説明

熱成長アルミナに直接適用される触媒材料を有する触媒、及びこれを用いる触媒作用法;改善された酸化的脱水素方法

本発明は、触媒、触媒製造方法、マイクロチャネル反応器製造方法及び化学反応実施方法を報告する。(低表面積)熱成長アルミナ層上に触媒材料を直接付着させることによって形成された触媒から、優れた性能を達成することができることが見出された。また、酸化的脱水素の改良型実施方法も報告される。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願
35 U.S.C. セクション119(e)に従い、この出願は、2004年3月23日付米国仮出願第60/556014号の優先権を主張する。また、この出願は2004年10月21日付米国特許出願第10/966162号の部分係属出願でもある。
【0002】
政府権利条項
この発明は、米国エネルギー省によって発注された契約番号DE-FC36-04GO14154の下で米国政府の支援下で成された。米国政府はこの発明において所定の権利を有する。
【0003】
発明の分野
本発明は、マイクロチャネル装置、触媒及びその製造方法に関する。本発明はまた、化学反応及びマイクロチャネル化学反応器にも関する。
【背景技術】
【0004】
序章
近年、マイクロチャネル装置に大きな学問的及び工業的関心が集まっている。この関心は、寸法が小さいこと、生産性が高められること、任意の所望のキャパシティのシステムをサイズ変更することができること(即ち「ナンバーアップ」)、熱移動が増大すること、及び物質移動が増大することを含むマイクロ技術からの利点により、生じたものである。マイクロ反応器(マイクロチャネル装置の一部)を用いたある種の研究の論評が、Gavrilidisらによって「Technology And Applications Of Microengineered Reactors」、Trans. IChemE、Vol. 80、Part A、pp.3-30(2002年1月)に提供されている。
【0005】
マイクロチャネル装置は、セラミック、プラスチック及び金属を含む様々な材料から作られたものであることができる。多くの用途において、マイクロチャネル装置中のプロセスチャネルは構造材料上にコーティング(群)を必要とする。このコーティングは、吸収、吸着及び触媒作用のような目的に貢献することができるものである。ある場合には、マイクロチャネルはスラリーコーティング又はゾルコーティングされる(例えばセラミックハニカムに適用される酸化物コーティング)。ある場合には、材料の複数のシートがコーティングされ、次いで組み立てられ、接合せしめられて、多層マイクロチャネル装置を形成する。
【0006】
本発明の1つの焦点はアルミナイドコーティングを包含するので、米国特許第3944505号明細書にLaCroixによって報告された初期の研究を参照することができる。この特許明細書には、膨張金属シート(例えばインコネル)のスタックから作られた触媒装置が記載されている。前記金属シートは、ニッケル又はコバルトアルミナイドの層及び該アルミナイド上のα−アルミナの層、並びに前記アルミナイド上の触媒表面を有する。LaCroixの特許明細書には、アルミナイド層をどのようにしてシート上に形成させたかが記載されておらず、アルミナイド層を説明するデータも、アルミナ層や触媒表面を説明するデータも提供されていない。
【0007】
アルミナイドコーティング形成方法はよく知られており、ある種のジェットエンジン部品をコーティングするために工業的に用いられてきている。ハロゲン化アルミニウムからアルミナイドコーティングを作る方法が、例えば米国特許第3486927号及び同第6332926号の各明細書に記載されている。
【0008】
ガスタービン翼の内部チャネルにアルミナイドコーティングを塗布することが試みられている。Rigneyらの米国特許第6283714号明細書には、スラリー/パック法を用いてアルミニウムコーティングでタービンの羽根の内部冷却用通路をコーティングすることが報告されている。Rigneyらの特許明細書にはまた、ハロゲン化アルミニウムガスを高温において冷却用通路に通して、厚さ約0.002インチ(50μm)のアルミニウムコーティングを約4〜8時間で付着させることができるとも述べられている。また、Pfaendterらは米国特許第6332926号明細書に、アルミニウムを付着させるためにアルミニウム−コーティング前駆物質(前駆体)を内部翼表面上に流すことを提案している。
【0009】
Howardらは「Method and Apparatus for Gas Phase Coating Complex Internal Surfaces of Hollow Articles」というタイトルの米国特許第5928725号明細書において、従来技術の内部表面をコーティングするための気相コーティング方法を検討し、しかし従来技術の方法は最新の翼の多数のガス通路をコーティングするのには効果的ではなく、不均一な内部コーティングをもたらすと述べている。この特許明細書に記載された方法においては、少なくとも2つのチャネル中へのコーティングガス流量が異なる速度に調節されている。Howardらは、アルミニウム粉末、酸化アルミニウム及びフッ化アルミニウムを含むコーティング用混合物を加熱してコーティング用ガスを放出させることができると述べている。この改良型方法は、1.5ミル±1.0ミルのアルミナイドコーティング厚さをもたらすと報告されている。
【0010】
本発明は、触媒作用プロセス、特にオレフィンを製造するために酸化的脱水素に関する。
【0011】
オレフィン類は、工業有機化学において広範囲に及ぶ有用性が見出されている。エチレンはポリエチレン、ビニルプラスチック及びエチレン−プロピレンゴムのような重要なポリマー並びにエチレンオキシド、スチレン、アセトアルデヒド、酢酸エチル及びジクロロエタンのような重要な基本化学物質の製造のために必要とされている。プロピレンはポリプロピレンプラスチック、エチレン−プロピレンゴム、並びにプロピレンオキシド、クメン及びアクロレインのような重要な基本化学物質の製造のために必要とされている。イソブチレンはメチルt−ブチルエーテルの製造のために必要とされている。長鎖モノオレフィンは洗剤産業において用いられる直鎖状アルキル化ベンゼンスルホネートの製造に有用性が見出されている。
【0012】
エチレン、プロピレン及びブチレンのような低分子量オレフィンは、高温におけるアルカン類の熱クラッキング(熱分解/水蒸気クラッキング)によってほとんどもっぱら製造される。例えばエチレンプラントは典型的には約60モル%のエタン転化率において炭素原子を基準にして計算して85%までのエチレン選択性を達成する。望ましくない副産物は、燃焼させてプロセスに必要な熱を作り出すために、クラッキング炉のシェル側に再循環される。不都合なことに、オレフィン製造のための熱クラッキングプロセスは、非常に吸熱性っである。従って、これらのプロセスは、大きくて資本集約的で複雑なクラッキング炉を構築して維持することを必要とする。これらの炉を約900℃の温度において運転するために必要とされる熱は、天然ガスの燃焼から得られることが多いが、これは望ましくない量の二酸化炭素を発生するという欠点を有する。さらなる欠点として、クラッキングコイルの内側のコークス付着物を取り除くために、クラッキング装置を定期的に停止しなければならない。
【0013】
パラフィン系炭化水素を酸化的に脱水素してモノオレフィンを生成させる触媒作用プロセスは周知である。これらのプロセスにおいては、白金族金属又はその混合物をセラミックモノリス担体(典型的にはハニカム又はフォームの形のもの)上に付着させて成る触媒の存在下でパラフィン系炭化水素を酸素と接触させる。随意に水素を供給物の成分にしてもよい。触媒は、慣用の技術を用いて調製され、担体全体に均一に装填される。前記プロセスは、供給物の一部を燃焼させる自熱反応条件下で実施することができ、燃焼の際に発生した熱が吸熱クラッキングプロセスを進行させる。結果として、自熱プロセス条件下においては、外部熱源は何ら必要ない。しかしながら、触媒は、正常な燃料リッチ可燃限界の上での燃焼をサポートすることが要求される。このタイプのプロセスを開示する代表的な刊行物には、米国特許第4940826号、同第5105052号、同第5382741号及び同第5625111号の各明細書が包含される。残念ながら、一酸化炭素及び二酸化炭素のような深酸化生成物がかなりの量で生成し、熱クラッキングと比較してオレフィンへの選択性が低すぎるままである。触媒の長期間安定性及びシステムの熱管理には注意が向けられていない。
【0014】
M. Huff及びL. D. Schmidtはthe Journal of Physical Chemistry, 97, 1993, 11,815に、白金、ロジウム又はパラジウムでコーティングしたアルミナフォームモノリス上で空気又は酸素の存在下で自熱条件下におけるエタンからのエチレンの製造を開示している。M. Huff及びL. D. Schmidtによるthe Journal of Catalysis, 149, 1994, 127-141の同様の論文には、白金及びロジウムコーティングアルミナフォームモノリス上で空気又は酸素中での酸化的脱水素及びクラッキングによる、プロパン及びブタンからのオレフィンの自熱製造が開示されている。これらの方法においてもまた、達成されるオレフィン選択性は熱クラッキングより有意に良好ではなく、そしてシステムの熱管理には注意が向けられていないので、触媒温度がガス温度を大幅に超えることがある。
【0015】
米国特許第5639929号明細書には、α−アルミナ又はジルコニア上に担持した白金、ロジウム、ニッケル又は白金−金の流動触媒床中での酸素含有ガスを用いたC2〜C6アルカンの酸化的脱水素のための自熱プロセスが教示されている。エタンからはエチレンが製造されるが、高級オレフィンからはエチレン、プロピレン及びイソブチレンが製造される。この方法においてもまた、オレフィン選択性を改善することができた。触媒温度の逸脱は局所レベルについては制御可能ではなく、触媒温度がガス温度よりはるかに高くなることがある。
【0016】
C. Yokoyama、S. S. Bharadwaj及びL. D. SchmidtはCatalysis Letters, 38, 1996, 181-188に、白金と、スズ、銅、銀、マグネシウム、セリウム、ランタン、ニッケル、コバルト及び金から選択される第2の金属とがセラミックフォームモノリス上に担持されて成る二金属触媒の存在下での自熱反応条件下におけるエタンのエチレンへの酸化的脱水素を開示している。白金とスズ及び/又は銅とを含む触媒を用いた場合には改善されたオレフィン選択性がもたらされる。しかしながら、高い作業温度において時間が経つにつれ、第2の金属が触媒から蒸発して、触媒活性が低下する。これが起こったときには、触媒を置き換えたり再生したりするために反応器を停止しなければならない。この方法においてもまた、触媒の温度が反応しているガスの温度よりはるかに高くなることがあり、これは劣った触媒寿命及び劣ったオレフィン選択性につながる。
【0017】
L. D. Schmidt、J. Siddall及びM. BeardenはAIChE Journal 46 (2000)1492-1495に、フォームモノリス上に担持されたPt含有触媒についての実験結果を報告している。転化率及びエチレンの収率はある水蒸気クラッキングの結果より良好だったが、「温度及び濃度の軸方向及び放射方向の勾配が極めて大きい」ということは、触媒寿命が非常に制限され、プロセスの最適化も簡単ではないだろうということを示している。
【0018】
L. Late、J.-I. Rundereim及びE. A. Blekkan は、Applied CatalysisA: General 262 (2004) 53-61に、プロパンの存在下での水素の選択的酸化についてのシリカ上に担持させた慣用のPt、Pt−Sn及びSn触媒を用いた実験を報告している。これらの実験は600℃より低い控え目な温度に限られ、そしてアルカンの転化率は非常に低い。
【0019】
米国特許第6566573号明細書には、固定床、流動床又はモノリス型触媒を用いたパラフィンのオレフィンへの自触媒酸化的転化が教示されている。最良の転化及びオレフィン選択性として72及び82%の値が報告されている。しかしながら、触媒温度を調節する試みは何ら記載されておらず、そしてプロセスは断熱的に又はほとんど断熱的に操作され、更なる改善が必要なオレフィン収率及び選択性の結果が得られているだけである。
【特許文献1】米国特許第3944505号明細書
【特許文献2】米国特許第3486927号明細書
【特許文献3】米国特許第6332926号明細書
【特許文献4】米国特許第6283714号明細書
【特許文献5】米国特許第5928725号明細書
【特許文献6】米国特許第5639929号明細書
【特許文献7】米国特許第6566573号明細書
【非特許文献1】Gavrilidisら、「Technology And Applications Of Microengineered Reactors」、Trans. IChemE、Vol. 80、Part A、pp.3-30(2002年1月)
【非特許文献2】M. Huff及びL. D. Schmidt、the Journal of Physical Chemistry, 97, 1993, 11,815
【非特許文献3】M. Huff及びL. D. Schmidt、the Journal of Catalysis, 149, 1994, 127-141
【非特許文献4】C. Yokoyama、S. S. Bharadwaj及びL. D. Schmidt、Catalysis Letters, 38, 1996, 181-188
【非特許文献5】L. D. Schmidt、J. Siddall及びM. Bearden、AIChE Journal 46 (2000)1492-1495
【非特許文献6】L. Late、J.-I. Rundereim及びE. A. Blekkan 、Applied CatalysisA: General 262 (2004) 53-61
【発明の開示】
【発明が解決しようとする課題】
【0020】
上記のことに鑑みて、パラフィン系炭化水素をオレフィンに酸化する自熱触媒作用プロセスであってエチレンの選択性が高いものを見出すことが望ましい。かかるプロセスは、低レベルの反応器コークス化及び簡略化されたエンジニアリングのような触媒作用自熱プロセスの利点を提供する。触媒作用酸化プロセスが工業的熱クラッキングプロセスによって達成されるものに匹敵し又はそれを超えるパラフィン系炭化水素転化率及びオレフィン選択性を達成することができれば、さらにより一層望ましいだろう。
【課題を解決するための手段】
【0021】
以下に記載するように、本発明は、改善されたコーティングを有する新規のマイクロチャネル装置を提供する。マイクロチャネル装置は、触媒のピーク温度を調節する可能性を提供し、これはより良好な熱集積、より低い触媒失活傾向及びより良好な製品選択性につながる。本発明はまた、コーティングされたマイクロチャネルを有するマイクロチャネル装置中で反応を実施する方法も包含する。
【0022】
発明の概要
第1の局面において、本発明は、反応物質(即ち反応成分)をマイクロチャネル反応器に通して前記反応物質を少なくとも1種の生成物に転化させることを含む、化学反応の実施方法を提供する。
【0023】
第1の局面のマイクロチャネル反応器は、
・金属基材を含む反応用マイクロチャネル;
・前記金属基材上に配置させた、稠密で実質的に欠陥のないアルミナ層;及び
・前記アルミナ層上に直接配置させた触媒金属粒子:
を含む。反応器上の触媒は、本明細書に記載した触媒特徴を有することができる。例えば、ある具体例においては触媒金属の少なくとも30質量%が3μm又はそれより大きい寸法を有する粒子の形にある。好ましくは、金属基材はマイクロチャネル壁を含む。この反応器を方法との組合せにおいて説明するが、本発明は反応器自体も包含する。
【0024】
別の局面において、本発明は、反応用マイクロチャネル中でエタンと酸素とを接触させることを含むエタンをエチレンに転化させる方法であって、
(a)反応用マイクロチャネル中に入れられるエタンの少なくとも50%が生成物に転化し且つエテンへの選択性が少なくとも85%であり;又は
(b)反応用マイクロチャネルに入れられるエタンの少なくとも70%が生成物に転化し且つエテンへの選択性が少なくとも80%であり、前記の選択性及び転化率のレベルが反応用マイクロチャネルへの1回通過に基づくものである:
前記方法を提供する。前記反応用マイクロチャネルは、基材上にコーティングされた触媒を含む。好ましい具体例において、前記基材は反応用マイクロチャネルの壁である。好ましくは、この反応は相対的にほとんど希釈剤を用いずに実施される。この方法においては、反応用マイクロチャネルから隣接する熱交換器(好ましくはマイクロチャネル熱交換器)へと熱を取り除くのが好ましい。
【0025】
さらなる局面において、本発明は、稠密で実質的に欠陥のない酸化物層上に直接配置させた、1〜4の範囲のPt/Sn原子比でPt及びSnを含む固定触媒上にアルカンを通すことを含む、酸化的脱水素方法を提供する。
【0026】
別の局面において、本発明は、マイクロチャネル反応器中の触媒を製造する方法であって、
内部マイクロチャネル中にアルミナイド層を形成させ;
前記アルミナイド層からアルミナ層を加熱成長させ;そして
熱成長アルミナ上に触媒材料を直接付着させる
ことを含む、前記方法を提供する。
【0027】
さらなる局面において、本発明は、
アルミナイド含有基材;
該アルミナイド含有基材上に配置させた熱成長アルミナ層;及び
該熱成長アルミナ層上に直接配置させた触媒材料:
を含む触媒を提供する。
【0028】
本発明は、触媒組成物をマイクロチャネル中(マイクロチャネル壁上又はマイクロチャネル内部)に存在させたマイクロチャネル中に反応物質流体組成物を流し、そして前記反応物質流体組成物を反応させてマイクロチャネル中で所望の生成物(群)を生成させることを含む、触媒作用化学転化方法を包含する。本発明はさらに、少なくとも1種の反応物質を本発明の触媒と接触させることを含む触媒作用化学転化方法を包含する。
【0029】
本発明のいくつかの局面は、金属表面(特にマイクロチャネルの金属壁)上にガス状アルミニウム化合物を通し、同時に又は次いで基材中の金属と反応させて金属アルミナイドの表面層を形成させることを含む。このプロセスは、アルミニウム処理、たぶんより正確にはアルミナイド化と称される。アルミナイド化条件はジェットエンジン部品について従来知られているものであるので、慣用の工程はここでは説明しない。酸素排除、流れ制御及び多岐管(マニホールド)通過のようなある種の工程は、以下により詳細に議論する。
【0030】
従来のやり方は、高表面積担体上に触媒材料を付着させることによって触媒を形成させるものである。対照的に、本発明は、稠密又は熱成長アルミナ層上に直接触媒材料を付着させた触媒を提供する。熱成長アルミナ層は優れた接着性を有し、得られる触媒(アルミナ層及び付着した触媒材料を含む)はマイクロチャネル反応器中で、特に高い流量(短い接触時間)における高温反応について、優れた活性を有する。
【0031】
用いる用語の解説
【0032】
「金属アルミナイド」は、10%又はそれより多くの金属及び5%、より一層好ましくは10%又はそれより多くのアルミニウム(Al)を含有し、金属とAlとの合計が50%又はそれより多い金属材料を指す。これらの百分率は質量%である。好ましくは、金属アルミナイドは50%又はそれより多くの金属及び10%又はそれより多くのAlを含有し、NiとAlとの合計は80%又はそれより多い。金属及びAlを有意に熱拡散させた具体例においては、金属−Al層の組成が厚さの関数として次第に変化して、金属−Al層とその下にある金属含有合金基材とを分ける明確なラインが存在しないことが期待される。用語「アルミナイド」は、金属アルミナイドと同義に用いられる。
【0033】
好ましい金属アルミナイドは、ニッケルアルミナイド(NiAl)である。「ニッケルアルミナイド」とは、10%又はそれより多くのNi及び10%又はそれより多くのAlを含有し、NiとAlとの合計が50%又はそれより多い材料を指す。これらの百分率は質量%である。ニッケルアルミナイドは、20%又はそれより多くのNi及び10%又はそれより多くのAlを含有し、NiとAlとの合計が80%又はそれより多いのが好ましい。Ni及びAlを有意に熱拡散させた具体例においては、Ni−Al層の組成が厚さの関数として次第に変化して、Ni−Al層とその下にあるNiベース合金基材とを分ける明確なラインが存在しないことが期待される。
【0034】
「触媒材料」とは、所望の反応を触媒する材料である。これはアルミナではない。層「上に配置させた」触媒材料とは、物理的に別個の層(例えばゾル付着層)又は多孔質触媒担体層内に配置させた触媒材料であることができる。「上に配置させた」とは、直接的に又は介在層と共に間接的に配置させたことを意味する。いくつかの好ましい具体例においては、触媒材料を熱成長アルミナ層上に直接付着させる。
【0035】
「触媒金属」とは触媒材料の好ましい形であり、所望の反応を触媒する金属の形の材料である。特に好ましい触媒金属は、Pd、Rh及びPtである。
【0036】
通常の特許用語と同様に、「〜を含む」という表現はその物を含ませたことを意味し、本発明においてこの用語を用いる場合、多少狭い好ましい具体例においては、「〜から本質的に成る」と記載することができ、また、最も狭い具体例においては「〜から成る」と記載することができる。「〜(単数)を含む」と記載される本発明の局面は、単一の成分に限定されることを意図するものではなく、追加の成分を含有していてもよい。ある一組の物「から本質的に成る」組成物は、本発明の特徴にそれほど実体的な影響を及ぼさないその他の成分を許容し、そして同様に、「本質的に」特定の成分のない組成物は、所望の特性に実体的な影響を及ぼしてしまうような所定量の成分を含有しないものである。
【0037】
別途記載がない限り、「転化百分率」とは、これらの記載全体を通じて絶対転化百分率を指す。「接触時間」とは、総触媒チャンバー容量(触媒基材体積を含む)を標準温度及び圧力(STP:273°K及び1.013バール絶対圧)における反応物質の体積測定総入口流量で割ったものと定義される。触媒チャンバー容量は、触媒コーティング{又はその他のフローバイ(フローバイ)触媒配列}と反応チャネルの反対側の壁との間の容量を包含する。
【0038】
「複合マイクロチャネル」は、次の特徴の内の1つ又はそれより多くを含む装置中にある:
・少なくとも1つの連続マイクロチャネルが、少なくとも45゜(ある具体例においては少なくとも90°)の曲がり角(ターン)(ある具体例においてはU型ベンド(湾曲部))、並びに50cm若しくはそれを超える長さ、又は20cm若しくはそれを超える長さ及び2mm若しくはそれ未満の寸法(ある具体例においては50〜500cmの長さ)を有すること;
・少なくとも2つの隣接するチャネルが少なくとも1cmの隣接長さにわたって共通のマイクロチャネル壁に沿って設けられた複数のオリフィスによって連結され、ここで、オリフィスの面積は該オリフィスが設けられたマイクロチャネル壁の面積の20%又はそれ未満であり、それぞれのオリフィスが0.6mm2又はそれより小さく、ある具体例においては0.1mm2又はそれより小さいこと(コーティングは孔を詰まらせることなく塗布されるべきであるので、これは特に挑戦的な形態である);或は
・少なくとも2つ(ある具体例においては少なくとも5つ)の平行の(並列した)マイクロチャネル(少なくとも1cmの長さを有するもの)が一体型多岐管(マニホールド)への開口を有し、ここで、前記多岐管の少なくとも1つの寸法が平行マイクロチャネル群の最小寸法の3倍を超えないものとする{例えば、平行マイクロチャネル群の内の1つの高さが(平行マイクロチャネル群のおける最小寸法として)1mmである場合には、この多岐管の高さは3mmを超えない}。
一体型多岐管は組立て装置の一部であり、連結管ではない。複合マイクロチャネルは、内部マイクロチャネルの1つのタイプである。
【0039】
「連続マイクロチャネル」は、実体的な切れ目や開口を持たない{これは、存在するとしても開口の割合が開口が存在するマイクロチャネル壁(群)の面積の20%を超えない(ある具体例においては5%を超えず、ある具体例においては開口がなんらない)ことを意味する}マイクロチャネル壁(群)によって囲まれたマイクロチャネルである。
【0040】
「稠密で実質的に欠陥のないアルミナ層」は、図1に示す。触媒分析に習熟した科学者や技術者に対しては、表面の顕微鏡検査は所定のアルミナ表面又はアルミナ担体層を有する触媒の表面が「稠密で実質的に欠陥のないアルミナ層」であるか否かを示すだろう。好ましいタイプの「稠密で実質的に欠陥のないアルミナ層」は、1000〜1100℃の温度においてアルミナイドから熱成長させたアルミナ層である。
【0041】
「直接配置させ」とは、触媒材料を熱成長酸化アルミニウム層に直接塗布することを意味する。触媒材料は、溶液から、無電解めっきにより、又は好ましさは劣るがCVDにより、付着させることができる。介在ウォッシュコーティングは存在せず、ウォッシュコートされた触媒担体と共に付着させた触媒材料も存在しない。「直接付着させ」も同じ意味を有する。
【0042】
「内部マイクロチャネル」とは、入口及び出口並びに随意にマイクロチャネルの長手方向に沿って設けられる連結孔(例えば燃料チャネルと酸化剤チャネルとの間の連結用オリフィスのようなオリフィス又は多孔質隔壁)を除いたすべての面がマイクロチャネルの壁(群)で囲まれた装置内のマイクロチャネルである。壁で囲まれているので、慣用のリソグラフィーや慣用の物理蒸着その他の表面技術ではアクセスできない。
【0043】
「挿入物」とは、チャネル中に挿入することができる成分である。
【0044】
「多岐管」とは、複数のマイクロチャネルを連結するヘッダ又はフッタであり、装置と一体のものである。
【0045】
「Niベース合金」とは、Niを少なくとも30%、好ましくは少なくとも45%、より一層好ましくは少なくとも60%(質量による)を含む合金である。ある好ましい具体例において、これらの合金はまた、少なくとも5%、好ましくは少なくとも10%のCrをも含有する。
【0046】
「組立て後」コーティングは、三次元マイクロチャネル装置上に塗布される。「組立て後」とは、シートを積層することによって作られる多層装置における積層工程後、又はブロック中にマイクロチャネルを穿孔した装置のような製造マルチレベル装置の製造後である。この「組立て後」コーティングは、シートをコーティングし、次いで組立てして接合させるプロセスによって作られた装置、又はシートをコーティングし、次いでこのシートを膨張させて三次元構造を作ることによって作られた装置と対比させることができる。例えば、コーティングした後に膨張させたシートは、コーティングされていない細長い端部を有することがある。組立て後コーティングは、裂け目埋め及び製造しやすさのような利点を提供する。さらに、アルミナイドやその他のコーティングはコーティングされたシートのスタックの拡散接合を妨害することがあり、また、アルミナイドは積層装置を接合させるための理想的な材料ではないので劣った接合性をもたらすことがあり、高温において機械的要件を満たさないことがある。装置が組立て後コーティングによって作られたかどうかは、間隙埋め、裂け目埋め、元素分析(例えばシート表面対接合面の元素組成)のような観察可能な特徴によって検知することができる。典型的には、これらの特徴は光学顕微鏡分析、電子顕微鏡分析、又は電子顕微鏡分析と元素分析との組合せによって観察される。かくして、ある装置については、組立て前コーティング装置と組立て後コーティング装置との間に違いがあり、周知の分析技術を用いた分析によって、マイクロチャネル装置の組立て(又は穿孔マイクロチャネルの場合には製造)の前にコーティングを塗布したか後にコーティングを塗布したかを確かめることができる。
【発明を実施するための最良の形態】
【0047】
発明の説明
マイクロチャネル装置
【0048】
マイクロチャネル反応器は、少なくとも1つの寸法(壁から壁、触媒は数に入れない)が1.0cm又はそれ未満、好ましくは2.0mm又はそれ未満(ある具体例においては約1.0mm又はそれ未満)であって100nm超(好ましくは1μm超)(ある具体例においては50〜500μmの範囲)の反応チャネルを少なくとも1つ存在させたことを特徴とする。反応チャネルは、触媒を含有するチャネルである。マイクロチャネル装置は、触媒含有反応チャネルが必要ではないことを除いて、同様の特徴を有する。高さ及び幅の両方が反応器を通る反応物質の流れの方向に対して実質的に直角である。マイクロチャネルはまた、少なくとも1つの入口と、これとは別個の少なくとも1つの出口とを存在させたことによっても規定される。マイクロチャネルは、単にゼオライト又はメソ孔質材料を通るチャネルではない。反応用マイクロチャネルの高さ及び/又は幅は、約2mm又はそれ未満であるのが好ましく、1mm又はそれ未満であるのがより一層好ましい。反応チャネルの長さは、典型的にはもっと長い。好ましくは、反応チャネルの長さは1cm超、ある具体例においては50cm超、ある具体例においては20cm超、ある具体例においては1〜100cmの範囲である。マイクロチャネルの側面は反応チャネルの壁によって画定される。これらの壁は、セラミック、鋼のような鉄合金、又はモネルのようなNi、Co若しくはFe超合金のような硬質材料から作られるのが好ましい。反応チャネルの壁用の材料の選択は、反応器に予定される反応に依存し得る。ある具体例において、反応チャンバーの壁は、耐久性があって良好な熱伝導性を有するステンレス鋼又はインコネル(登録商標)から成る。合金は、低硫黄含有率であるべきであり、ある具体例においてはアルミナイドを生成させる前に脱硫処理に付される。典型的には、反応チャネルの壁は、マイクロチャネル装置用の一次構造担体をもたらす材料から形成される。マイクロチャネル装置は、既知の方法(ここに記載したコーティング及び処理以外)によって作ることができ、ある好ましい具体例においては交互配置プレート群(「シム」とも称される)を積層することによって作られ、好ましくは反応チャネル用に設計されたシムと熱交換用に設計されたシムとを交互に配置させる。もちろん、従来知られているように、「反応器」はジェットエンジン部品を含まない。好ましい具体例において、マイクロチャネル装置はジェットエンジン部品を含まない。あるマイクロチャネル装置は、装置中に積層された少なくとも10個の層を含み、これらの層のそれぞれが少なくとも10個のチャネルを含有する。この装置は、チャネルがもっと少ない別の層を含有していてもよい。
【0049】
図2は、マイクロチャネル反応器の1具体例の概略図である。このマイクロチャネル反応器においては、反応物質供給物は反応用マイクロチャネル(ボトム)を通り、一方、クーラント(クロスフロー配置)は隣接熱交換器(トップ)を通る。マイクロチャネル反応器は、複数のマイクロチャネル反応チャネル及び複数の隣接熱交換マイクロチャネルを含むのが好ましい。この複数のマイクロチャネル反応チャネルは、例えば2個、10個、100個、1000個又はそれより多くのチャネルを含有していてよい。好ましい具体例において、マイクロチャネルは、平面状のマイクロチャネル群が平行に並べて、例えば平面状のマイクロチャネルが少なくとも3個並べて、配置される。ある好ましい具体例においては、多数のマイクロチャネル入口が共通のヘッダに連結され且つ/又は多数のマイクロチャネル出口が共通のフッタに連結される。運転の間、熱交換マイクロチャネル(存在させた場合)に加熱用及び/又は冷却用流体が流される。本発明において用いることができるこのタイプの既知の反応器の非限定的な例には、米国特許第6200536号及び同第6219973号の両明細書に例示されたマイクロコンポーネントシート構造種のもの(例えば複数のマイクロチャネルを有する積層体)が包含される(これら両特許明細書を参考のために本明細書に取り入れる)。このタイプの反応器構造を本発明の目的のために使用することの性能上の利点には、それらの熱移動及び質量移動の速度が比較的大きいこと、並びに爆発限界が実質的にないことが包含される。マイクロチャネル反応器は、良好な熱移動及び質量移動、優れた温度制御、滞留時間並びに最少限の副生成物という利点を組み合わせて達成することができる。圧力降下を低くすることができ、これは高い供給量を可能にし、そして触媒はチャネル内部に非常にアクセスしやすい形で固定され、分離の必要性が取り除かれる。さらに、マイクロチャネル反応器を使用することにより、従来のシステムと比較して、より良好な温度調節を達成することができ、相対的により一層等温のプロファイルを保つことができる。ある具体例において、反応用マイクロチャネル(群)は、バルクフロー流路を含有する。用語「バルクフロー流路」とは、反応チャンバー内のオープン流路(連続バルクフロー領域)を意味する。連続バルクフロー領域は、大きい圧力降下を起こすことなく反応チャンバー内の迅速な流体フローを可能にする。ある好ましい具体例においては、バルクフロー領域中に層流が存在する。各反応チャネル内のバルクフロー領域は、好ましくは5×10-8〜1×10-22、より一層好ましくは5×10-7〜1×10-42の横断面積を有する。バルクフロー領域は、(1)反応チャンバーの内側容積又は(2)反応チャネルの横断面の内のいずれかの少なくとも5%を占めるのが好ましく、少なくとも50%占めるのがより一層好ましく、ある具体例においては少なくとも90%を占める。
【0050】
多くの好ましい具体例において、マイクロチャネル装置は多数のマイクロチャネルを含有し、好ましくは少なくとも5、より一層好ましくは少なくとも10個の群の平行(並列)チャネルを、装置と一体型の(後に取り付けられた管ではない)共通の多岐管に連結された形で含有し、この共通の多岐管は、多岐管に連結されるチャネルを通るフローを一様にする傾向がある特徴(群)を含む。かかる多岐管の例は、2003年10月27日付け米国特許出願第10/695400号明細書に記載されているので、参照されたい。この範疇において、「平行」とは、必ずしも直線を意味せず、むしろチャネルが互いに合致することを意味する。ある好ましい具体例において、マイクロチャネル装置は少なくとも3つの群の平行マイクロチャネルを含み、それぞれの群の中のチャネルが共通の多岐管に連結され(例えば4つの群のマイクロチャネル及び4つの多岐管)、好ましくはそれぞれの共通の多岐管が多岐管に連結されたチャネルを通るフローを一様にする傾向がある特徴(群)を含む。アルミナイドコーティングは、1つの群の連結されたマイクロチャネル中で、アルミニウム含有ガスを多岐管中に通すことによって形成させることができ、典型的にはこの多岐管もコーティングされる。
【0051】
プロセスチャネル(好ましくは反応用マイクロチャネル)に隣接する熱移動マイクロチャネル中に熱交換流体を流してもよく、この熱交換流体は気体又は液体であることができ、水蒸気、液状金属、オイル又はその他の任意の既知の熱交換流体であることができる。このシステムは、熱交換器中で相変化が起こるように最適化することができる。ある好ましい具体例においては、複数の熱交換層を複数の反応用マイクロチャネルと交互に配置させる。例えば、少なくとも10個の熱交換器と少なくとも10個の反応用マイクロチャネルとを交互に配置させ、好ましくは少なくとも10層の熱交換マイクロチャネルと少なくとも10層の反応用マイクロチャネルとを境界面で接するように配列させる。これらの層のそれぞれが単純な直線的なチャネルを含んでいてもよく、又は層内のチャネルがもっと複雑な幾何学的配置を有していてもよい。
【0052】
熱交換流体は、触媒含有帯域に通す前又は触媒含有帯域に通した後のいずれかの反応ストリームであることができる。
【0053】
単純なマイクロチャネルを用いることもできるが、本発明は複雑なマイクロチャネル幾何学的配置を有する装置にとって有利である。ある好ましい具体例において、マイクロチャネル装置は次の特徴の内の1つ又はそれ以上を含む:
・少なくとも1つの連続マイクロチャネルが、少なくとも45゜(ある具体例においては少なくとも90°)の曲がり角(ある具体例においてはU型ベンド)、並びに50cm若しくはそれより大きい長さ、又は20cm若しくはそれより大きい長さ及び2mm若しくはそれ未満の寸法(ある具体例においては50〜500cmの長さ)を有すること;
・少なくとも2つの隣接するチャネルが少なくとも1cmの隣接長さにわたって共通のマイクロチャネル壁に沿って設けられた複数のオリフィスによって連結され、ここで、オリフィスの面積は該オリフィスが設けられたマイクロチャネル壁の面積の20%又はそれ未満であり、それぞれのオリフィスが0.6mm2又はそれより小さく、ある具体例においては0.1mm2又はそれより小さいこと(コーティングは孔を詰まらせることなく塗布されるべきであるので、これは特に挑戦的な形態である);或は
・少なくとも2つ(ある具体例においては少なくとも5つ)の平行したマイクロチャネル(少なくとも1cmの長さを有するもの)が一体型多岐管への開口を有し、ここで、前記多岐管の少なくとも1つの寸法が平行マイクロチャネル群の最小寸法の3倍を超えないものとする(例えば、平行マイクロチャネルの内の1つの高さ(平行マイクロチャネル群のおける最小寸法として)が1mmである場合には、この多岐管の高さは3mmを超えない)。
一体型多岐管は組立て装置の一部であり、連結管ではない。ある装置においてはマイクロチャネルはU型ベンドを含有し、これは、運転の間にフロー(又はフローの少なくとも一部)が装置内及び連続チャネル内を逆方向に通ることを意味する(ある好ましい具体例においては単一のマイクロチャネル内でマイクロチャネル内のすべてのフローがU型ベンドを通って反対方向に通るが、U型ベンドを有する連続チャネルはW型ベンドのような分流を包含することに留意されたい)。
【0054】
好ましい具体例において、本発明の装置(又は方法)は触媒材料を含む。この触媒は、バルクフロー流路の少なくとも1つの壁の少なくとも一部を画定するものであることができる。好ましい具体例においては、触媒の表面が混合物が通るバルクフロー流路の少なくとも1つの壁を画定する。運転の間に、反応物質組成物がマイクロチャネルを通って流れ、通り越して、触媒と接触する。ある具体例において、触媒は、単一のピースとして各チャネル中に挿入する(又は各チャネルから取り出す)ことができる挿入物として提供される。もちろん、この挿入物はマイクロチャネル内に収まる寸法にする必要がある。この触媒は、マイクロチャネル反応チャネル(群)内の材料のコーティング(例えばウォッシュコート)であることができる。フローバイ触媒形態を採用することによって、有利なキャパシティ/圧力降下の関係を作り出すことができる。フローバイ触媒形態においては、好ましくは、流体が多孔質挿入物の隣の隙間中を、又はマイクロチャネル壁{好ましくは熱交換器(好ましくはマイクロチャネル熱交換器)と熱的に直接接触状態にあるマイクロチャネル壁}に接触する触媒の壁コーティングを通って、流れる(ある具体例においては、クーラント又は加熱ストリームが触媒と接触する壁の反対側の面と接触する)。
【0055】
その他の基材
【0056】
好ましい具体例において、本発明の装置、触媒又は方法は、内部マイクロチャネル上にアルミナイドコーティングを含有し又は内部マイクロチャネル上でアルミナイドコーティングを使用する。好ましい具体例において、本発明は、内部マイクロチャネル壁上にコーティングされたアルミナイド層、アルミナ層及び触媒材料を含む。しかしながら、ある具体例において、本発明は、マイクロチャネル壁以外の基材(触媒担体)上にアルミナイド層が形成された触媒(又は触媒の製造方法)を包含する。かくして、ある具体例において、本発明は、基材、該基材上のアルミナイドコーティング及び該アルミナイド(好ましくは介在アルミナ層を有するもの)上の触媒材料を含む。基材は、ペレット又はリングのような慣用の形を有していてよい。ある具体例において、基材は膨張金属シートではない。マイクロチャネル壁の場合におけるように、好ましい触媒担体は、Ni系、Co系又はFe系超合金から形成されたものであるのが好ましい。
【0057】
ある好ましい具体例において、触媒は、金属、セラミック又は複合基材上に触媒材料(群)の層(群)を付着させて成る。基材は、熱伝導性であるのが好ましい。好ましい基材は、基材表面上にフィン(例えば方形波タイプのフィン)が存在することを特徴とするフィン付き基材である。これらのフィンは、例えば一体型反応器の壁中にエッチングされたフィンの形又はマイクロ反応器の燃焼チャンバー中に挿入することができるフィン付き挿入物(例えば1つの溝付表面を有する平たい金属プレート)の形を採ることができる。ある場合には、反応器は挿入物を置き換えることによって一新することができる。マイクロチャネル内の一新方法には、すり割り鋸(slitting saw)の使用、光化学プロセスを用いた部分エッチング又はレーザーEDMが含まれる。このタイプの担体は、高い熱流束及び短い熱移動距離、大きい表面積及び低い圧力降下を含めて、数多くの利点を提供する。この担体は、5mm未満、好ましくは2mm未満の高さ(フィンを含めて)及び1000μm又はそれ未満のフィン間距離、ある具体例においては150〜500μmのフィン間距離を有するのが好ましい。別法として、触媒は粉末又はペレットのような任意の慣用の形を採ることもできる。
【0058】
金属アルミナイド層
【0059】
本発明のある具体例においては、マイクロチャネル装置(好ましくはマイクロ反応器)の少なくとも1つの内側壁の少なくとも一部が金属アルミナイド{好ましくはニッケルアルミナイド(NiAl)}の層でコーティングされている。驚くべきことに、金属アルミナイド(例においてはNiAl)コーティングを酸化することによって形成されるアルミナ壁コーティングは、熱成長酸化物層(アルミナイドを形成することなく基材から成長するもの)や溶液付着アルミナ層と比較して優れた耐腐食性を提供するということが見出された。気相から表面に付着させたアルミニウムと基材から表面に向けて拡散するニッケルとの固体状態反応から、格別均一且つ稠密なコーティングが得られると信じられる。さらに、ステンレス鋼のようなニッケルに富んでいない金属上にニッケルを析出させることによって、 アルミナイド化プロセスのための反応性表面を作ることができる。ニッケルアルミナイドはまた、Alの前駆体及びNiの前駆体の両方を気相中に同時に又は混合物として供給することによって付着させることもできる。関連局面においては、かかるニッケルアルミナイド表面を有する基材上に触媒又は触媒中間体を形成させる。もちろん、本発明はまた、基材(好ましくはNiベース合金)を化学蒸着で付着させたアルミニウムでコーティングし、このアルミニウムを同時に且つ/又は次いでアルミナイド(例えばNiAl)に転化させることを含む触媒又はマイクロチャネル装置の製造方法も包含する。
【0060】
NiAl層は、Niベース合金を高温(好ましくは少なくとも700℃、ある具体例においては900〜1200℃)においてAlCl3及びH2に曝すことによって形成させることができる。AlCl3とH2との間の反応の結果として、表面にアルミニウムが付着する。温度により、基材からのNiが表面に向けて拡散し、アルミニウムと反応してニッケルアルミナイドの表面層を形成する。Ni源はNiベース合金基材中のNi、電解メッキNi層又は蒸着Ni層(アルミナイド化の前に基材全体に付着させることができるもの)であることができる。同様の条件下でその他の金属アルミナイド(例えばCoやFe)を形成させることができると信じられる。
【0061】
好ましくは、アルミナイド化プロセスは、多岐管を通す装置へのフローを良好に制御しながら実施する。例えば、良好な制御は漏れのない多岐管を通してマイクロチャネル中にフローを通すことによって得ることができる。好ましくは、アルミナイド化プロセスは、100トル(2ポンド/平方インチ、絶対圧、psia)〜1800トル(35psia)、より一層好ましくは400トル(8psia)〜1300トル(25psia)の範囲において実施する。
【0062】
好ましい具体例において、ニッケルアルミナイドはアルミニウムを13〜32%、より一層好ましくは20〜32%含有し、さらにより一層好ましくはβ−NiAlから本質的に成る。Alが13重量%より有意に低いγ−プライム相レベルに落ちると、熱成長アルミナスケールの品質に負の影響を及ぼすことが考えられる。
【0063】
ある具体例において、金属アルミナイド層は1〜100μmの厚さ;ある具体例においては2〜50μmの厚さ;ある具体例においては5〜25μmの厚さを有する。ある具体例において、アルミナイド層は完全に酸化される。しかしながら、これは一般的に好ましいというわけではない。
【0064】
金属アルミナイドが形成される金属表面には、酸化物が実質的にないのが好ましい。かかる酸化物が存在する場合には、随意にこの表面を清浄化し、磨き又は該酸化物を除去するための処理をすることができる。
【0065】
反応器は、内壁(この壁は、単純な壁であってもよく、形状付与した壁であってもよい)上に触媒をコーティングとして配置させることによって形成される。別法として又は追加的に、フィン、プレート、ワイヤ、メッシュ又はフォームのような挿入物をチャネル内に挿入することができる。これらの挿入物は、追加の表面積を提供して、フロー特徴に影響を及ぼすことができる。装置(例えば反応器)の壁上に挿入物を固定するために、アルミニウム処理プロセスを用いることができる。得られるアルミニウム層(又は酸化アルミニウム若しくはアルミニウム若しくは金属アルミナイド若しくはこれらの混合物)が空隙のいくらかを満たし、挿入物と装置壁(例えば反応器壁)との間の熱伝導を大いに改善する。
【0066】
アルミナイド化プロセスの間に酸化物が存在することの影響
【0067】
インコネル(商品名)617クーポンを、アルミニウム処理の前にクロミアの自然酸化物を意図的に多少成長させるために、空気中で400℃において1時間熱処理した。アルミニウム処理の前に自然酸化物を有するクーポン中で、含有物の細い点線がアルミナイド中に観察される。このような含有物の点線は、接着性に関する弱点になることがある。
【0068】
マルチチャネル装置のアルミナイド化における初期の試みにおいて、ガス入口(即ちアルミニウム化合物についての入口)に最も近いチャネルが最も多くの含有物を示し、最も離れたチャネルが最も少ない含有物を示すことが発見された。これは、マイクロチャネルの手前のアルミニウム化合物の通路の配管又は多岐管における表面酸化物によって引き起こされると信じられる。配管中の表面酸化物の存在は、EDSによって確認された。この不具合を回避するためには、表面酸化物{特にマイクロチャネル装置につながる流体通路(即ちアルミニウム化合物を運ぶ通路)に沿った表面酸化物}を有する部品をアルミナイド化プロセスに使うのを回避するように注意を払うべきである。ある好ましい技術においては、配管及び/又はその他の流体通路は、表面酸化物を取り除く{磨き(brightened)}ための水素処理によるような処理に付される。もちろん、アルミナイド化の前にマイクロチャネルを表面酸化物除去処理に付してもよい。
【0069】
好ましい具体例において、アルミナイド層並びにアルミナイド層と合金基材及び酸化物層(存在する場合)との界面は、10μmより大きい空隙又は含有物が実質的にないのが好ましく、3μmより大きい空隙又は含有物が実質的にないのがより一層好ましい。「空隙又は含有物が実質的にない」とは、チャネルの長手方向50μmの中に多くの欠陥(即ち約5個の大きい欠陥又は単一の非常に大きい欠陥)を持つコーティングを除外するということであり、少数の孤立した欠陥を示す構造をも除外しようとするものではない。
【0070】
熱成長酸化物
【0071】
酸化アルミニウムの層を成長させるために、金属アルミナイド層(より一層好ましくはNiAl層)を酸素又は他の酸化性ガスの存在下で加熱することができる。驚くべきことに、高温における酸化物成長の前にO2又は他の酸化性ガスの不在下で処理温度に加熱した場合に、有意に改善された酸化物コーティングが得られることが見出された。酸素の存在下で表面を処理温度に加熱することによって成長させた酸化物層はスポーリングを示したのに対して、酸素の不在下で周囲温度から処理温度まで表面を加熱することによって成長させた層はスポーリングを示さなかった。酸素は熱処理プロセスの加熱工程から実質的に排除することができる。
【0072】
表面から酸素を排除しながら表面を周囲温度から処理温度に加熱する便利で好ましい方法は、水素に曝すことを伴うものである。水素は加熱の際のその雰囲気の酸化力を効果的に低下させて、酸化物スケールの時期尚早の成長を防止する。また、ガスの酸化力を低下させるその他のガス、例えばNH3、CO、CH4、炭化水素類等又はこれらのいくつかの組合せを用いることもできる。これらのガスは、N2、Ar、He、Ne又はこれらの組合せのような不活性ガスとの組合せとして用いることができる。
【0073】
酸化物層は、表面を処理温度において酸化性雰囲気に曝すことによって形成される。酸化性ガスは、空気、希釈空気、酸素、CO2、水蒸気、NOx若しくはこれらの気体の任意の混合物又は実質的な酸化力を有するその他の気体であることができる。酸化物成長温度は少なくとも500℃、好ましくは少なくとも650℃である。異なる温度段階、異なる酸化力段階又はそれらの両方で表面を処理条件に曝すことができる。例えば、表面を650℃において所定時間処理し、次いで1000℃に加熱し、追加の時間の間1000℃に保つことができる。このように制御されて段階設定された表面処理によって、所望の形態及び組成の表面構造を生じさせることができる。
【0074】
不活性雰囲気又は好ましくはH2含有雰囲気のような還元性雰囲気(好ましくは少なくとも1000ppmのH2、ある具体例においては1〜100%H2)下で約1000℃(ある具体例においては少なくとも900℃)に予備加熱することによって、優れた酸化物コーティングが得られる。還元性雰囲気下での予備加熱によって、殆ど又は全くスポーリングがない優れた酸化物コーティングが製造されることが観察された。この予備加熱条件の調節は、ニッケル酸化物又は酸化物の混合物の形成を最少限にするので、優れたコーティングをもたらすと信じられる。従来不活性雰囲気と考えられていた雰囲気でも劣った結果がもたらされるので、本当に「不活性な」雰囲気を選択するように大いに注意を払わなければならない。何故ならば、ニッケル酸化物は理論上10-10atm酸素においてさえ形成されることがあり、クロミアは10-21atm酸素においてさえ形成されることがあるからである。このような極端な純度レベルは、工業的に利用可能なガスでは得られない。従って、還元性雰囲気が好ましい。
【0075】
従来の知識では、温度が高ければ高いほど酸化速度が速くなるとされていた。驚くべきことに、1050℃より1000℃の方が酸化物が迅速に成長することが見出された。1つの可能な説明は、高温の酸化物はより稠密であり、従って迅速な成長の邪魔をするというものである。より低温の酸化物はより多孔質であり、従ってより迅速な酸化物の成長を可能にすることができる。他方、温度が高すぎるとアルミナイド層と基材との間の相互拡散が促進され、アルミナイドが合金の塊中に消失する。従って熱成長酸化物は、好ましくは1000〜1100℃、より一層好ましくは1025〜1075℃の温度範囲において実施する。過剰量の酸素の存在下、例えば酸素流入下では、酸化処理を好ましくは30〜6000分間、より一層好ましくは60〜1600分間実施する。
【0076】
用語「アルミナ」とは、追加の金属の存在下で酸化アルミニウムを含有する材料を指すために用いることができるということを認識すべきである。本明細書においては、別段特定されていなければ、用語「アルミナ」とは、実質的に純粋な材料(「本質的にアルミナから成る」)及び/又は変性剤を含有する酸化アルミニウムを包含する。
【0077】
薄い層ほどクラッキングを蒙りにくい。従って、熱成長酸化物層は10μm厚さ又はそれ未満であるのが好ましく、5μm厚さ又はそれ未満であるのがより一層好ましく、1μm厚さ又はそれ未満であるのがさらにより一層好ましく、ある具体例においては0.1μm〜10μm厚さであり、ある具体例においては0.2μm〜5μm厚さであり、ある具体例においては0.5μm〜3μm厚さである。典型的には、これらの厚さは光学又は電子顕微鏡法によって測定される。一般的に、熱成長酸化物層は視覚によって同定できる。下にあるアルミナイド層は金属性状であり、5重量%以下の酸素原子を含有する。表面ウォッシュコート層は、密度、多孔度又は結晶相の違いによって熱成長酸化物から区別することができる。
【0078】
アルミニウム処理表面は、アルカリ土類元素(Be、Mg、Ca、Sr、Ba)、希土類元素(Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)又はこれらの組合せ物を添加することによって変性することができる。これらの元素を添加した後に、酸化性雰囲気との反応によって混合酸化物スケールを形成させる。この変性用元素が例えばLaである場合、スケールはアルミン酸ランタンLaAlOxを含有する。ある具体例において、Laのような希土類元素を添加することによって、安定化アルミナ表面を形成させることができる。
【0079】
流量
【0080】
アルミナイド層は、動的フロー条件下において表面をガス状反応物質混合物と反応させることによって形成させるのが好ましい。アルミナイド形成に必要なアルミニウムは、AlCl3及びH2をマイクロチャネル中に流すことによってマイクロチャネル中に付着させることができる。マルチチャネル装置においては、(例えばCVD処理の際にアルミニウム前駆体を排除するために特定のチャネルを塞ぐことによって、)選択したチャネルのみにAlを付着させることができる。また、相対圧を調節することによってマイクロチャネル装置の選択した一部にアルミニウム層を塗布することもできる。例えば、壁で隔てられた少なくとも2つのチャネルを含有し且つこれら2つのチャネルが壁中のオリフィスによって互いに連結されたマイクロチャネル装置においては、AlCl3を第1のチャネルを通して流しながら、H2はそれより高圧において第2のチャネルを通して且つオリフィスを通して第1のチャネル中に流す。
【0081】
所望の領域を(必要ならば一時的なガスポンプ輸送によって)反応性ガスで満たすことによって、静的ガス処理を実施することができる。
【0082】
被検装置の詳細な分析に基づいて、以下の閾値が確立された。
【0083】
壁剪断応力:抗力がアルミニウム処理コーティングの形成を害しないようにするためには、アルミニウム処理ガスがジェットオリフィス中を流れている場合には壁剪断応力が50Paを超えないようにすべきである。許容できる壁剪断応力は、アルミニウム処理ガスがジェットオリフィス中を通るようにマイクロチャネルの壁に衝突しないならば、200Paを超えないようにすべきである。
【0084】
壁動圧:モメンタム衝撃浸食がアルミニウム処理コーティングの適度な形成を害しないようにするためには、アルミニウム処理ガスがジェットオリフィス中を流れている場合には壁動圧が10Paを超えないようにすべきである。ジェットオリフィスの不在下ではもっとかなり高い壁動圧が可能である。許容できる壁動圧は、アルミニウム処理ガスがジェットオリフィス中を通るようにマイクロチャネルの壁に衝突しないならば、100Paを超えないようにすべきである。
【0085】
実用上の用途
【0086】
上に示した測定基準は、流体工学の観点から良好なアルミニウム処理を意味するフロー形態及び個々の入口流量を決定するために用いられる。一般的に、装置についての可能な流入及び流出路の組合せがある。アルミニウム処理ガスの内の少なくとも1つのものの流れがジェットオリフィスを通る場合に装置全体を通じて50Pa以下の壁剪断応力及び10Pa以下の壁動圧の全体的な維持をもたらすような流入/流出の組合せ及び個々の入口流量を決定するためには、CFD予測が用いられる。これら2つの基準及び関連するフロー形態を満足する最大許容入口流量が、ここで編み出された測定基準に基づいて装置をアルミニウム処理するための推奨される手順となる。この手引きの結果としてのアルミナイドコーティングの例は、目に見える欠陥のないアルミナイドコーティングを製造した。
【0087】
マスキング
【0088】
上で議論したアルミニウム処理プロセスにより、チャネル全体にアルミナイドコーティングが製造される。しかしながら、チャネルの一部を隠す(マスキングする)ことによってチャネルの一部を選択的にコーティングすることも理論的に可能である。これは、シートの一部を耐火性材料でマスキングし、次いでマスキングされたシートを積層して積層体にすることによって行うことができる。このマスクはアルミニウム処理後に例えば燃焼によって取り除くことができる。可能な耐火性材料には、Mo、ダイアモンド及びグラファイトが包含され得る。
【0089】
図3に、金属基材42が随意としてのニッケル含有層(例えばニッケルストライク)44、アルミナイドの層46及びアルミナの層48を有する応用例を図示する。好ましい具体例において、最も外側の層はさらに追加の触媒活性材料49を含む。
【0090】
触媒コーティング
【0091】
触媒は、化学蒸着(CVD)及び無電解めっきのような当技術分野において周知の技術を用いて酸化物上に直接塗布することができる。可溶性水性塩を含浸させるのが好ましい。ある具体例においては、Pt、Rh及び/又はPdが好ましい。典型的には、その後に当技術分野において周知のように熱処理及び活性化工程を行う。pH>0の溶液を形成する塩が好ましい。
【0092】
本発明の触媒活性材料には、特に制限はない。本発明の好ましい触媒材料の中には、いわゆる高温触媒、即ち貴金属を含むもの、好ましくはPt、Pd、Rh、Ni、Co、Ag、Au、Ir及びRuより成る群から選択される少なくとも1種の金属を含む触媒材料がある。酸化的脱水素については、本発明の好ましい触媒活性材料はいわゆる低温触媒をもまた包含し、これはLi、Mo、V、Nb、Sb、Sn、Zr、Cr、Mg、Mn、Ni、Co、Ce、希土類金属(例えばSm)及びそれらの混合物より成る群から選択される金属の少なくとも1種の酸化物又はリン酸塩を含むことができる。前記低温又は高温触媒は、アルカリ又はアルカリ土類促進剤のような成分やCu、Ag又はSnのような金属を追加的に含有していてもよい。触媒は、例えばアルミナ上に分散させたバナジア、又はアルミナ上の白金であることができる。酸化的脱水素(ODH)については、Pt、Sn、Cu及びそれらの組合せが特に好ましい。ある好ましい具体例において、Pt:Sn比は1〜4の範囲、より好ましくは2.1〜2.7の範囲、さらにより一層好ましくは2.3〜2.5の範囲である。驚くべきことに、これらの比較的高いPt:Sn比によりマイクロチャネル中で優れた結果を得ることができることが見出された。マンガン酸ランタンはODHのための別の好ましい触媒材料である。Ptは燃焼用の好ましい触媒である。
【0093】
平たい又は実質的に平たい基材(例えば平たいマイクロチャネル壁)については、触媒は幾何学的表面積(即ち定規によって計ることができる面積)に対する触媒材料の量によって特徴付けることができる。触媒は、ある好ましい具体例においては少なくとも0.3mg/cm2の触媒材料を含有し、ある好ましい具体例においては少なくとも0.6mg/cm2の触媒材料を、ある具体例においては0.2〜2mg/cm2の触媒材料を含有する。
【0094】
別途記載がない限り、壁コーティングの元素分析はエネルギー分散型分光分析(EDS)を用い、20kVの励起エネルギーにおいて(100倍において又は、もしも100倍が利用可能な面積より大きい場合には、かかる測定条件が特定システムについて実行不可能であるならば多少の変更を必要としてもいいという認識の下に、SEMについての最大利用可能面積において)測定すべきである。よく知られているように、この技術は表面組成並びに表面の下のある程度の厚さを測定する。
【0095】
本発明のある触媒は、N2吸着BETによって測定して10m2/g又はそれ未満の表面積を有し、ある具体例においては5m2/g又はそれ未満の表面積を有する。
【0096】
無電解めっき
【0097】
反応器壁に沿って金属をめっきするために化学反応が用いられる無電解めっきを使用することによっても、触媒コーティングを作ることができる。無電解めっき溶液は、反応開始の前にチャネル内に充填する(所望の高さまで)のが好ましいということに留意されたい。この溶液は、室温又はそれより低い温度において導入し、次いで必要なめっき温度まで加熱することができる。逆に、マイクロチャネルから流体を取り出す前にめっき反応を最小限にしておくべきである。さもなければ、チャネル長手方向に沿って及びチャネルからチャネルまでの間に不均一コーティングが得られることがある。特定的には、乾燥の際にかなり長時間の間流体がマイクロチャネルのボトム付近のチャネル壁と接触したままとなるので、チャネルのボトム付近においてコーティングが厚くなることが予測される。
【0098】
周知のように、無電解めっき溶液は金属化合物及び還元用化学物質を含む。溶液中の金属イオンの還元を防止するために、錯化剤を添加してもよい。ある具体例においては、この還元プロセスは、少量の触媒金属イオンによって触媒されることがある。マイクロチャネル壁は、セラミック、金属、アルミナコーティングアルミナイド等であることができる。無電解めっきのための好ましい金属には、Cu,Ni、Fe、Co、Au、Ag、Pd、Pt、Sn、Ir、Rh及びそれらの組合せが包含される。めっき後に、残った溶液を排出させることができる。
【0099】
反応
【0100】
コーティングされたマイクロチャネル装置は、表面触媒と共に高温、例えば180℃超、250℃超、500℃超、ある具体例においては700℃又はそれ以上、ある具体例においては900℃又はそれより高い温度において用いる場合に、特に有用である。
【0101】
ある局面において、本発明は、マイクロチャネル中に少なくとも1種の反応物質を通し、そして前記の少なくとも1種の反応物質をマイクロチャネル内で触媒の存在下で反応させて少なくとも1種の生成物を生成させることを含む、反応実施方法を提供する。ある具体例において、反応は、次のものから選択される反応から本質的に成る:アセチル化、付加反応、アルキル化、脱アルキル、水素化脱アルキル、還元性アルキル化、アミノ化、アンモ酸化、アンモニア合成、芳香族化、アリール化、自熱リホーミング、カルボニル化、脱カルボニル、還元性カルボニル化、カルボキシル化、還元性カルボキシル化、還元性カップリング、縮合、クラッキング、水素化クラッキング、環化、シクロオリゴマー化、脱ハロゲン、二量体化、エポキシ化、エステル化、交換、Fischer-Tropsch、ハロゲン化、ハロゲン化水素化、同族体化、水和、脱水、水素化、脱水素、ヒドロカルボキシル化、ヒドロホルミル化、水素化分解、水素化金属化、ヒドロシル化、加水分解、水素処理(HDS/HDM)、異性化、メチル化、脱メチル、複分解、ニトロ化、重合、還元、リフォーメーション、リバース水性ガスシフト、Sabatier、スルホン化、テロマー化、エステル交換、三量体化及び水性ガスシフト。燃焼は別の好ましい反応である。炭化水素水蒸気改質が特に好ましい(例えばメタン、エタン又はプロパンの水蒸気改質)。
【0102】
ある好ましい具体例において、本発明の方法のガス時間空間速度(GHSV)は、反応器容量を基準として1000h-1〜10000000h-1の範囲又は1000ミリリットル供給物/(g触媒)(時間)〜10000000ミリリットル供給物/(g触媒)(時間)の範囲であることができる。別の好ましい具体例において、GHSVは、少なくとも10000h-1又は少なくとも10000ミリリットル供給物/(g触媒)(時間);より一層好ましくは少なくとも100000h-1又は少なくとも100000ミリリットル供給物/(g触媒)(時間);さらにより一層好ましくは少なくとも500000h-1又は少なくとも500000ミリリットル供給物/g触媒;さらにより一層好ましくは少なくとも1000000h-1又は少なくとも1000000ミリリットル供給物/(g触媒)(時間)である。
【0103】
酸化的脱水素(ODH)
【0104】
本発明は、アルカン及び/又はアルアルカン(即ちアリールアルカン)のアルケン、アルカジエン及び/又はアルアルケン(即ちアリールアルケン)への酸化的脱水素のための方法を開示する。炭化水素は、C2〜C20までのアルカン又はアルアルカンであることができる。アルカンの例には、エタン、プロパン、イソブタン若しくはブタン又はC20までの直鎖状若しくは分岐鎖状アルカンを含む高級アルカンが含まれ;アルアルカンの例にはエチルベンゼンが含まれ;本発明の目的のためのアルケンの例にはエチレン、プロピレン又はブタジエンのようなアルカジエンが含まれ;アルアルケンの例にはスチレンが含まれる。炭化水素の好ましい例は、C2〜C18アルカン、好ましくはC2〜C10アルカン、イソブタン、プロパン、エタン、エチルベンゼン又は洗剤アルコールを作るために用いることができるようなC10〜C15アルカンである。前記アルカンは、直鎖状、分岐鎖状及び環状であることができる。炭化水素は、純粋な形又は混合物状で商品として得ることができる。炭化水素はまた、別の反応から誘導することもでき、これらの反応の生産量は介在する精製工程と共に又は精製工程なしで用いられる。本発明のシステムは、装置及び/又は触媒を反応物質及び/又は生成物との組合せとして包含すると述べることができる。「包含する」とは「含む」を意味するが、しかしながら、別法として「から成る」や「から本質的に成る」の任意の用語を本発明のより限定された局面を述べるために用いることもできる。追加的に、任意の個々の成分(例えばエタン)を、好ましくは少なくとも20%の純度(炭素原子を基準として)で又は少なくとも50%、又は少なくとも90%、又は100%の純度で存在させることができる。
【0105】
酸素源は、分子状酸素を提供することができるガスであるのが好ましく、これは都合のいいことに分子状酸素又は空気であることができる。酸素(O2)が空気より好ましく、好ましい具体例においては、反応チャンバーに入るO2:N2比(又はO2:希釈剤比)は1又はそれより大きく、より好ましくは少なくとも3,さらにより一層好ましくは少なくとも10である。ある具体例において、供給物中の炭化水素/酸素(O2)比は2.0又はそれより大きく、ある具体例においては1〜3の範囲、ある具体例においては1.8又はそれより大きく、ある具体例においては2.5又はそれより大きい。
【0106】
エタンのエチレンへのODHについては、エタン:H2供給比が1:0〜1.1の範囲、好ましくは1:0.2〜1:0.6の範囲、特に好ましくは1:0.25〜1:0.5の範囲であるのが好ましく、エタン:O2供給比は1.8〜4.0の範囲であるのが好ましく、ある具体例においては1:0.25〜1:0.5の範囲であり、全体的な反応選択性及び転化率に依存する。H2:O2比は、0.5〜3.0の範囲であるのが好ましい。
【0107】
ODH反応用の別のマイクロチャネル設計としては、隣のマイクロチャネル中の吸熱反応と密接に組み合わせるものがある。水蒸気改質反応のような吸熱反応を発熱性のODH反応の次に配置させることによって、最も高い熱移動速度が可能になる。隣接マイクロチャネル中に配置させることができる吸熱反応は、アルカンクラッキングである。マイクロチャネル反応器中における対流冷却のための典型的な熱流束は、1〜5W/cm2程度である。改善されたヒートシンク(熱吸収領域)を提供するために同時吸熱反応を組み込むことによって、対流冷却熱流束よりおおよそ1桁上の典型的な熱流束が可能になる。
【0108】
ODH用の反応器設計には、酸化剤の分散注入を含ませることができる。ODH用の反応器設計は、2004年2月19日付け米国特許出願公開第20040034266号(2003年5月19日付け米国特許出願第10/441921号)明細書に記載されているので、参照されたい。
【0109】
ある好ましい具体例において、隣接チャネル(群)は、反応用マイクロチャネル(群)の長手方向にわたって分布される酸素源を有する。ある好ましい具体例においては、チャンバーの長手方向に沿って3つより多い地点において酸化剤を反応チャンバーに入れる。反応チャンバーが複数の壁(典型的には4つの壁)によって画定されるある具体例においては、反応チャンバーの1つ又は1つより多くの壁上に酸化剤の入口を存在させる。
【0110】
本発明におけるエタンODHプロセスの好ましい温度範囲は、335〜1100℃の範囲の温度、より一層好ましくは500〜1050℃、ある具体例においては約700〜約1000℃の温度を包含する。
【0111】
プロセス反応チャンバーと熱交換器とを隔てる面を通って移動することができる熱の量は、熱移動の方法の関数である。熱交換チャネル中の熱流体から脱水素反応チャンバーへの対流熱移動のためには、ガス状熱移動流体について移動する熱の量(熱交換器に隣接する反応チャンバー壁面積1cm2当たりのワット数として規定される)は、好ましくは少なくとも1W/cm2であり、約15W/cm2までであってよい。対流熱移動に用いられる液状熱移動流体については、もっと高い熱移動束が達成可能であり、少なくとも1W/cm2〜約30W/cm2の範囲であることができる。発熱反応からの伝導性熱移動については、もっと高い熱移動速度が達成可能であり、熱流束は約10W/cm2〜約100W/cm2の範囲であることができる。これらの規定された熱流束の範囲は定常状態運転についてのものであり、熱交換器に隣接するプロセス反応チャンバー壁の面積全体の平均;又は、複数のチャネル(2個より多いチャネル)を有する反応器においては、運転中のすべてのチャネル中の熱交換器に隣接するすべての脱水素反応チャンバーの面積全体の平均である。
【0112】
ある好ましい具体例においては、反応器中の触媒を有する部分(第1の反応チャンバー)と反応器中の触媒がない部分(隣接熱交換器)とを熱交換連通状態にし、反応器の触媒がない部分においてエタンがクラッキングされる。好ましい具体例においては、反応器の触媒を含有する部分における反応物質の滞留時間を、隣接熱交換器中における反応物質ガスの滞留時間より短くする。ある好ましい具体例においては、第1の反応チャンバー中の滞留時間を、隣接熱交換器中のガスの滞留時間の半分未満(ある具体例においては20%又はそれ未満)にする。略図を図4に示す。
【0113】
ある具体例においては、反応チャネルの面積の50%未満が触媒壁コーティングでコーティングされる。ある具体例において、ODH反応は700℃超の温度において実施され、反応チャネルの700℃超の温度にある領域の50%未満が触媒壁コーティングでコーティングされる。
【0114】
炭素酸化物への選択性(炭素原子基準)は、40%未満であるのが好ましく、より一層好ましくは20%未満(ある具体例においては20%〜5%の範囲)、さらにより一層好ましくは5%未満である。好ましさがそれより低い具体例においては、二酸化炭素の選択性(炭素原子基準)が40%未満、より一層好ましくは20%未満(ある具体例においては20%〜5%の範囲)、さらにより一層好ましくは5%未満である。
【0115】
CO/CO2比は、ODHプロセスの効率の指標である。この比が低いということは、酸素がODHのために利用可能ではなく、主として燃焼のために消費されていることを示す。マイクロチャネル反応器においては、反応器温度がCOの形成の方がCO2の形成より促進される温度よりも低い場合に、当該特定ガス混合物についての平衡において予測されるものより過剰のCO対CO2比を得ることが可能である。例えば、C3対O2の比が2:1であり且つ全圧が10psig(69kPa)である場合、COとCO2とが1:1の比で平衡状態にある温度は約660℃であり、この温度以下ではCOの形成が熱力学によって強く促進される。
【0116】
所定混合物について所定の作業圧力において、温度がそれ以下ではCOの形成が熱力学的に促進されるという温度より低い場合にマイクロチャネル反応器中で得られるCO:CO2比は、好ましくは少なくとも2.4:1、より一層好ましくは少なくとも2.76:1、より一層好ましくは少なくとも4.6:1、さらにより一層好ましくは少なくとも10:1である。
【0117】
等しいピーク温度において、容量生産性{これは、単位容量の反応チャンバー(反応チャンバーは触媒がフローバイ又はフロースルーのいずれかとして存在するチャネルの部分である)当たりに1時間で製造される目的オレフィン(例えばプロピレン)のグラム数と規定される}は、従来の反応器におけるものよりマイクロチャネルにおける方が大きい。例において示したように、C3対O2比が1:1であり且つピーク温度が約625℃である場合に、マイクロチャネルの生産性は石英管のものより1.9倍大きい。プロパンODHを行うマイクロチャネル反応器の容量生産性は、1つの場合には15g/ml/時間以上、好ましくは30g/ml/時間以上、より一層好ましくは60g/ml/時間以上、さらにより一層好ましくは120g/ml/時間以上であることができ、ある具体例においては生産性は15〜約150g/ml/時間である。
【0118】
エタンODHの場合、等しい平均温度において、単位質量の触媒当たりに1時間で製造される目的オレフィン(例えばエチレン)のグラム数として規定した生産性は、従来の反応器におけるものよりマイクロチャネルにおける方が大きい。エタンODHを行うマイクロチャネル反応器の生産性は、好ましくは少なくとも270g/g/時間、より一層好ましくは少なくとも600g/g/時間、より一層好ましくは1200g/g/時間、さらにより一層好ましくは少なくとも2400g/g/時間である。
【0119】
ある好ましい具体例において、H2は製品ガスから回収され、回収されたH2の少なくとも一部は反応器に戻される。
【0120】
炭化水素の転化率(1回通過において)は、好ましくは50%又はそれ以上、より一層好ましくは約70%又はそれ以上、さらにより一層好ましくは80%又はそれ以上である。1種より多くの価値のあるアルケンを生成させることができる場合の所望の生成物(群)の選択率のレベルは、好ましくは少なくとも50%、好ましくは少なくとも60%、ある具体例においては50〜約93%である。1サイクル当たりの生成物アルケン(群)及び/又はアルアルケンの収率(モル%)は、10%より大きいのが好ましく、20%より大きいのがより一層好ましい。生成物のアルケン(群)及び/又はアルアルケンの全体収率(モル%)は、50%より大きいのが好ましく、75%より大きいのがより一層好ましく、85%より大きいのが特に好ましい。特定された転化率、収率及び選択性のレベルは例示と理解すべきであり、1サイクル当たり少なくとも15%、少なくとも25%等の収率並びに10〜30%のような範囲のようなすべての値を包含するものとする。範囲及び条件は実施例を参照することによってさらに理解することができ、本発明は本明細書に記載された転化率等のすべての範囲及び最小レベルを包含する。また、本明細書に与えられた教示に鑑みて通常の試験及び実験を行うことによって優れた結果が明らかになるだろうということも想像され、従ってこの開示は非常に多くのレベル(及び範囲)の条件及び結果の説明を包含するものと広く解釈されることが意図される。
【0121】
エタンのODHについては、エテン(エチレン)への選択性は好ましくは80%又はそれ以上、より一層好ましくは85%又はそれ以上、ある具体例においては80〜約93%の範囲、より一層好ましくは84〜約93%の範囲である。ある具体例において、エテン及びエチン選択性の合計が好ましくは80%又はそれ以上、より一層好ましくは85%又はそれ以上である。これらの選択性は、反応器への1回通過に基づく。
【0122】
マイクロチャネル反応器中での酸化的脱水素プロセスにおいて、10000h-1超、100000h-1超、さらには1000000h-1超のガス流量で、90%超、95%超、特に好ましくは99%超の酸素転化率を達成することができる。
【実施例】
【0123】
直接コーティング法:
【0124】
熱処理したアルニウム処理合金617クーポン上に、前駆体として用いられる金属水溶液を室温において直接塗布した。PT系については、9%(原子状Pt)テトラアンミン白金水酸化物溶液を用いた。それぞれのコーティングの後に、クーポンを空気中で450℃において1時間焼成した。所望の重量獲得が達成されたら、最終焼成のためにクーポンを空気中で850℃において4時間焼成した。Re−Pt系については、過レニウム酸又は過レニウム酸アンモニウムを用いることができ、Ptを塗布する前に最初にコーティングした。
【0125】
腐食保護
【0126】
インコネル(商品名)617のサンプルに対して、保護アルミナイドコーティング付きで又はなしで、腐食試験を行った。アルミナイドでコーティングされたサンプルは、アルミナイドの層を形成させ、H2雰囲気下で加熱し、次いで1050℃において空気に曝すことによって作った。両方のサンプルについて、960℃において水17%、O22.5%で1000時間腐食試験を行った。コーティングしてないサンプルは100時間の試験の後に点蝕を示した。対照的に、アルミナイド/アルミナコーティングサンプルは1000時間の腐食試験の後にも観察できる変化を示さなかった。図1を参照されたい。アルミナ層への損傷は何ら示さない。この図中に示された粒界は、腐食試験の前にも存在していた。4400時間のさらなる腐食試験でも、コーティングに対する損傷は示されなかった。
【0127】
酸化的脱水素用の触媒調製
【0128】
熱処理されたアルミニウム処理インコネル(商品名)617クーポンを前駆体溶液中に浸漬コーティングし、次いで焼成することによって、触媒を調製した。前駆体には、テトラアンミン白金水酸化物(Alfa Aesar)、2−エチルヘキサン酸スズ(Sigma)、テトラブチルスズ(Sigma)を含有させた。触媒金属は、クーポン基材上の稠密アルミナ層上に直接塗布した。Pt−Sn触媒については、コーティング前駆体の順序が活性にとって重要となり得る。好ましくは、Sn前駆体を塗布する前にPt前駆体をコーティングすることによって、Ptコーティングの前にSnコーティングするより高い触媒活性(所定転化率における選択性)が得られる。2−エチルヘキサン酸スズは濃密液体であるので、アセトンで希釈して30重量%までの2−エチルヘキサン酸スズ溶液にして、コーティング用に用いた。テトラアンミン白金水酸化物溶液をクーポン上に浸漬コーティングし、空気中で450℃において30分間焼成した(中間焼成)。所望の重量獲得が観察されるまでこの工程を繰り返した。クーポン上にスズ溶液をコーティングし、空気中で450〜550℃の範囲で30分〜1時間焼成した。所望の重量獲得が観察されるまでこの工程を繰り返した。所望の重量が得られた後に、触媒クーポンを最終的に空気中で5℃/分で850℃において4時間焼成した。
【0129】
LaMnO3合成のためには、硝酸ランタン(Aldrich)、硝酸マンガン(Alfa Aesar)を化学量論的比で脱イオン水中に溶解させた。この溶液を熱処理されたアルミニウム処理合金617のクーポン上に浸漬コーティングした後に、これを中間焼成のために450℃において焼成した。所望の塗布量が得られた後に、これを5℃/分で900℃において4時間焼成した。X線回折パターンによって、主要相がLaMnO3であることが示された。
【0130】
前記クーポンを、クーポンの2つの主要表面のそれぞれの上に矩形の0.050cmの隙間を残して、マイクロチャネル試験反応器の中央部に挿入した。クーポン挿入の前に、試験反応器の内側をアルミニウム処理し、熱処理して稠密アルミナ層を成長させた。熱処理は、次のように実施する:水素中で3.5℃/分で1050℃に加熱し、Ar下で1050℃の等温下に1時間保ち、21%O2/Ar下で1050℃の等温下に10時間保ち、そして21%O2/Ar下で3.5℃/分で室温まで冷ました。反応物質はクーポンのそばを通り、前記隙間を通る。クーポンは、幅0.327インチ(8.31mm)、厚さ0.115インチ(2.92mm)、長さ1.5インチ(38mm)だった。クーポンのトップ及びボトムから0.25インチ(6.4mm)の位置の熱電対によってクーポン温度を監視した。試験反応器は単一チャネル装置であり、熱交換器を持たないものだった。試験クーポンを取り囲む領域を発熱体で包んだ。発熱体のいずれかの側の上の反応器の区画は加熱されず、冷却は迅速だった。
【0131】
反応器を600〜1050℃の範囲の温度において運転した。接触時間は5〜100分の範囲で変化させた。エタン:酸素の比は2〜10の範囲で変化させ、供給物のH2:O2の比は2に保った。触媒試験のほとんどは、エタン:酸素比を3にし、40分の接触時間で800〜950℃の範囲の温度において行った。
【0132】
試験サンプルは、Pt:Sn比が2.4:1の触媒を含むもの及びPt:Sn比が1:5の触媒を含むものだった。反応性の結果を図5に示す。高Sn含有率触媒のSEMにより、大きい球状Sn粒子及び多少のそれより小さい約2μmの寸法のPt/Sn粒子が示された。図6を参照されたい。
【0133】
185時間試験したPt/Sn触媒は、触媒性能の劣化を何ら示さなかった。
【0134】
両サンプルのSEM顕微鏡写真は、触媒表面の形態が非常に異なることを示した。Sn含有率が高い触媒は、直径が20mmほど大きい球状Sn粒子を示した(図6中の「Sphere」)。白金又は合金粒子はほとんど見られなかったが、2mmまでの寸法のPt粒子は見出され、EDS分析によってPtがSnとの合金になっていることを示した。Sn含有率が低い触媒はPtとSnとの間の高められた合金形成を示し、図7に示したように、大きい粒子寸法範囲には、多少の非常に大きいもの(5μmより大きい不規則形状の平たい島)が含まれていた。低Sn触媒の表面をレーザーブレードで掻き取り、粒子を分析した。これは、4〜60nmの範囲のPt及びPt−Sn合金の小さい粒子を含有していた。この小さい粒子の分析は、11nmの平均寸法及び10nmの標準偏差を示した。
【図面の簡単な説明】
【0135】
【図1】稠密で実質的に欠陥のないアルミナ表面の顕微鏡写真である。
【図2】反応用マイクロチャネルと冷却用マイクロチャネルとがクロスフロー関係にあるマイクロチャネル反応器の概略図である。
【図3】アルミナイドコーティング済表面の概略断面図である。
【図4】反応用マイクロチャネルからの熱が隣接する吸熱反応に移動されるマイクロチャネルシステムの概略図である。
【図5】2.4:1及び1:5のPt:Sn含有率のPt-Sn触媒について、又はLaMnO3触媒について、選択性対転化率をプロットしたグラフである。Pt:Sn=2.4:1触媒及びLaMnO3触媒は3:2:1のエタン:水素:酸素比で40分間試験し、Pt:Sn=1:5触媒は4:2:1のエタン:水素:酸素比で50分間試験した。文献値は国際公開WO02/04389号パンフレットからのものである。
【図6】Pt:Sn=1:5触媒のSEM顕微鏡写真である。
【図7】Pt:Sn=2.4:1触媒のSEM顕微鏡写真である。
【符号の説明】
【0136】
42・・・金属基材
44・・・ニッケル含有層
46・・・アルミナイドの層
48・・・アルミナの層
49・・・触媒活性材料

【特許請求の範囲】
【請求項1】
金属基材を含む反応用マイクロチャネル;
前記金属基材上に配置させた、稠密で実質的に欠陥のないアルミナ層;及び
前記アルミナ層上に直接配置させた触媒金属粒子:
を含む、マイクロチャネル反応器。
【請求項2】
前記触媒金属の少なくとも30質量%が3μm又はそれより大きい寸法を有する粒子の形にある、請求項1に記載のマイクロチャネル反応器。
【請求項3】
前記金属基材がマイクロチャネル壁を含む、請求項1に記載のマイクロチャネル反応器。
【請求項4】
前記金属基材がマイクロチャネル壁上のアルミナイド層を含む、請求項3に記載のマイクロチャネル反応器。
【請求項5】
前記触媒金属粒子がPt及びSnを1〜4の範囲のPt/Sn原子比で含む、請求項4に記載のマイクロチャネル反応器。
【請求項6】
請求項1に記載のマイクロチャネル反応器に反応物質を通し;そして
前記反応物質を少なくとも1種の生成物に転化させる:
ことを含む、化学反応の実施方法。
【請求項7】
請求項5に記載のマイクロチャネル反応器にエタンを通し;そして
エタンをエチレンに転化させる:
ことを含む、化学反応の実施方法。
【請求項8】
マイクロチャネル反応器中の触媒を製造する方法であって、
内部マイクロチャネル中にアルミナイド層を形成させ;
前記アルミナイド層からアルミナ層を熱成長させ;そして
熱成長アルミナ上に触媒材料を直接付着させる
ことを含む、前記方法。
【請求項9】
アルミナイド含有基材;
前記アルミナイド含有基材上に配置させた稠密で実質的に欠陥のないアルミナ層;及び
熱成長アルミナ層上に直接配置させた触媒材料:
を含む触媒。
【請求項10】
前記の稠密で実質的に欠陥のないアルミナ層が熱成長アルミナ層を含む、請求項9に記載の触媒。
【請求項11】
反応用マイクロチャネル中でエタンと酸素とを接触させることを含むエタンをエチレンに転化させる方法であって;
前記反応用マイクロチャネルが基材上にコーティングされた触媒を含み;
(a)反応用マイクロチャネル中に入れられるエタンの少なくとも50%が生成物に転化し且つエテンへの選択性が少なくとも85%であり;又は
(b)反応用マイクロチャネル中に入れられるエタンの少なくとも70%が生成物に転化し且つエテンへの選択性が少なくとも80%であり;そして
前記の選択性及び転化率のレベルが反応用マイクロチャネルへの1回通過に基づくものである、前記方法。
【請求項12】
前記基材が反応用マイクロチャネルの壁を含み、熱を反応用マイクロチャネルから隣接する熱交換器に取り除くことをさらに含む、請求項11に記載の方法。
【請求項13】
前記反応用マイクロチャネル中に入れられるエタンの少なくとも約80%が生成物に転化する、請求項12に記載の方法。
【請求項14】
前記の隣接する熱交換器がマイクロチャネル熱交換器を含む、請求項12に記載の方法。
【請求項15】
前記のエテンへの選択性が84%〜約93%の範囲である、請求項11に記載の方法。
【請求項16】
前記反応用マイクロチャネルが金属製マイクロチャネル壁を含み;
前記金属製マイクロチャネル壁がアルミナイド層でコーティングされ;
前記アルミナイド層が稠密で実質的に欠陥のないアルミナ層の表面層でコーティングされ;そして
触媒材料が前記表面層上に直接配置された:
ことを含む、請求項12に記載の方法。
【請求項17】
前記の稠密で実質的に欠陥のないアルミナ層が熱成長アルミナ層を含む、請求項16に記載の方法。
【請求項18】
Pt及びSnを1〜4の範囲のPt/Sn原子比で含む触媒を熱成長酸化物層上に直接配置させた固定触媒上にアルカンを通すことを含む、酸化的脱水素方法。
【請求項19】
前記触媒がPt及びSnを約2.3〜約2.5の範囲のPt/Sn原子比で含む、請求項18に記載の方法。
【請求項20】
前記固定触媒が稠密で実質的に欠陥のないアルミナ層上のPt及びSnから本質的に成る、請求項18に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2007−530260(P2007−530260A)
【公表日】平成19年11月1日(2007.11.1)
【国際特許分類】
【出願番号】特願2007−505170(P2007−505170)
【出願日】平成17年3月23日(2005.3.23)
【国際出願番号】PCT/US2005/009814
【国際公開番号】WO2006/036193
【国際公開日】平成18年4月6日(2006.4.6)
【出願人】(504455241)ヴェロシス インコーポレイテッド (21)
【Fターム(参考)】