長を意味する。合成に加えて、更に他の核酸の生成と、この生成された核酸の伸長反応とが連続して起きるとき、一連の反応を総合して増幅という。
【0070】
さて、3'末端に同一鎖上の一部F1cにアニールすることができる領域F1を備え、この領域F1が同一鎖上のF1cにアニールすることによって、塩基対結合が可能な領域F2cを含むループを形成することができる1本鎖核酸は、本発明の重要な構成要素である。このような1本鎖核酸は、次のような原理に基づいて供給することもできる。すなわち、予め次のような構造を持ったプライマーに基づいて相補鎖合成を進めるのである。
5'-[プライマー内に位置する領域X1cにアニールする領域X1]−[塩基対結合が可能な状態にあるループ形成配列]−[領域X1c]−[鋳型に相補的な配列を持つ領域]-3'
【0071】
鋳型に相補的な配列を持つ領域には、F1に相補的な塩基配列(プライマーFA)およびR1cに相補的な塩基配列(プライマーRA)の2種類を用意する。なお、このとき合成すべき核酸を構成する塩基配列は、領域F1から領域R1cにいたる塩基配列と、この塩基配列に相補的な塩基配列を持つ領域R1から領域F1cにいたる塩基配列とを含むものである。一方、プライマー内部でアニールすることができるX1cとX1は、任意の配列とすることができる。ただしプライマーFAとRAの間では、領域X1c/X1の配列を異なるものとするのが望ましい。
【0072】
まず鋳型核酸の領域F1から前記プライマーFAによる相補鎖合成を行う。次いで合成された相補鎖の領域R1cを塩基対結合が可能な状態とし、ここに一方のプライマーをアニールさせて相補鎖合成の起点とする。このとき合成される相補鎖の3'末端は、最初に合成された鎖の5'末端部分を構成するプライマーFAに相補的な塩基配列を持つので、3'末端には領域X1を持ち、これが同一鎖上の領域X1cにアニールするとともにループを形成する。こうして、前記本発明による特徴的な3'末端構造が提供され、以降の反応は最も望ましい態様として示した先の反応系そのものとなる。なおこのときループ部分にアニールするオリゴヌクレオチドは、3'末端にループ内に存在する領域X2cに相補的な領域X2を持ち、5'側には領域X1を持つものとする。先の反応系ではプライマーFAとRAを使って鋳型核酸に相補的な鎖を合成することによって核酸の3'末端にループ構造をもたらした。この方法は、短いプライマーで効果的に本発明に特徴的な末端構造を提供する。一方、本態様においては、プライマーとしてはじめからループを構成する塩基配列全体を提供しており、より長いプライマーの合成が必要となる。
【0073】
リバースプライマーに制限酵素認識領域を含む塩基配列を利用すれば、本発明による異なった態様を構成することができる。図6に基づき、リバースプライマーが制限酵素認識配列を含む場合について具体的に説明する。図6−(D)が完成したところで、リバースプライマー内の制限酵素認識部位に対応する制限酵素によりニックが生じる。このニックを合成起点として鎖置換型の相補鎖合成反応が開始する。リバースプライマーは(D)を構成する2本鎖核酸の両端に位置しているので、相補鎖合成反応も両端から開始することになる。基本的には先行技術として記載したSDA法の原理に基づくが、鋳型となる塩基配列が本発明によって相補的な塩基配列を交互に連結した構造となっているので、本発明に特有の核酸合成系が構成されるのである。なお、ニックを入れるリバースプライマーの相補鎖となる部分には制限酵素による2本鎖の切断が生じないようにヌクレアーゼ耐性となるようにdNTP誘導体が取りこまれるように設計しなければならない。
【0074】
リバースプライマーにRNAポリメラーゼのプロモーターを挿入しておくこともできる。この場合もSDA法を応用した先の態様と同様に、図6−(D)の両端からこのプロモーターを認識するRNAポリメラーゼにより転写が行われる。
【0075】
本発明によって合成された核酸は、1本鎖とは言え相補的な塩基配列から構成されるため、その大部分が塩基対結合を形成している。この特徴を利用して、合成生成物の検出が可能である。エチジウムブロマイド、SYBR Green I、あるいはPico Greenのような2本鎖特異インターカレーターである蛍光色素の存在下で本発明による核酸の合成方法を実施すれば、生成物の増加に伴って蛍光強度の増大が観察される。これをモニターすれば、閉鎖系でリアルタイムな合成反応の追跡が可能である。この種の検出系はPCR法への応用も考えられているが、プライマーダイマー等によるシグナルの発生と区別がつかないことから問題が多いとされている。しかし本発明に応用した場合には、非特異的な塩基対結合が増加する可能性が非常に低いことから、高い感度と少ないノイズが同時に期待できる。2本鎖特異インターカレーターと同様に、均一系の検出系を実現する方法として、蛍光エネルギー転移の利用が可能である。
【0076】
本発明による核酸の合成方法を支えているのは、鎖置換型の相補鎖合成反応を触媒するDNAポリメラーゼである。上記反応中には、必ずしも鎖置換型のポリメラーゼを要しない反応ステップも含まれてはいる。しかし、構成試薬の単純化、そして経済性の点で、1種類のDNAポリメラーゼを利用するのが有利である。この種のDNAポリメラーゼには、以下のようなものが知られている。また、これらの酵素の各種変異体についても、それが配列依存型の相補鎖合成活性と鎖置換活性を有する限り、本発明に利用することができる。ここで言う変異体とは、酵素の必要とする触媒活性をもたらす構造のみを取り出したもの、あるいはアミノ酸の変異等によって触媒活性、安定性、あるいは耐熱性を改変したもの等を示すことができる。
Bst DNAポリメラーゼ
Bca(exo-)DNAポリメラーゼ
DNA ポリメラーゼIのクレノウ・フラグメント
Vent DNAポリメラーゼ
Vent(Exo-)DNAポリメラーゼ(Vent DNAポリメラーゼからエクソヌクレアーゼ活性を除いたもの)
DeepVent DNAポリメラーゼ
DeepVent(Exo-)DNAポリメラーゼ(DeepVent DNAポリメラーゼからエクソヌクレアーゼ活性を除いたもの)
Φ29ファージDNAポリメラーゼ
MS-2ファージDNAポリメラーゼ
Z-Taq DNAポリメラーゼ(宝酒造)
KOD DNAポリメラーゼ(東洋紡績)
【0077】
これらの酵素の中でもBst DNAポリメラーゼやBca(exo-)DNAポリメラーゼは、ある程度の耐熱性を持ち、触媒活性も高いことから特に望ましい酵素である。本発明の反応は、望ましい態様においては等温で実施することができるが、融解温度(Tm)の調整などのために必ずしも酵素の安定性にふさわしい温度条件を利用できるとは限らない。したがって、酵素が耐熱性であることは望ましい条件の一つである。また、等温反応が可能とは言え、最初の鋳型となる核酸の提供のためにも加熱変性は行われる可能性があり、その点においても耐熱性酵素の利用はアッセイプロトコールの選択の幅を広げる。
【0078】
Vent(Exo-)DNAポリメラーゼは、鎖置換活性と共に高度な耐熱性を備えた酵素である。ところでDNAポリメラーゼによる鎖置換を伴う相補鎖合成反応は、1本鎖結合タンパク質(single strand binding protein)の添加によって促進されることが知られている(Paul M.Lizardi et al、 Nature Genetics 19、 225-232、 July、1998)。この作用を本発明に応用し、1本鎖結合タンパク質を添加することによって相補鎖合成の促進効果を期待することができる。たとえばVent(Exo-)DNAポリメラーゼに対しては、1本鎖結合タンパク質としてT4 gene 32が有効である。
【0079】
なお3'-5'エクソヌクレアーゼ活性を持たないDNAポリメラーゼには、相補鎖合成が鋳型の5'末端に達した部分で停止せず、1塩基突出させた状態まで合成を進める現象が知られている。本発明では、相補鎖合成が末端に至ったときの3'末端の配列が次の相補鎖合成の開始につながるため、このような現象は望ましくない。しかし、DNAポリメラーゼによる3'末端への塩基の付加は、高い確率でAとなる。したがって、dATPが誤って1塩基付加しても問題とならないように、3'末端からの合成がAで開始するように配列を選択すれば良い。また、相補鎖合成時に3'末端がたとえ突出してしまっても、これを消化してblunt endとする3'→5'エクソヌクレアーゼ活性を利用することもできる。たとえば、天然型のVent DNAポリメラーゼはこの活性を持つことから、Vent(Exo-)DNAポリメラーゼと混合して利用することにより、この問題を回避することができる。
【0080】
本発明による核酸の合成方法、あるいは増幅方法に必要な各種の試薬類は、あらかじめパッケージングしてキットとして供給することができる。具体的には、本発明のために、相補鎖合成のプライマーとして、あるいは置換用のアウタープライマーとして必要な各種のオリゴヌクレオチド、相補鎖合成の基質となるdNTP、鎖置換型の相補鎖合成を行うDNAポリメラーゼ、酵素反応に好適な条件を与える緩衝液、更に必要に応じて合成反応生成物の検出のために必要な試薬類で構成されるキットが提供される。特に、本発明の望ましい態様においては、反応途中で試薬の添加が不要なことから、1回の反応に必要な試薬を反応容器に分注した状態で供給することにより、サンプルの添加のみで反応を開始できる状態とすることができる。発光シグナルや蛍光シグナルを利用して、反応生成物の検出を反応容器のままで行えるようなシステムとすれば、反応後の容器の開封を全面的に廃止することができる。これは、コンタミネーションの防止上、たいへん望ましいことである。
【0081】
さて、本発明によって合成される、1本鎖上に相補的な塩基配列が交互に連結された核酸には、たとえば次のような有用性がある。第一には、相補的な塩基配列を1分子内に備えた特殊な構造に伴う利点の活用である。この特徴により、検出が容易となることが期待される。すなわち、相補的な塩基配列との塩基対結合に伴って、シグナルを増減する核酸の検出系が公知である。たとえば先に述べたような2本鎖特異インターカレーターを検出剤として利用する方法などを組み合わせれば、本発明の合成生成物の特徴を生かした検出系を実現することができる。このような検出系において本発明の合成反応生成物を一度熱変性して元の温度に戻すと、分子内のアニールが優先的に起きるため速やかに相補的配列の間で塩基対結合を構成する。一方、もしも非特異的反応生成物が存在していても、それは分子内に相補的配列を持っていないので熱変性により2分子以上に分離してしまい、すぐにはもとの二本鎖には戻れない。こうして、検出前に加熱変性工程を追加することによって、非特異反応に伴うノイズを軽減することができる。熱に対して耐性を持たないDNAポリメラーゼを使用しているときには、加熱変性工程は反応停止の意味も持ち、反応時間の制御の点で有利である。
【0082】
第二の特徴は、塩基対結合が可能な状態にあるループを常に形成することである。塩基対結合が可能な状態にあるループの構造を、図4に示した。図4からわかるように、ループはプライマーのアニールが可能な塩基配列F2c(X2c)と、F2c−F1c(X1c)の間に介在する塩基配列とで構成される。F2c−F1c間(普遍的に示せばX2c−X1c間)の配列は、鋳型に由来する塩基配列である。したがってこの領域に対して相補的な塩基配列を持つプローブをハイブリダイズさせれば、鋳型特異的な検出を行うことができる。しかも、この領域は常に塩基対結合が可能な状態にあることから、ハイブリダイズに先だって加熱変性する必要がない。なお本発明の増幅反応生成物におけるループを構成する塩基配列は、任意の長さとすることができる。したがって、プローブのハイブリダイズを目的とする場合には、プライマーがアニールすべき領域とプローブがハイブリダイズすべき領域を別々にして両者の競合を避けることにより理想的な反応条件を構成することができる。
【0083】
本発明の望ましい態様によれば、1本の核酸鎖上に塩基対結合が可能な多数のループがもたらされる。このことは、核酸1分子に多数のプローブがハイブリダイズ可能なことを意味しており、感度の高い検出を可能とする。また感度のみならず、たとえば凝集反応のような特殊な反応原理に基づく核酸の検出方法を可能とするものでもある。たとえばポリスチレンラテックスのような微粒子に固定したプローブを本発明による反応生成物に加えると、プローブとのハイブリダイゼーションに伴ってラテックス粒子の凝集が観察される。凝集の強度を光学的に測定すれば、高感度に、しかも定量的な観察が可能である。あるいは、凝集反応を肉眼的に観察することもできるので、光学的な測定装置を使わない反応系を構成することもできる。
【0084】
更に、1核酸分子当たり多くの標識を結合できる本発明の反応生成物は、クロマトグラフィックな検出をも可能とする。イムノアッセイの分野では、肉眼的に検出可能な標識を利用したクロマト媒体を用いた分析方法(イムノクロマトグラフィー法)が実用化されている。この方法は、クロマト媒体に固定した抗体と標識抗体でアナライトをサンドイッチし、未反応の標識成分を洗い去る原理に基づいている。本発明の反応生成物は、この原理を核酸の分析にも応用可能とする。すなわち、ループ部分に対する標識プローブを用意し、これをクロマト媒体に固定化した捕捉用プローブでトラップすることによってクロマト媒体中での分析が行われる。捕捉用プローブには、ループ部分に対する相補配列を利用することができる。本発明の反応生成物は、多数のループ部分を伴っていることから、多数の標識プローブを結合し、肉眼的に認識可能なシグナルをもたらす。
【0085】
ループとして常に塩基対結合が可能な領域を与える本発明による反応生成物は、この他にもさまざまな検出系を可能とする。たとえば、このループ部分に対するプローブを固定した表面プラズモン共鳴を利用した検出系が可能である。また、ループ部分に対するプローブを2本鎖特異的なインターカレーターで標識しておけば、より高感度な蛍光分析を行うことができる。あるいは、本発明によって合成される核酸が3'側と5'側の両方に塩基対結合が可能なループを形成することを積極的に利用することもできる。たとえば、一方のループを正常型と異常型で共通の塩基配列となる部分とし、他方のループに両者の違いが生じる領域となるように設計しておくのである。共通部分に対するプローブで遺伝子の存在を確認し、他方の領域で異常の有無を確認するといった特徴的な分析系を構成することができる。本発明による核酸の合成反応は、等温で進めることも可能なことから、一般的な蛍光光度計によってリアルタイムな分析が可能となることも特筆すべき利点である。これまでにも同一鎖上にアニールする核酸の構造は公知である。しかし本発明によって得ることができる1本鎖上に相補的な塩基配列が交互に連結された核酸は、他のオリゴヌクレオチドが塩基対結合することができる多数のループ部分を含む点において新規である。
【0086】
一方、本発明による反応生成物によって与えられる多数のループ部分そのものをプローブとして利用することも可能である。たとえば、DNAチップにおいては、限られたエリアに高密度にプローブを集積する必要がある。しかし現在の技術では、一定の面積に固定することができるオリゴヌクレオチドの数は制限される。そこで本発明の反応生成物を利用すれば、アニールが可能な多数のプローブを高密度に固定化することができる。すなわち、本発明による反応生成物をプローブとしてDNAチップ上に固定すればよい。反応生成物は、増幅後に公知の手法によって固定することもできるし、あるいは固定化したオリゴヌクレオチドを本発明の増幅反応におけるオリゴヌクレオチドとして利用することにより結果的に固定化された反応生成物とすることもできる。このようにして固定化されたプローブを用いれば、限られたエリア中に多くの試料DNAをハイブリダイズすることができ、結果的に高いシグナルを期待することができる。
【実施例】
【0087】
〔実施例1〕 M13mp18内の領域の増幅
M13mp18を鋳型として、本発明による1本鎖上に相補的な塩基配列が交互に連結された核酸の合成方法を試みた。実験に使用したプライマーは、M13FA、M13RA、M13F3、そしてM13R3の4種類である。M13F3とM13R3は、それぞれM13FAとM13RAを合成起点として得られた第1の核酸を置換するためのアウタープライマーである。アウタープライマーはM13FA(あるいはM13RA)よりも後から相補鎖合成の起点となるべきプライマーなので、M13FA(あるいはM13RA)と隣接する領域にコンティギュアス スタッキング現象を利用してアニールするように設計した。また、M13FA(あるいはM13RA)のアニールが優先的に起こるようにこれらのプライマー濃度を高く設定した。
【0088】
各プライマーを構成する塩基配列は配列表に示したとおりである。プライマーの構造的な特徴を以下にまとめた。また標的塩基配列(target)に対する各領域の位置関係を図7に示した。
プライマー 5'側の領域 / 3'側の領域
M13FA M13FAによる合成相補鎖の領域F1cと同じ
/M13mp18の領域F2cに相補
M13RA M13RAによる合成相補鎖の領域R1cと同じ
/M13FAによる合成相補鎖の領域R2cに相補
M13F3 M13mp18の領域F2cの3'側に隣接するF3cに相補
M13R3 M13FAによる合成相補鎖の領域R2cの3'側に隣接するR3cに相補
【0089】
このようなプライマーによって、M13mp18の領域F1cからR1cにいたる領域とその相補的な塩基配列とが、F2cを含むループ形成配列を挟んで1本鎖上に交互に連結した核酸が合成される。これらのプライマーによる本発明による核酸の合成方法のための反応液組成を以下に示す。
【0090】
反応液組成(25μL中)
20mM Tris-HCl pH8.8
10mM KCl
10mM (NH4)2SO4
6mM MgSO4
0.1% Triton X-100
5% ジメチルスルホキシド(DMSO)
0.4mM dNTP
プライマー:
800nM M13FA/配列番号:1
800nM M13RA/配列番号:2
200nM M13F3/配列番号:3
200nM M13R3/配列番号:4
ターゲット:M13mp18 dsDNA /配列番号:5
反応:上記反応液を95℃で5分間加熱し、ターゲットを変性させて1本鎖とした。反応液を氷水上に移し、Bst DNA ポリメラーゼ(NEW ENGLAND BioLabs)を4U 添加し、65℃で1時間反応させた。反応後、80℃10分間で反応を停止し再び氷水上に移した。
反応の確認:上記反応液の5μL に1μLのloading bufferを添加し、2%アガロースゲル(0.5% TBE)を使って、1時間、80mVで電気泳動した。分子サイズマーカーとして、XIV(100bp ladder、 Boehringer Mannheim製)を使用した。泳動後のゲルをSYBR Green I (Molecular Probes、Inc.)で染色して核酸を確認した。結果は図8に示すとおりである。各レーンは次のサンプルに対応している。
1. XIV size marker
2. 1fmol M13mp18 dsDNA
3. targetなし
【0091】
レーン3では未反応のプライマーが染色されている以外にバンドは確認されなかった。レーン2はターゲットが存在する場合、低サイズのバンドのラダーと高サイズでのスメアな染色、およびゲル内でほとんど泳動されていないバンドとして生成物が確認された。低サイズのバンドのうち、290bp、450bp付近のバンドは、それぞれ本発明の合成反応により予想される産物である、配列番号:11および配列番号:12が2本鎖となったもの(図2−(7)および図2−(10)が2本鎖となったものに相当)および配列番号:13(図3−(9)にある長い1本鎖に相当)とサイズが一致することから、反応が予想されるとおりに進行していることが確認された。高サイズのスメアなパターン、および泳動されていないバンドは、本反応が基本的に連続的な反応であることから、反応産物が一定のサイズにはならないこと、そして部分的な1本鎖、あるいは2本鎖の複合体を形成した複雑な構造をともなっているため、結果としてこのような泳動結果を与えるものと考えられた。
【0092】
〔実施例2〕 反応産物の制限酵素消化確認
実施例1で得られた本発明による1本鎖上に相補的な塩基配列が交互に連結された核酸の構造を明らかにすることを目的として、制限酵素による消化を行った。制限酵素を使った消化によって理論どおりの断片を生じる一方、実施例1で観察された高サイズのスメアなパターンや泳動されないバンドが消滅すれば、これらがいずれも本発明によって合成された1本鎖上に相補的な塩基配列を交互に連結した核酸であることが推定できる。
【0093】
実施例1の反応液を8本分(200μL)プールし、フェノール処理後、エタノール沈でんを行って精製した。この沈でんを回収して200μLのTE緩衝液で再溶解し、その10μLを制限酵素BamHI、PvuII、およびHindIIIでそれぞれ37℃2時間消化した。消化物を2%アガロースゲル(0.5% TBE)を使って、1時間、80mVで電気泳動した。分子サイズマーカーとして、SUPER LADDER-LOW (100bp ladder)(Gensura Laboratories、Inc.製)を使用した。泳動後のゲルをSYBR Green I (Molecular Probes、Inc.)で染色して核酸を確認した。結果は図9に示すとおりである。各レーンは次のサンプルに対応している。
1. XIV size marker
2. 精製物のBamHI消化物
3. 精製物のPvuII消化物
4. 精製物のHindIII消化物
【0094】
ここで比較的鎖長の短い増幅生成物を構成している塩基配列は、配列番号:13、配列番号:14、配列番号:15、および配列番号:16等と推定される。これらの塩基配列から、推測される各制限酵素消化断片のサイズは表1のとおりである。表中のLは、ループ(1本鎖)を含む断片なので泳動位置が未確定であることを示す。
【0095】
【表1】

【0096】
未消化でのバンドのほとんどが消化後には推定されるサイズのバンドへ変化したことから、目的の反応産物が増幅されていることが確認された。また非特異的産物はほとんどないことも示された。
【0097】
〔実施例3〕 ベタイン添加による増幅反応の促進
増幅反応液中へのベタイン(betaine: N、N、N、-trimethylglycine、SIGMA)添加による、核酸の増幅反応に対する効果を調べる実験を行った。実施例1と同様に、M13mp18を鋳型とし、本発明による1本鎖上に相対的な塩基配列が交互に連結された核酸の合成方法を、種々の濃度のベタイン存在下で行った。実験に使用したプライマーは、実施例1で使用したものと同じである。鋳型DNA量は、10-21mol (M13mp18)で、陰性対照として水を用いた。添加するベタインは、0、0.5、1、2 Mの濃度になるように反応液に加えた。反応液組成を以下に示す。
反応液組成(25μL中)
20mM Tris-HCl pH8.8
4mM MgSO4
0.4mM dNTPs
10mM KCl
10mM (NH4)2SO4
0.1% TritonX-100
プライマー:
800nM M13FA/配列番号:1
800nM M13RA/配列番号:2
200nM M13F3/配列番号:3
200nM M13R3/配列番号:4
ターゲット:M13mp18 dsDNA /配列番号:5
【0098】
使用したポリメラーゼ、反応条件、反応後の電気泳動条件は、実施例1に記載したものと同じである。
【0099】
結果を図10に示す。ベタイン濃度0.5、1.0M存在下での反応では、増幅産物量が増大した。また2.0Mまで増やすと逆に増幅産物は確認されなかった。これにより、適度のベタイン存在で、増幅反応が促進されることが示された。ベタイン濃度2Mの場合に、増幅産物が低下したことは、Tmが低下しすぎたのが原因と考えられた。
【0100】
〔実施例4〕 HBV遺伝子配列の増幅
HBV遺伝子の部分配列を組み込んだM13mp18 dsDNAを鋳型として、本発明による核酸の合成方法を試みた。実験に使用したプライマーは、HB65FA(配列番号:6)、HB65RA(配列番号:7)、HBF3(配列番号:8)、そしてHBR3(配列番号:9)の4種類である。HBF3とHBR3は、それぞれHB65FAとHB65RAを合成起点として得られた第1の核酸を置換するためのアウタープライマーである。アウタープライマーはHB65FA(あるいはHB65RA)よりも後から相補鎖合成の起点となるべきプライマーなので、HB65FA(あるいはHB65RA)と隣接する領域にコンティギュアススタッキング現象を利用してアニールするように設計した。また、HB65FA(あるいはHB65RA)のアニールが優先的に起こるようにこれらのプライマー濃度を高く設定した。M13mp18に組みこまれたHBVに由来する本実施例のターゲット配列(430bp)を配列10に示した。
【0101】
各プライマーを構成する塩基配列は配列表に示したとおりである。プライマーの構造的な特徴を以下にまとめた。また標的塩基配列(target)に対する各領域の位置関係を図11に示した。
プライマー 5'側の領域 / 3'側の領域
HB65FA HB65FAによる合成相補鎖の領域F1cと同じ
/HBV-M13mp18の領域F2cに相補
HB65RA HB65RAによる合成相補鎖の領域R1cと同じ
/HB65FAによる合成相補鎖の領域R2cに相補
HBF3 HBV-M13mp18の領域F2cの3'側に隣接するF3cに相補
HBR3 HB65FAによる合成相補鎖の領域R2cの3'側に隣接するR3cに相補
【0102】
このようなプライマーによって、HBV遺伝子の部分配列を組み込んだM13mp18(HBV-M13mp18)の領域F1cからR1cにいたる領域とその相補的な塩基配列とが、F2cを含むループ形成配列を挟んで1本鎖上で交互に連結した核酸が合成される。上記プライマーを用いる他は実施例1と同じ条件で反応させ、その反応液をアガロース電気泳動により分析した。結果は図12に示すとおりである。各レーンは次のサンプルに対応している。
1. XIV size marker
2. 1fmol HBV-M13mp18 dsDNA
3. targetなし
【0103】
実施例1と同様に、targetが存在するときにのみ、低サイズのバンドのラダーと高サイズでのスメアな染色、およびゲル内でほとんど泳動されていないバンドとして生成物が確認された(レーン2)。低サイズのバンドのうち、310bp、および480bp付近のバンドはそれぞれ、本反応により予想される産物である、配列番号:17および配列番号:18の2本鎖とサイズが一致することから、反応が予想されるとおりに進行していることが確認された。高サイズのスメアなパターン、および泳動されていないバンドは、実施例1の結果で述べたように、本発明に特徴的な合成生成物の構造が原因となっているものと推定された。この実験により、増幅する配列(target)が異なっても本発明を実施可能であることが確認された。
【0104】
〔実施例5〕 合成反応生成物のサイズの確認
本発明に基づいて合成された核酸の構造を確認するために、その長さをアルカリ変性条件下での電気泳動によって分析した。実施例1と実施例4のターゲット存在下での反応液の5μLに、それぞれ1μLのalkaline loading bufferを添加し、0.7%アガロースゲル(50mM NaOH、 1mM EDTA)を使って、14時間、50mAで電気泳動した。分子サイズマーカーとして、ラムダファージのHindIII消化断片を使用した。泳動後のゲルを1M Tris pH 8で中和後、SYBR Green I (Molecular Probes、Inc.)で染色して核酸を確認した。結果は図13に示す。各レーンは以下のサンプルに対応している。
1. ラムダファージのHindIII消化断片
2. 実施例1の反応生成物
3. 実施例4の反応生成物
【0105】
反応生成物をアルカリ変性条件で泳動すると1本鎖状態でのサイズ確認が可能である。実施例1(レーン2)、実施例4(レーン3)ともに主な生成物は2 kbase内であることが確認された。また、本発明による生成物はこの分析によって確認できる範囲で少なくとも6 kbase以上にまで伸びていることが判明した。加えて、実施例1や実施例4の未変性条件下で泳動されなかったバンドは、変性状態では個々の1本鎖に分離されサイズが小さくなることが改めて確認された。
【0106】
〔実施例6〕 M-13mp13内の領域の増幅における、ターゲット濃度依存的増幅の確認
本発明による核酸の合成方法に及ぼす、ターゲットの濃度変化の影響を観察した。ターゲットであるM13mp18 dsDNAを0〜1 fmolとし、反応時間を1時間および3時間とする他は、実施例1と同じ条件で本発明による核酸の合成方法を実施した。実施例1と同様に、2%アガロースゲル(0.5% TBE)で電気泳動し、SYBRGreen I (Molecular Probes、Inc.)染色により核酸を確認した。分子サイズマーカーとして、XIV(100bp ladder、 Boehringer Mannheim)を使用した。結果は図14(上:反応時間1時間、下:反応時間3時間)に示した。各レーンは、次のサンプルに対応する。
1. M13mp18 dsDNA 1x10-15mol/tube
2. M13mp18 dsDNA 1x10-16mol/tube
3. M13mp18 dsDNA 1x10-17mol/tube
4. M13mp18 dsDNA 1x10-18mol/tube
5. M13mp18 dsDNA 1x10-19mol/tube
6. M13mp18 dsDNA 1x10-20mol/tube
7. M13mp18 dsDNA 1x10-21mol/tube
8. M13mp18 dsDNA 1x10-22mol/tube
9. target なし
10. XIV size marker
【0107】
泳動像の下部に見られる各レーンに共通のバンドは未反応のプライマーが染色されたものである。反応時間にかかわらず、ターゲットが存在しないときは全く増幅産物は観察されない。ターゲット存在下でのみ、ターゲットの濃度依存的に増幅産物の染色パターンが得られた。また、反応時間を長くすることにより、より低濃度まで増幅産物が確認できた。
【0108】
〔実施例7〕 点変異(ポイントミューテーション)の検出
(1)M13mp18FM(変異型)の作製
ターゲットDNAとして、M13mp18(野生型)、およびM13mp18FM(変異型)を用いた。変異型であるM13mp18FMの作製は、LA PCRTMin vitro Mutagenesis Kit(宝酒造)を使用し、1塩基置換を導入した。その後、シークエンシングにより配列を確認した。F1領域での配列を以下に示す。
野生型:CCGGGGATCCTCTAGAGTCG(配列番号:19)
変異型:CCGGGGATCCTCTAGAGTCA(配列番号:20)
【0109】
(2)プライマーのデザイン
使用するプライマーは、FAプライマーのF1c領域の5'末端に野生型、変異型で配列の異なる塩基となるようにした。変異の位置、および標的塩基配列(target)に対する各領域の位置関係を図15に示す。
【0110】
(3)増幅反応
M13mp18(野生型)、およびM13mp18FM(変異型)を鋳型にして、以下に示すそれぞれに特異的なプライマーの組み合わせで鋳型特異的な増幅反応が起きるかどうか実験を行った。
野生型増幅用プライマーセット: FAd4、 RAd4、 F3、 R3
変異型増幅用プライマーセット: FAMd4、 RAd4、 F3、 R3
各プライマーの塩基配列は以下の通りである。
FAd4: CGACTCTAGAGGATCCCCGGTTTTTGTTGTGTGGAATTGTGAGCGGAT(配列番号:21)
FAMd4: TGACTCTAGAGGATCCCCGGTTTTTGTTGTGTGGAATTGTGAGCGGAT(配列番号:22)
RAd4: CGTCGTGACTGGGAAAACCCTTTTTGTGCGGGCCTCTTCGCTATTAC(配列番号:23)
F3: ACTTTATGCTTCCGGCTCGTA(配列番号:24)
R3: GTTGGGAAGGGCGATCG(配列番号:25)
【0111】
(4)M13mp18の点突然変異の検出
反応液の組成は以下のとおりである。
終濃度
D2W 3.75μL
10X Thermo pol buffer(NEB) 2.5μL 20mM Tris-HCl pH8.8
10mM KCl
10mM (NH4)2SO4
6mM MgSO4
0.1% TritonX-100
2.5mM dNTP 4μL 400μM
100mM MgSO4 0.5μL
4M Betaine 6.25μL 1M
M13FAd4 primer(10pmol/μL)又は
M13FAMd4 primer(10pmol/μL) 2μL 800nM
M13RAd4 primer(10pmol/μL) 2μL 800nM
M13F3 primer(10pmol/μL) 0.5μL 200nM
M13R3 primer(10pmol/μL) 0.5μL 200nM
全量 22μL
【0112】
上記反応液にターゲットM13mp18、またはM13mp18FM 1 fmol (2μl)を添加し、95℃で5分間加熱し、ターゲットを変性させて1本鎖とした。反応液を氷水上に移し、Bst DNA ポリメラーゼ(NEW ENGLAND BioLabs)を1μL(8U) 添加し、68℃または68.5℃で1時間反応させた。反応後、80℃10分間で反応を停止し再び氷水上に移した。
【0113】
図16で示すように、FAプライマーとして野生型用のFAd4を用いたときは、野生型の鋳型存在のみ効果的に増幅が観察された。一方、FAプライマーとして変異型用のFAMd4を用いたときは、野生型の鋳型存在のみ効果的に増幅が観察された。以上の結果から、本発明の増幅反応を利用することにより、点変異を効率的に検出できることが示された。
【0114】
〔実施例8〕 mRNAをターゲットとした増幅反応
ターゲットとなる核酸をmRNAとして、本発明による核酸の合成方法を試みた。ターゲットとなるmRNAは、前立腺特異抗原(Prostate specific antigen; PSA)を発現した細胞である前立腺癌細胞株LNCaP cell (ATCC No. CRL-1740)と、非発現細胞である慢性骨髄性白血病細胞株K562 cell (ATCC No. CCL-243)を、1:106〜100:106で混合し、Qiagen社(ドイツ)のRNeasy Mini kitを用いて全RNAを抽出した。実験に使用したプライマーは、PSAFA、PSARA、PSAF3、そしてPSAR3の4種類である。PSAF3とPSAR3は、それぞれPSAFAとPSARAを合成起点として得られた第一の核酸を置換するためのアウタープライマーである。また、PSAFA(あるいはPSARA)のアニールが優先的に起こるようにこれらのプライマー濃度を高く設定した。各プライマーを構成する塩基配列は以下のとおりである。
プライマー:
PSAFA: TGTTCCTGATGCAGTGGGCAGCTTTAGTCTGCGGCGGTGTTCTG (配列番号:26)
PSARA: TGCTGGGTCGGCACAGCCTGAAGCTGACCTGAAATACCTGGCCTG(配列番号:27)
PSAF3: TGCTTGTGGCCTCTCGTG(配列番号:28)
PSAR3: GGGTGTGGGAAGCTGTG(配列番号:29)
【0115】
プライマーの構造的な特徴を以下にまとめた。また、標的のmRNAをコードするDNA塩基配列に対する各プライマーの位置関係、および制限酵素Sau3A Iの認識部位を図17に示した。
プライマー 5'側の領域 / 3'側の領域
PSAFA PSAFAによる合成相補鎖の領域F1cと同じ
/標的塩基配列の領域F2cに相補
PSARA PSARAによる合成相補鎖の領域R1cと同じ
/PSAFAによる合成相補鎖の領域R2cに相補
PSAF3 標的塩基配列の領域F2cの3'側に隣接するF3cに相補
PSAR3 PSAFAによる合成相補鎖の領域R2cの3'側に隣接するR3cに相補
【0116】
本発明による核酸の合成方法のための反応液組成を以下に示す。
反応液組成(25μL中)
20mM Tris-HCl pH8.8
4mM MgSO4
0.4mM dNTPs
10mM KCl
10mM (NH4)2SO4
0.1% TritonX-100
0.8M betaine
5mM DTT
1600nM PSAFA PSARA プライマー
200nM PSAF3 PSAR3 プライマー
8U Bst DNAポリメラーゼ
100U ReverTra Ace (TOYOBO、 日本)
5μg 全RNA
【0117】
全ての成分は氷上で混合した。本実験においてはmRNA(1本鎖)をtargetとしているので、加熱変性によって1本鎖とする工程は不要である。反応は、65℃で45分間行い、85℃、5分で、反応を停止させた。反応終了後、5μLの反応液を2%アガロースを使って電気泳動し、SYBR Green Iで検出した。結果を図18に示す。各レーンは、以下のサンプルに対応している。
【0118】
レーン Bst RT LNCaP細胞数/106個のK562
1 − + 0
2 − + 10
3 + − 0
4 + − 10
5 + + 0
6 + + 1
7 + + 10
8 レーン6の反応液1μL分をSau3A Iで消化したもの
9 レーン7の反応液1μL分をSau3A Iで消化したもの
10 サイズマーカー 100bpラダー(New England Biolabs)
【0119】
Bst DNAポリメラーゼ、ReverTra Aceのいずれか一方がないと、増幅産物が得られなかった(レーン1〜4)。両方の酵素存在下では、LNCaP由来のRNAが存在すると、増幅産物が検出された(レーン5〜7)。100万個のK562細胞に1個のLNCaPからの抽出RNAでも検出可能であった(レーン6)。増幅産物は、ターゲット内部の配列にある制限酵素部位Sau3A Iで消化したところ、予想される大きさの断片に消化された(レーン8,9)。以上の結果から、本発明による核酸の合成方法において、ターゲットとしてRNAを用いた場合でも、目的の反応産物が得られることが確認された。
【図面の簡単な説明】
【0120】
【図1】本発明の望ましい態様の反応原理の一部(1)-(4)を示す模式図である。
【図2】本発明の望ましい態様の反応原理の一部(5)-(7)を示す模式図である。
【図3】本発明の望ましい態様の反応原理の一部(8)-(10)を示す模式図である。
【図4】本発明による1本鎖核酸が形成するループの構造を示す模式図である。
【図5】本発明による基礎的な態様の一部(A)-(B)を示す模式図である。
【図6】本発明による基礎的な態様の一部(C)-(D)を示す模式図である。
【図7】M13mp18の標的塩基配列における、オリゴヌクレオチドを構成する各塩基配列の位置関係を示す図である。
【図8】M13mp18を鋳型として本発明による1本鎖核酸の合成方法によって得られた生成物のアガロース電気泳動の結果を示す写真である。レーン1:XIV size marker,レーン2:1fmol M13mp18 dsDNA,レーン3:targetなし
【図9】実施例1によって得られた本発明による核酸合成反応の生成物を制限酵素で消化しアガロース電気泳動した結果を示す写真である。レーン1:XIV size marker,レーン2:精製物のBamHI消化物,レーン3:精製物のPvuII消化物,レーン4:精製物のHindIII消化物
【図10】M13mp18を鋳型として、ベタイン添加による本発明の1本鎖核酸の合成方法によって得られた生成物のアガロース電気泳動の結果を示す写真である。0、0.5、1、2は反応液中に添加したベタイン濃度(M)を表す。また、Nは陰性対照を、-21は鋳型DNAの濃度10-21molを表す。
【図11】HBV由来の標的塩基配列における、オリゴヌクレオチドを構成する各塩基配列の位置関係を示す図である。
【図12】M13mp18に組みこまれたHBV-M13mp18を鋳型として本発明による1本鎖核酸の合成方法によって得られた生成物のアガロース電気泳動の結果を示す写真である。レーン1:XIV size marker,レーン2:1fmol HBV-M13mp18 dsDNA,レーン3:targetなし
【図13】本発明による1本鎖核酸の合成方法によって得られた生成物のアルカリ変性ゲル電気泳動の結果を示す写真である。レーン1:ラムダファージのHindIII消化断片,レーン2:実施例1の反応生成物,レーン3:実施例3の反応生成物
【図14】ターゲットであるM13mp18の濃度を変えてときに、本発明による1本鎖核酸の合成方法によって得られた生成物のアガロース電気泳動の結果を示す写真である。上は反応時間1時間、下は反応時間3時間の結果である。レーン1:M13mp18 dsDNA 1x10-15mol/tube,レーン2:M13mp18 dsDNA 1x10-16mol/tube,レーン3:M13mp18 dsDNA 1x10-17mol/tube,レーン4:M13mp18 dsDNA 1x10-18mol/tube,レーン5:M13mp18 dsDNA 1x10-19mol/tube,レーン6:M13mp18 dsDNA 1x10-20mol/tube,レーン7:M13mp18 dsDNA 1x10-21mol/tube,レーン8:M13mp18 dsDNA 1x10-22mol/tube,レーン9:target なし,レーン10:XIV size marker
【図15】変異の位置、および標的塩基配列(target)に対する各領域の位置関係を表す図である。下線で示したグアニンが、変異型ではアデニンに置換されている。
【図16】本発明の増幅反応による生成物のアガロース電気泳動の結果を示す写真である。M: 100bp ladder(New England Biolabs),N: 鋳型なし(精製水),WT: 野生型鋳型M13mp18 1 fmol,MT: 変異型鋳型M13mp18FM 1 fmol
【図17】標的mRNAをコードする塩基配列における、オリゴヌクレオチドを構成する各塩基配列の位置関係を示す図である。
【図18】mRNAをターゲットとして本発明による1本鎖核酸の合成方法によって得られた生成物のアガロース電気泳動の結果を示す写真である。
【配列表フリーテキスト】
【0121】
配列番号1−人工配列の説明: 人工的に合成されたプライマー配列
配列番号2−人工配列の説明: 人工的に合成されたプライマー配列
配列番号3−人工配列の説明: 人工的に合成されたプライマー配列
配列番号4−人工配列の説明: 人工的に合成されたプライマー配列
配列番号6−人工配列の説明: 人工的に合成されたプライマー配列
配列番号7−人工配列の説明: 人工的に合成されたプライマー配列
配列番号8−人工配列の説明: 人工的に合成されたプライマー配列
配列番号9−人工配列の説明: 人工的に合成されたプライマー配列
配列番号11−人工配列の説明: 人工的に合成された配列
配列番号12−人工配列の説明: 人工的に合成された配列
配列番号13−人工配列の説明: 人工的に合成された配列
配列番号14−人工配列の説明: 人工的に合成された配列
配列番号15−人工配列の説明: 人工的に合成された配列
配列番号16−人工配列の説明: 人工的に合成された配列
配列番号17−人工配列の説明: 人工的に合成された配列
配列番号18−人工配列の説明: 人工的に合成された配列
配列番号21−人工配列の説明: 人工的に合成されたプライマー配列
配列番号22−人工配列の説明: 人工的に合成されたプライマー配列
配列番号23−人工配列の説明: 人工的に合成されたプライマー配列
配列番号24−人工配列の説明: 人工的に合成されたプライマー配列
配列番号25−人工配列の説明: 人工的に合成されたプライマー配列
配列番号26−人工配列の説明: 人工的に合成されたプライマー配列
配列番号27−人工配列の説明: 人工的に合成されたプライマー配列
配列番号28−人工配列の説明: 人工的に合成されたプライマー配列
配列番号29−人工配列の説明: 人工的に合成されたプライマー配列

【特許請求の範囲】
【請求項1】
領域F3c、領域F2c、および領域F1cを3'側からこの順で含む鋳型核酸と以下の要素を含む反応液を混合し、実質的に等温で反応させることを特徴とする、1本鎖上に相補的な塩基配列が交互に連結された核酸の合成方法。
i) 前記F2cに相補的な塩基配列を持つ領域の5'側に前記F1cと同一の塩基配列を持つ領域を連結して含むオリゴヌクレオチド
ii) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cに相補的な塩基配列を含むオリゴヌクレオチド
iii) 前記F3cに相補的な塩基配列を持つオリゴヌクレオチド
iv) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cの3'側に位置する任意の領域R3cに相補的な塩基配列を持つオリゴヌクレオチド
v) 鎖置換型の相補鎖合成反応を触媒するDNAポリメラーゼ、および
vi) 要素v)の基質となるヌクレオチド
【請求項2】
ii)のオリゴヌクレオチドが、i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cとその5'側に位置する領域R1cに対し、前記R2cと相補な塩基配列を持つ領域の5'側に前記R1cと同じ塩基配列を持つ領域を連結して含むオリゴヌクレオチドで構成されるプライマーである請求項1に記載の方法。
【請求項3】
以下のオリゴヌクレオチドで構成されるプライマーを含む、1本鎖上に相補的な塩基配列が交互に連結された核酸の合成用プライマーセット。
領域F3c、領域F2c、および領域F1cを3'側からこの順で含む鋳型核酸に対し、
i) 前記F2cに相補的な塩基配列を持つ領域の5'側に前記F1cと同一の塩基配列を持つ領域を連結して含むオリゴヌクレオチド
ii) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cに相補的な塩基配列を含むオリゴヌクレオチド
iii) 前記F3cに相補的な塩基配列を持つオリゴヌクレオチド
iv) i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cの3'側に位置する任意の領域R3cに相補的な塩基配列を持つオリゴヌクレオチド
【請求項4】
ii)のオリゴヌクレオチドが、i)のオリゴヌクレオチドをプライマーとして合成された相補鎖における任意の領域R2cとその5'側に位置する領域R1cに対し、前記R2cと相補的な塩基配列を持つ領域の5'側に前記R1cと同じ塩基配列を持つ領域を連結して含むオリゴヌクレオチドで構成されるプライマーである請求項3に記載のプライマーセット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2007−236392(P2007−236392A)
【公開日】平成19年9月20日(2007.9.20)
【国際特許分類】
【出願番号】特願2007−113523(P2007−113523)
【出願日】平成19年4月23日(2007.4.23)
【分割の表示】特願2002−110505(P2002−110505)の分割
【原出願日】平成11年11月8日(1999.11.8)
【出願人】(000120456)栄研化学株式会社 (67)
【Fターム(参考)】