説明

燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタック

【課題】固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合するとともに、簡単な構成で、前記固体高分子電解質膜の損傷を良好に抑制することを可能にする。
【解決手段】樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18を挟持するアノード電極20及びカソード電極22を備える電解質膜・電極構造体10aと、前記固体高分子電解質膜18の外周を周回する樹脂製枠部材24とを備える。樹脂製枠部材24は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部24aを有するとともに、前記内周端部24aは、前記固体高分子電解質膜18と前記アノード電極20の外周部との境界部位に配置される角部24aeが、断面曲面形状に構成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、第1電極及び第2電極が、固体高分子電解質膜の両側に設けられるとともに、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタックに関する。
【背景技術】
【0002】
一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。この燃料電池は、固体高分子電解質膜の両側に、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とからなるアノード電極及びカソード電極を配設した電解質膜・電極構造体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、所定の数だけ積層して燃料電池スタックを構成するとともに、例えば、車載用燃料電池スタックとして使用されている。
【0003】
この種の電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな表面積に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の表面積に設定される、所謂、段差型MEAを構成する場合がある。
【0004】
通常、燃料電池スタックでは、多数の電解質膜・電極構造体が積層されており、コストを抑制するために、前記電解質膜・電極構造体を安価に構成することが要請されている。従って、特に高価な固体高分子電解質膜の使用量を削減するとともに、構成の簡素化を図るため、種々の提案がなされている。
【0005】
例えば、特許文献1に開示されている電解質膜−電極接合体では、図6に示すように、電解質膜1と前記電解質膜1の一方の側に配置されたカソード触媒層2aと、前記電解質膜1の他方の側に配置されたアノード触媒層2bと、前記電解質膜1の両側に配置されるガス拡散層3a、3bとを備えている。
【0006】
アノード側のガス拡散層3bは、電解質膜1の面積と同等で、且つ、カソード側のガス拡散層3aの面積よりも大きく構成されている。このように構成される電解質膜−電極接合体(MEA)のエッジ領域には、ガスケット構造体4が配置されている。ガス拡散層3a側の電解質膜1の外周部とガスケット構造体4の薄肉部位4aとは、接着層5を介して接合されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−66766号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記の特許文献1では、ガスケット構造体4とMEAとを接合する際、接合部位に荷重を付与している。このため、薄肉部位4aの角部4aeが電解質膜1に食い込んでしまい、前記電解質膜1にせん断応力が付与されるおそれがある。
【0009】
また、燃料電池スタックの組み立て時には、電解質膜−電極接合体に締め付け荷重が付与されるとともに、前記燃料電池スタックの発電時には、電解質膜1が膨潤して前記電解質膜−電極接合体にさらに荷重が付与され、前記電解質膜1にせん断応力がかかる場合がある。
【0010】
これにより、電解質膜1に変形が惹起されるとともに、前記電解質膜1に亀裂やせん断等が発生し易く、前記電解質膜1の破損の起点になるという問題が指摘されている。
【0011】
本発明は、この種の問題を解決するものであり、固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合するとともに、簡単な構成で、前記固体高分子電解質膜の損傷を良好に抑制することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体及び燃料電池スタックを提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体に関するものである。
【0013】
この燃料電池用樹脂枠付き電解質膜・電極構造体では、樹脂製枠部材は、第1電極の外周側に突出して固体高分子電解質膜の外周縁部に当接する内周端部を有するとともに、前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されている。
【0014】
また、この燃料電池用樹脂枠付き電解質膜・電極構造体では、少なくとも樹脂製枠部材の内周端部と固体高分子電解質膜の外周縁部とは、接着剤により一体化されることが好ましい。
【0015】
さらに、この燃料電池用樹脂枠付き電解質膜・電極構造体では、少なくとも樹脂製枠部材の内周端部と固体高分子電解質膜の外周縁部とは、前記樹脂製枠部材を第1電極を構成するガス拡散層の外周端部に含浸させることにより、一体化されることが好ましい。
【0016】
さらにまた、本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体を有し、前記固体高分子電解質膜の外周を周回して樹脂製枠部材が設けられる樹脂枠付き電解質膜・電極構造体と、セパレータとが積層される燃料電池スタックに関するものである。
【0017】
この燃料電池スタックでは、樹脂製枠部材は、第1電極の外周側に突出して一方の面側が固体高分子電解質膜の外周縁部に当接し且つ他方の面側がセパレータに当接する内周端部を有するとともに、前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されている。
【発明の効果】
【0018】
本発明によれば、樹脂枠付き電解質膜・電極構造体に荷重が付与された際、樹脂製枠部材の内周端部が固体高分子電解質膜に食い込むことがない。従って、内周端部の角部を断面曲面形状に構成するだけでよく、簡単な構成で、固体高分子電解質膜にせん断応力がかかることを確実に阻止し、前記固体高分子電解質膜の損傷を良好に抑制することが可能になる。
【図面の簡単な説明】
【0019】
【図1】本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。
【図2】前記燃料電池の、図1中、II−II線断面説明図である。
【図3】前記樹脂枠付き電解質膜・電極構造体のカソード電極側の正面説明図である。
【図4】樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。
【図5】本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体の要部断面説明図である。
【図6】特許文献1に開示された電解質膜−電極接合体の説明図である。
【発明を実施するための形態】
【0020】
図1及び図2に示すように、本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10は、固体高分子型燃料電池12に組み込まれるとともに、複数の前記燃料電池12が矢印A方向に積層されて燃料電池スタック13が構成される。
【0021】
燃料電池12は、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成されている。
【0022】
図2に示すように、樹脂枠付き電解質膜・電極構造体10は、電解質膜・電極構造体10aを備えるとともに、前記電解質膜・電極構造体10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜18と、前記固体高分子電解質膜18を挟持するアノード電極(第1電極)20及びカソード電極(第2電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質が使用される。
【0023】
アノード電極20は、固体高分子電解質膜18及びカソード電極22よりも小さな表面積を有する。なお、アノード電極20とカソード電極22とは、同一の表面積であってもよく、また、前記カソード電極22が前記アノード電極20よりも小さな表面積を有していてもよい。
【0024】
アノード電極20は、固体高分子電解質膜18の一方の面18aに配置されるとともに、前記固体高分子電解質膜18の外周を額縁状に露呈させる。カソード電極22は、固体高分子電解質膜18の他方の面18bに配置される。
【0025】
アノード電極20は、固体高分子電解質膜18の面18aに接合される電極触媒層20aと、前記電極触媒層20aに積層されるガス拡散層20bとを設ける。カソード電極22は、固体高分子電解質膜18の面18bに接合される電極触媒層22aと、前記電極触媒層22aに積層されるガス拡散層22bとを設ける。
【0026】
電極触媒層20a、22aは、カーボンブラックに白金粒子を担持した触媒粒子を形成し、イオン導伝性バインダーとして高分子電解質を使用し、この高分子電解質の溶液中に前記触媒粒子を均一に混合して作製された触媒ペーストを、固体高分子電解質膜18の両面に印刷、塗布又は転写することによって構成される。ガス拡散層20b、22bは、カーボンペーパ等からなるとともに、前記ガス拡散層20bの平面は、前記ガス拡散層22bの平面よりも小さく設定される。
【0027】
図1及び図2に示すように、樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、アノード電極20及びカソード電極22に接合される樹脂製枠部材24を備える。樹脂製枠部材24は、例えば、PES(ポリエーテルサルフォン)及びLCP(リキッドクリスタルポリマー)等で、又は必要に応じてこれらにガラスフィラーを含有させて構成される。
【0028】
樹脂製枠部材24は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部24aを有する。内周端部24aは、アノード電極20と同一の肉厚を有するとともに、固体高分子電解質膜18と前記アノード電極20の外周部との境界部位に配置される角部24aeが、断面曲面形状(R形状)に構成される。
【0029】
角部24aeは、全体に亘って湾曲面に形成してもよく、あるいは、少なくとも境界部位に当接する範囲に亘って湾曲面に形成し、その他の部位を直線状又は傾斜面状に形成してもよい。また、以下に説明する第2の実施形態の角部も、この角部24aeと同様に形成してもよい。
【0030】
樹脂製枠部材24の内周端部24aと固体高分子電解質膜18の外周縁部とは、接着剤層26により接着される。接着剤層26は、例えば、エステル系又はウレタン系のホットメルト接着剤が使用される。ホットメルト接着剤の溶融温度は、例えば、150℃〜170℃であり、樹脂製枠部材24の溶融温度は、例えば、360℃である。樹脂製枠部材24とカソード電極22のガス拡散層22bとは、例えば、樹脂含浸部28により一体化される。
【0031】
図3に示すように、接着剤層26は、固体高分子電解質膜18の外周縁部の全周に亘って額縁状に形成される。樹脂含浸部28は、カソード電極22を構成するガス拡散層22bの全周に亘って額縁状に形成される。
【0032】
図1に示すように、燃料電池12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔30a、冷却媒体を供給するための冷却媒体入口連通孔32a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔34bが、矢印C方向(鉛直方向)に配列して設けられる。
【0033】
燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔34a、冷却媒体を排出するための冷却媒体出口連通孔32b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔30bが、矢印C方向に配列して設けられる。
【0034】
第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。
【0035】
第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が形成される。第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が形成される。
【0036】
図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化される。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。
【0037】
図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10を構成する樹脂製枠部材24の内周端部24aに当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。
【0038】
第1及び第2シール部材42、44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。
【0039】
図1に示すように、第1セパレータ14には、燃料ガス入口連通孔34aを燃料ガス流路38に連通する供給孔部46と、前記燃料ガス流路38を燃料ガス出口連通孔34bに連通する排出孔部48とが形成される。
【0040】
次いで、樹脂枠付き電解質膜・電極構造体10を製造する方法について、以下に説明する。
【0041】
先ず、図4に示すように、段差MEAである電解質膜・電極構造体10aが作製される。具体的には、固体高分子電解質膜18の両方の面18a、18bには、電極触媒層20a、22aが塗布される。そして、固体高分子電解質膜18の面18a側に、すなわち、電極触媒層20aにガス拡散層20bが配置されるとともに、前記固体高分子電解質膜18の面18bに、すなわち、電極触媒層22aにガス拡散層22bが配置される。これらが一体に積層されてホットプレス処理されることにより、電解質膜・電極構造体10aが作製される。
【0042】
一方、樹脂製枠部材24は、射出成形機(図示せず)により予め成形される。
【0043】
樹脂製枠部材24は、肉薄形状の内周端部24aの角部24aeが、断面曲面形状(R形状)に形成される。角部24aeは、少なくとも固体高分子電解質膜18に当接する部位が滑らかに形成されていればよく、前記角部24ae全体をR形状に構成する必要はない。
【0044】
次いで、電解質膜・電極構造体10aでは、アノード電極20の外周から外部に露呈する固体高分子電解質膜18の外周縁部に接着剤層26が設けられる。そして、樹脂製枠部材24と電解質膜・電極構造体10aとが位置合わせされる。この樹脂製枠部材24は、内周端部24aがアノード電極20側に配置され、接着剤層26が加熱溶融(ホットメルト)されるとともに、荷重(プレス等)が付与されることにより、前記内周端部24aと固体高分子電解質膜18とが接着される。
【0045】
一方、カソード電極22側には、樹脂含浸部28を形成するための樹脂部材28aが用意される。樹脂部材28aは、枠形状(額縁形状)を有しており、例えば、樹脂製枠部材24と同一の材料で構成される。なお、樹脂部材28aは、フィラーが混入しない樹脂材料を用いて構成してもよい。
【0046】
そこで、電解質膜・電極構造体10aと樹脂製枠部材24とには、樹脂部材28aが配置されて荷重が付与された状態で、前記樹脂部材28aが加熱される。加熱方式としては、レーザ溶着、赤外線溶着やインパルス溶着等が採用される。従って、樹脂部材28aは、加熱溶融され、前記樹脂部材28aは、カソード電極22を構成するガス拡散層22b及び樹脂製枠部材24に跨って含浸される。これにより、図2に示すように、カソード電極22を構成するガス拡散層22b及び樹脂製枠部材24に跨って樹脂含浸部28が形成され、樹脂枠付き電解質膜・電極構造体10が製造される。
【0047】
樹脂枠付き電解質膜・電極構造体10は、第1セパレータ14及び第2セパレータ16により挟持される。第1セパレータ14は、樹脂製枠部材24の内周端部24aに当接し、第2セパレータ16と共に樹脂枠付き電解質膜・電極構造体10に荷重を付与する。さらに、燃料電池12は、所定数だけ積層されて燃料電池スタック13が構成されるとともに、図示しないエンドプレート間に締め付け荷重が付与される。
【0048】
このように構成される燃料電池12の動作について、以下に説明する。
【0049】
先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aに純水やエチレングリコール、オイル等の冷却媒体が供給される。
【0050】
このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して電解質膜・電極構造体10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから供給孔部46を通って第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、電解質膜・電極構造体10aのアノード電極20に供給される。
【0051】
従って、各電解質膜・電極構造体10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。
【0052】
次いで、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、排出孔部48を通り燃料ガス出口連通孔34bに沿って矢印A方向に排出される。
【0053】
また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、電解質膜・電極構造体10aを冷却した後、冷却媒体出口連通孔32bから排出される。
【0054】
この場合、第1の実施形態では、図2に示すように、樹脂製枠部材24は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部24aを有するとともに、固体高分子電解質膜18と前記アノード電極20の外周部との境界部位に配置される角部24aeが、断面曲面形状(R形状)に構成されている。
【0055】
このため、図4に示すように、電解質膜・電極構造体10aと樹脂製枠部材24とを接合(接着)する際、前記樹脂製枠部材24の内周端部24aに荷重が付与されても、前記内周端部24aの角部24aeが固体高分子電解質膜18に食い込むことがない。
【0056】
さらに、燃料電池12では、図2に示すように、樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持するとともに、複数の前記燃料電池12が積層されて燃料電池スタック13を構成している。その際、第1セパレータ14の第1シール部材42では、第1凸状シール42aが樹脂枠付き電解質膜・電極構造体10の樹脂製枠部材24の内周端部24aに当接している。従って、内周端部24aには、第1凸状シール42aを介して積層方向に締め付け荷重が付与されているが、前記内周端部24aの角部24aeが固体高分子電解質膜18に食い込むことがない。
【0057】
これにより、第1の実施形態では、内周端部24aの角部24aeを断面曲面形状に構成するだけでよく、簡単な構成で、固体高分子電解質膜18にせん断応力がかかることを確実に阻止することができる。このため、固体高分子電解質膜18の損傷を良好に抑制することが可能になるという効果が得られる。
【0058】
図5は、本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体50の要部断面説明図である。なお、第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。
【0059】
樹脂枠付き電解質膜・電極構造体50は、アノード電極20及びカソード電極22に接合される樹脂製枠部材52を備える。樹脂製枠部材52は、アノード電極20の外周側に突出して固体高分子電解質膜18の外周縁部に当接する内周端部52aを有する。内周端部52aの先端側及び樹脂製枠部材52の前記内周端部52aとは反対の面の先端側には、アノード電極20のガス拡散層20b及びカソード電極22のガス拡散層22bにそれぞれ一体化される第1樹脂突起部54a及び第2樹脂突起部54bが一体に設けられる。
【0060】
第1樹脂突起部54aは、アノード電極20の外周端部を周回して枠形状(額縁形状)に形成されるとともに、第2樹脂突起部54bは、カソード電極22の外周端部を周回して枠形状(額縁形状)に形成される。第1樹脂突起部54aは、固体高分子電解質膜18とアノード電極20の外周部との境界部位に配置される角部54aeが、断面曲面形状(R形状)に構成される。
【0061】
なお、第1樹脂突起部54a及び第2樹脂突起部54bは、断面矩形状を有しているが、これに限定されるものではない。例えば、第1樹脂突起部54a及び第2樹脂突起部54bは、アノード電極20側とは反対の端面及びカソード電極22側とは反対の端面を、それぞれ樹脂製枠部材52から離間する方向に向かって前記樹脂製枠部材52側に傾斜させる傾斜面として構成してもよい(図5中、二点鎖線参照)。さらに、第2樹脂突起部54bに代えて、樹脂含浸部28(第1の実施形態)を用いてもよい。
【0062】
このように構成される樹脂枠付き電解質膜・電極構造体50では、第1樹脂突起部54a及び第2樹脂突起部54bが、加熱装置を構成する加熱板56a、56bにより加熱溶着される。加熱板56a、56bは、所定温度に加熱されており、第1樹脂突起部54a及び第2樹脂突起部54bに荷重を付与することにより、前記第1樹脂突起部54a及び前記第2樹脂突起部54bが溶融されてガス拡散層20b及びガス拡散層22bにそれぞれ含浸される。このため、第1樹脂含浸部58a及び第2樹脂含浸部58bが形成される。
【0063】
このように構成される第2の実施形態では、第1樹脂突起部54aは、固体高分子電解質膜18とアノード電極20の外周部との境界部位に配置される角部54aeが、断面曲面形状(R形状)に構成されている。このため、樹脂製枠部材52の内周端部52aに荷重が付与されても、第1樹脂突起部54aの角部54aeが固体高分子電解質膜18に食い込むことがない。従って、第2の実施形態では、上記の第1の実施形態と同様の効果が得られる。
【符号の説明】
【0064】
10、50…樹脂枠付き電解質膜・電極構造体
10a…電解質膜・電極構造体 12…燃料電池
14、16…セパレータ 18…固体高分子電解質膜
20…アノード電極 20a、22a…電極触媒層
20b、22b…ガス拡散層 22…カソード電極
24、52…樹脂製枠部材 24a、52a…内周端部
24ae、54ae…角部 26…接着剤層
28…樹脂含浸部 30a…酸化剤ガス入口連通孔
30b…酸化剤ガス出口連通孔 32a…冷却媒体入口連通孔
32b…冷却媒体出口連通孔 34a…燃料ガス入口連通孔
34b…燃料ガス出口連通孔 36…酸化剤ガス流路
38…燃料ガス流路 40…冷却媒体流路
42、44…シール部材 54a、54b…樹脂突起部

【特許請求の範囲】
【請求項1】
それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、
前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材と、
を備える燃料電池用樹脂枠付き電解質膜・電極構造体であって、
前記樹脂製枠部材は、前記第1電極の外周側に突出して前記固体高分子電解質膜の外周縁部に当接する内周端部を有するとともに、
前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
【請求項2】
請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、少なくとも前記樹脂製枠部材の前記内周端部と前記固体高分子電解質膜の外周縁部とは、接着剤により一体化されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
【請求項3】
請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、少なくとも前記樹脂製枠部材の前記内周端部と前記固体高分子電解質膜の外周縁部とは、前記樹脂製枠部材を前記第1電極を構成する前記ガス拡散層の外周端部に含浸させることにより、一体化されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
【請求項4】
それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられ、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体を有し、前記固体高分子電解質膜の外周を周回して樹脂製枠部材が設けられる樹脂枠付き電解質膜・電極構造体と、セパレータとが積層される燃料電池スタックであって、
前記樹脂製枠部材は、前記第1電極の外周側に突出して一方の面側が前記固体高分子電解質膜の外周縁部に当接し且つ他方の面側が前記セパレータに当接する内周端部を有するとともに、
前記内周端部は、前記固体高分子電解質膜と前記第1電極の外周部との境界部位に配置される角部が、断面曲面形状に構成されることを特徴とする燃料電池スタック。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−98155(P2013−98155A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−243284(P2011−243284)
【出願日】平成23年11月7日(2011.11.7)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】