説明

短絡点標定装置、短絡点標定方法及びプログラム

【課題】精度良く短絡点を標定することができるようにする。
【解決手段】監視装置20は、配電路4の電圧降下率を測定する複数のスマートメータ10と通信可能に接続される。監視装置20は、スマートメータ10のそれぞれから電圧を取得して電圧降下率を算出する電圧降下率取得部211と、線路長が長くなるほど電圧降下率が大きくなっているか否かに応じて三相短絡か単相短絡かを判定し、電圧降下率に基づいて、スマートメータ10の配電路4への接続点から短絡点5までの短絡距離を算出する短絡距離算出部213と、短絡距離に基づいて短絡点5を標定する短絡点標定部214と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、短絡点標定装置、短絡点標定方法及びプログラムに関する。
【背景技術】
【0002】
配電線において短絡事故が発生した場合、改修のため短絡点を特定する必要がある。例えば特許文献1では保護リレーや遮断器の動作情報などに基づいて事故区間を判定している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2001−016766号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、遮断器などの動作に基づいて事故区間を特定したとしても、遮断器間の距離は長い場合が多い。作業員はその区間を全て実際に巡視する必要があり、より精度高く短絡点を標定したいというニーズがある。
【0005】
本発明は、このような背景を鑑みてなされたものであり、精度良く短絡点を標定することのできる、短絡点標定装置、短絡点標定方法及びプログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するための本発明の主たる発明は、三相三線式の配電路における短絡点を標定する装置であって、前記配電路には、2つの単相変圧器から構成され、前記2つの単相変圧器が接続される四線の組み合わせの異なる変圧器が複数接続されており、前記変圧器の前記配電路への接続点のそれぞれにおける電圧の降下率を取得する電圧降下率取得部と、前記配電路に電力を供給するフィーダから前記変圧器までの線路長が長いほど前記降下率が大きいかどうかにより、三相短絡か単相短絡かを判定する短絡種判定部と、三相短絡か単相短絡かに応じて、前記降下率に基づき前記接続点から前記短絡点までの距離を算出する短絡距離算出部と、を備えることとする。
【0007】
本発明の短絡点標定装置によれば、複数箇所の電圧降下率に基づいて三相短絡か単相短絡かを判定することができる。また、本願発明の短絡点標定装置によれば、接続点を基準に短絡点を標定することができる。したがって、より短絡点に近い箇所を基準にすることで、短絡点の標定の精度を高めることができる。
【0008】
また、本発明の短絡点標定装置では、前記短絡距離算出部は、前記線路長を変化させ、前記変化させた線路長に基づいて前記接続点から前記短絡点までのパーセントインピーダンス及びインピーダンスを算出し、三相短絡の場合、定格電流を前記パーセントインピーダンスで割った商に100を乗じて短絡電流を算出し、前記短絡電流、前記インピーダンス及び3の平方根を乗じて前記短絡点における線路側電圧降下を算出し、単相短絡の場合、前記定格電流を前記パーセントインピーダンスで割った商に100および3を乗じた値を2の平方根で割って前記短絡電流を算出し、前記短絡電流、前記インピーダンス及び2を乗じて前記線路側電圧降下を算出して、前記線路側電圧降下に基づいて電圧変化率を算出していき、前記電圧変化率が前記降下率と一致する前記線路長を、前記接続点から前記短絡点までの距離として算出するようにしてもよい。
この場合、配電路や電源における抵抗やリアクタンスなどは既知であるため、電圧降下率を利用すれば、例えばパーセントインピーダンス法を用いることで容易に短絡距離を算出することができる。また、三相短絡か単相短絡かによって適切な計算式を用いて短絡距離を算出することができるので、より精度高く短絡点を標定することができる。
【0009】
また、本発明の短絡点標定装置は、前記降下率に基づいて前記接続点において停電が発生しているか否かを判定する停電判定部をさらに備え、前記短絡距離算出部は、三相短絡と判定された場合には、停電が発生した前記接続点から最も近く、かつ停電が発生していない前記接続点からの前記距離のみを算出するようにしてもよい。
三相短絡の場合、短絡点から負荷側では停電が生じるため、停電が発生していない測定点の中でも最も近い場所を基準とすることで、短絡点の標定の精度を高めることができる。
【0010】
また、本発明の短絡点標定装置では、前記短絡距離算出部は、単相短絡と判定された場合には、前記接続点である第1の接続点のうち、前記第1の接続点についての前記降下率と、前記第1の接続点の次に長い前記線路長の第2の前記接続点についての前記降下率との差が所定の閾値を超えるものを特定し、特定した前記第1の接続点についてのみ、前記接続点から前記短絡点までの前記距離を算出するようにしてもよい。
【0011】
また、本発明の短絡点標定装置では、前記変圧器に接続される、前記変圧器から出力される前記電圧を測定する電圧測定装置と通信可能に接続され、前記電圧降下率取得部は、前記電圧測定装置から前記電圧を取得し、取得した前記電圧に基づいて前記降下率を算出するようにしてもよい。
【0012】
また、本発明の短絡点標定装置では、前記変圧器に接続される、前記降下率を測定する電圧測定装置と通信可能に接続され、前記電圧降下率取得部は、前記電圧測定装置から前記降下率を取得するようにしてもよい。
【0013】
また、本発明の短絡点標定装置では、前記電圧測定装置は通信機能を有する電力量計であることとしてもよい。
この場合、通信機能を有する電力量計(スマートメータ)は、配電路に数多く接続されるため、その接続点を基準にすることにより、短絡点を精度良く標定することが可能となる。
【0014】
また、本発明の短絡点標定装置は、前記接続点ごとに、前記配電路における目標点と、前記目標点から前記接続点までの距離である目標点距離とを記憶する設備情報記憶部と、前記接続点に対応する前記目標点及び前記目標点距離を前記設備情報記憶部から読み出し、読み出した前記目標点距離に前記距離を加算した距離である標定距離を算出し、前記目標点から前記標定距離の地点を前記短絡点として標定する短絡点標定部と、をさらに備えるようにしてもよい。
この場合、配電路における目標点からの距離によって短絡点を標定することができる。したがって、短絡の改修を行う作業者は目標点を基準にすることができるので、短絡点を容易に把握することができる。
【0015】
本発明の他の態様は、三相三線式の配電路における短絡点を標定する方法であって、前記配電路には、2つの単相変圧器から構成され、前記2つの単相変圧器が接続される四線の組み合わせの異なる変圧器が複数接続されており、コンピュータが、前記変圧器の前記配電路への接続点のそれぞれにおける電圧の降下率を取得し、前記配電路に電力を供給するフィーダから前記変圧器までの線路長が長いほど前記降下率が大きいかどうかにより、三相短絡か単相短絡かを判定し、三相短絡か単相短絡かに応じて、前記降下率に基づき前記接続点から前記短絡点までの距離を算出することとする。
【0016】
本発明の他の態様は、三相三線式の配電路における短絡点を標定するためのプログラムであって、前記配電路には、2つの単相変圧器から構成され、前記2つの単相変圧器が接続される四線の組み合わせの異なる変圧器が複数接続されており、コンピュータに、前記変圧器の前記配電路への接続点のそれぞれにおける電圧の降下率を取得するステップと、前記配電路に電力を供給するフィーダから前記変圧器までの線路長が長いほど前記降下率が大きいかどうかにより、三相短絡か単相短絡かを判定するステップと、三相短絡か単相短絡かに応じて、前記降下率に基づき前記接続点から前記短絡点までの距離を算出するステップと、を実行させることとする。
【0017】
その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。
【発明の効果】
【0018】
本発明によれば、精度良く短絡点を標定することができる。
【図面の簡単な説明】
【0019】
【図1】短絡監視システムの全体構成を説明する図である。
【図2】監視装置20のハードウェア構成例を示す図である。
【図3】監視装置20のソフトウェア構成例を示す図である。
【図4】設備情報の構成例を示す図である。
【図5】三相短絡か単相短絡かを判定する処理の具体例を示す図である。
【図6】三相短絡の場合における、短絡点5の標定処理の流れを示す図である。
【図7】短絡距離算出処理の流れを示す図である。
【図8】短絡点5を出力する画面50の一例を示す図である。
【図9】単相短絡の場合における、短絡点5の標定処理の流れを示す図である。
【発明を実施するための形態】
【0020】
図1は、本発明の一実施形態に係る短絡監視システムの全体構成を説明する図である。本実施形態の短絡監視システムは、配電系統1において短絡事故が発生した場合に、その短絡点5を標定するものである。
【0021】
配電系統1には電気所2からフィーダ3を介して配電路4に電力が供給される。配電路4は三相三線式であり、第1相線41、第2相線42及び第3相線43から構成される。配電路4には、配電路通信機能付きの電力量計(「スマートメータ」と呼ばれる。)10が、柱上変圧器7を介して複数接続される。柱上変圧器7は、2つの単相変圧器71及び72から構成され、V結線によりスマートメータ10と接続されている。配電路4における三相の不衡防止のために、柱上変圧器7と配電路4との間の接続構成は電柱(不図示)によって異なるようになっている。すなわち、単相変圧器71が接続する2線及び単相変圧器72が接続する2線の合計4線の組み合わせは3種類存在するが、近傍の電柱であっても同じ構成とはなっておらず、電柱によってどの構成にするかは規則的ではない。例えば、図1の例では、SM1では、単相変圧器71は、接点61で第2相線42に、接点62で第3相線43に接続され、単相変圧器72は、接点63で第1相線41に、接点64で第3相線43に接続されているのに対して、SM2では、単相変圧器71の接点61は第1相線41に設けられ、単相変圧器72の接点63は第2相線42に設けられている。なお、本実施形態では、説明を簡単にするために、1つの柱上変圧器7に1つのスマートメータ10が対応し、スマートメータ10ごとに単相変圧器7の接続構成が異なるものとする。
【0022】
スマートメータ10は、柱上変圧器7から供給される電圧、電流及び力率などを測定することにより、配電路4への接続点6(本発明の「測定点」に対応する。)における電圧、電流及び力率などを測定することができる。各スマートメータ10には通信路30を介して監視装置20が接続される。本実施形態では、スマートメータ10は、所定の時間(例えば、30秒や1分、5分、30分など任意の時間とすることができる。)ごとに、測定した電圧を監視装置20に送信するものとする。監視装置20(本発明の「短絡点標定装置」に該当する。)は、配電路4における短絡の発生を検知し、スマートメータ10から取得する電圧に基づいて電圧変化率を算出し、算出した電圧変化率に応じて短絡点5を標定する、例えばパーソナルコンピュータやワークステーション、PDA(Personal Digital Assistant)、携帯電話端末などのコンピュータである。
【0023】
配電路4において短絡が発生すると、短絡電流による電圧降下が発生する。配電路の短絡が三相短絡であった場合には、短絡点5よりも電源側に接続されるスマートメータ10(SM1、SM2)においては、短絡点5に近づくほど(すなわちフィーダ3から遠くなるほど)電圧降下率が大きくなり、短絡点5よりも負荷側に接続されるスマートメータ10(SM3、SM4)においては停電(すなわち、電圧降下率が100%になる。)が発生する。一方、配電路の短絡が単相短絡であった場合には、スマートメータ10ごとに柱上変圧器7と配電路4との接続構成が異なるために、フィーダ3からの距離と電圧降下率とは相関しなくなる。そこで、本実施形態の短絡監視システムでは、同じフィーダ3から電力が供給されている配電路4について、フィーダ3からの線路長が長いほど電圧降下率が大きくなっている場合には三相短絡、そうでない場合には単相短絡であると判定して、接続点6から短絡点5までの距離(以下、「短絡距離」という。)を、電圧降下率に基づくパーセントインピーダンス法により算出し、短絡点5の標定を行う。
【0024】
図2は、監視装置20のハードウェア構成例を示す図である。監視装置20は、CPU201、メモリ202、記憶装置203、通信インタフェース204、入力装置205、出力装置206を備える。記憶装置203は、各種のデータやプログラムを記憶する、例えばハードディスクドライブやフラッシュメモリなどである。CPU201は、記憶装置203に記憶されているプログラムをメモリ202に読み出して実行することにより各種の機能を実現する。通信インタフェース204は、通信路30に接続するためのインタフェースであり、例えば電力線4においてデータ通信を行うためのPLC(Power Line Communication)アダプタや、公衆電話回線網に接続するためのモデム、携帯電話回線網に接続するための通信機、イーサネット(登録商標)に接続するためのアダプタ、無線通信を行うための無線通信機などである。入力装置205は、データを入力する、例えばキーボードやマウス、ボタン、タッチパネル、マイクロフォンなどである。出力装置206は、データを出力する、例えばディスプレイやプリンタ、スピーカなどである。
【0025】
図3は、監視装置20のソフトウェア構成例を示す図である。監視装置20は、電圧降下率取得部211、短絡検知部212、短絡距離算出部213、短絡点標定部214、短絡点出力部215、設備情報データベース231を備える。電圧降下率取得部211、短絡検知部212、短絡距離算出部213、短絡点標定部214、短絡点出力部215は、CPU201が記憶装置203に記憶されているプログラムをメモリ202に読み出して実行することにより実現される。設備情報データベース231は、メモリ202や記憶装置203が提供する記憶領域の一部として実現される。
【0026】
設備情報データベース231は、配電路4に接続されているスマートメータ10に関する情報(以下、「設備情報」という。)を記憶する。図4は、設備情報データベース231に記憶される設備情報の構成例を示す図である。設備情報には、メータID、幹線、線路長、目標点、目標点距離、直前電圧、現在電圧、電圧降下率、電源断フラグが含まれる。メータIDは、スマートメータ10を識別する情報である。幹線は、スマートメータ10が接続される配電路4のフィーダ3を特定するための情報である。線路長は、フィーダ3から接続点までの配電路4の長さである。目標点は、スマートメータ10が配電路4に接続される接続点6の位置を特定するための、接続点6よりも電源側にある電力設備(以下、この電力設備を「目標点」という。)であり、目標点距離は、目標点から接続点6までの距離である。なお、本実施形態では距離の単位はメートル(m)であるものとする。スマートメータ10からは定期的に電圧が送信されており、現在電圧は直近に受信した電圧であり、直前電圧はその前に受信した電圧である。電圧降下率は、直前電圧から現在電圧への電圧の降下率である。電源断フラグはスマートメータ10が停電しているか否か(電源電圧が存在するか否か)を示すフラグ値である。電圧降下率及び電源断フラグはスマートメータ10から電圧を受信するごとに更新される。
【0027】
電圧降下率取得部211は、電圧を取得する。本実施形態では、電圧降下率取得部211は、スマートメータ10から定期的に送信される電圧を受信し、設備情報データベース231に記憶されている、電圧を受信したスマートメータ10に対応する設備情報の現在電圧を直前電圧に設定するとともに、当該設備情報の現在電圧に、受信した電圧を設定し、直前電圧から現在電圧への電圧降下率を算出する。なお、電圧降下率取得部211は、スマートメータ10が測定した電流や力率なども併せて取得するようにすることもできる。電圧降下率取得部211は、ス電圧降下率が所定の閾値(例えば、98%や100%などの値を設定することができる。)以上であれば電源断フラグを「真」に設定し、電圧降下率が所定の閾値未満であれば電源断フラグを「偽」に設定する。
【0028】
短絡検知部212は、配電系統1において短絡が発生したことを検知する。短絡検知部212は、一般的な手法により短絡発生の検知を行う。例えば、短絡検知部212は、再閉路継電器(不図示)や過電流遮断器(不図示)などの動作を検知することにより短絡の発生を検知するようにすることができる。また、短絡検知部212は、スマートメータ10から取得した電圧降下率が100%である場合や、スマートメータ10から取得した電圧が0Vである場合などに短絡を検知するようにしてもよい。短絡検知部212は、短絡の発生した幹線も特定できるものとする。
また、短絡検知部212は、三相短絡であるか単相短絡であるかを判定する。図5は、三相短絡か単相短絡かを判定する処理の具体例を示す図である。なお、図5の処理は、短絡の検知された幹線についてのみ行われるものとするが、各幹線について行うようにしてもよい。
短絡検知部212は、短絡を検知した幹線に対応する設備情報を設備情報データベース231から読み出して、線路長の短い順にソートする(S301)。短絡検知部212は、ソートした設備情報のリストについて、最初のものをX1として(S302)、次の設備情報がある間以下の処理を行う。
短絡検知部212は、次の設備情報をX2とし(S303)、X2の電圧降下率からX1の電圧降下率を引いた値をΔVVとし(S304)、ΔVVが所定の閾値(例えば、−0.5%、−1.0%など任意の値を設定することができる。)より小さい場合には(S305:YES)、すなわち、線路長が長くなっても電圧降下率が一定以上下がった場合には、単相短絡と判定して(S306)、処理を終了する。
一方、短絡検知部212は、ΔVVが閾値を下回っていなければ(S305:NO)、X2をX1として(S307)、ステップS303からの処理を繰り返す。
読み出した全ての設備情報についてΔVVが閾値を下回らなければ、短絡検知部212は、三相短絡と判定する(S308)。
以上のようにして、短絡検知部212は、フィーダ3からの線路長が長いほど電圧降下率が大きくなっているかどうかにより、三相短絡から単相短絡かを判定することができる。
【0029】
短絡距離算出部213は、スマートメータ10から取得した電圧降下率に基づいて短絡距離を算出する。
短絡距離は、パーセントインピーダンス法により算出する。なお、配電路4について、単位距離(1km)当たりの抵抗r(Ω/km)、1km当たりのリアクタンスx(Ω/km)、1km当たりのパーセント抵抗%R(%)、1km当たりのパーセントリアクタンス%X(%)は既知であるものとする。また、電気所2からの送り出し電圧G(V)及び定格電流I(A)も既知であるものとする。
【0030】
接続点6から短絡点5までのパーセントインピーダンス%Zl(%)は、パーセント抵抗を%Rl(%)、パーセントリアクタンスを%Xl(%)、短絡距離をL(km)として、次の(1)−(3)式により算出される。



【0031】
短絡電流Is(A)は次の(4)又は(5)式により算出される。


【0032】
接続点6から短絡点5までの抵抗rl(Ω)、リアクタンスxl(Ω)及びインピーダンスzl(Ω)は、次の(6)−(8)式により算出される。



【0033】
短絡点5における線路側電圧降下ΔVl(V)は、次の(9)又は(10)式により算出される。


【0034】
接続点6における電圧変化率ε(%)は、次の(11)式により算出される。

【0035】
短絡距離算出部213は、電源側におけるインピーダンス(バックインピーダンス)%Xb(%)の入力を受け付け、短絡距離Lを変化させて、電圧変化率εと、スマートメータ10から取得した電圧降下率とが一致するLを算出する。
【0036】
短絡点標定部214は、短絡点5を標定する。上述したように、配電路4において短絡が発生すると、短絡点5よりも電源側に接続されるスマートメータ10においては、短絡電流による電圧降下が発生し、電源に近づくほど電圧降下率が大きくなる一方、短絡点5よりも負荷側に接続されるスマートメータ10においては電源断が発生する。そこで、本実施形態の監視装置20では、電源断が発生したスマートメータ10と同じバンクに接続されているスマートメータ10のうち、電圧断が発生しておらず、かつ最も電圧降下率が小さいスマートメータ10を基準として短絡点5を標定する。なお、短絡点5の標定処理の詳細については後述する。
短絡点出力部215は、短絡点標定部213が標定した短絡点5を出力する。
【0037】
図6は、三相短絡の場合における、短絡点5の標定処理の流れを示す図である。なお、図6の処理は、短絡検知部212が短絡を検知し、三相短絡であると判定したことを契機として実行される。
短絡点標定部214は、設備情報データベース231から、短絡検知部212が検知した幹線に対応し、電源断フラグが「真」である設備情報のうち、最も線路長の短いものを取得して、最短電源断設備情報とする(S401)。短絡点標定部214は、短絡検知部212が検知した幹線に対応し、電源断フラグが「偽」であり、線路長が最短電源断設備情報の線路長よりも短い設備情報のうち、最も線路長の長いものを取得して、基準設備情報とする(S402)。
【0038】
短絡距離算出部213は、図7に示すようにして、電圧降下率に基づいて短絡距離を算出する(S403)。
図7に示すように、短絡距離算出部213は、バックインピーダンス%Xbの入力を受け付け(S421)、短絡距離Lを0に設定し(S422)、基準設備情報の電圧降下率をΔVとし(S423)、電圧変化率εに最大値100(%)を設定する(S424)。
短絡距離算出部213は、ΔVがε未満であれば(S425:YES)、Lに所定のステップ値(例えば0.1など)を加算し(S426)、上記式(1)−(3)にLを適用して%Zlを算出する(S427)。短絡距離算出部213は、短絡検知部212が検知した3相短絡又は単相短絡に応じて、%Zlを上記式(4)又は(5)に適用し、Isを算出する(S428)。短絡距離算出部213は、Lを上記式(6)−(8)に適用してzlを算出し(S429)、Is及びzlを、3相短絡又は単相短絡に応じて、上記式(9)又は(10)に適用して電圧降下ΔVlを算出し(S430)、ΔVlを上記式(11)に適用してεを算出し(S431)、ステップS425に戻る。
短絡距離算出部213は、ΔVがε以上になれば(S425:NO)、処理を終了し、短絡距離Lが決定される。
以上のようにして、短絡距離が算出される。
【0039】
図6に戻り、短絡点標定部214は、基準設備情報の目標点距離に短絡距離Lを加算して、目標点から短絡点までの距離(以下、「標定距離」という。)を算出する(S404)。これにより、短絡点標定部214は、目標点から負荷側に標定距離の位置を短絡点5として標定することになる。
短絡点出力部215は、基準設備情報の幹線及び目標点、ならびに標定距離を、短絡点5を特定する情報として出力する(S405)。図8は、短絡点出力部215により出力される短絡点5を表示するための画面50の一例を示す図である。画面50は表示欄51−54を備えている。短絡点出力部215は、短絡検知部212が短絡を検知したことを示す文字列(図8の例では「短絡事故発生」)を表示欄51に表示する。短絡点出力部215は、基準設備情報のバンクを表示欄52に表示し、基準設備情報の目標点を表示欄53に表示し、短絡点標定部214が算出した標定距離を表示欄54に表示する。
【0040】
図9は、単相短絡の場合における、短絡点5の標定処理の流れを示す図である。
短絡点標定部214は、短絡検知部212が短絡を検知した幹線に対応する設備情報を設備情報データベース231から読み出して、線路長の短い順にソートする(S441)。短絡点標定部214は、ソートした設備情報のリストについて、最初のものをX1とし(S442)、次の設備情報がある間以下の処理を行う。
短絡点標定部214は、次の設備情報をX2とし(S443)、X2の電圧降下率からX1の電圧降下率を引いた値をΔVVとし(S444)、ΔVVが所定の閾値(例えば、50%、60%など任意の値を設定することができる。)を超えたかどうかにより、電圧降下が著しいか否かを判定する(S445)。短絡点標定部214は、電圧降下が著しいと判定した場合には(S445:NO)、X1を基準設備情報とする(S446)。
一方、短絡点標定部214は、電圧降下が著しくないと判定した場合には(S445:YES)、X2をX1として(S447)、ステップS443からの処理を繰り返す。短絡点標定部214は、読み出した全ての設備情報についてΔVVが閾値を超えなければ、ソートした設備情報の最初のものを基準設備情報とする(S448)。
短絡点標定部214は、上述した図7の処理により、電圧降下率に基づいて短絡距離を算出する(S449)。短絡点標定部214は、基準設備情報の目標点距離に短絡距離Lを加算して、標定距離を算出して、目標点から負荷側に標定距離の位置を短絡点5として標定する(S450)。短絡点出力部215は、上述した図8のような画面50に、基準設備情報の幹線及び目標点、ならびに標定距離を、短絡点5を特定する情報として出力する(S451)。
以上のようにして、短絡点標定部214は、三相短絡か単相短絡かに応じて、電圧降下率に基づき短絡距離を算出し、これにより短絡点5を標定することができる。
【0041】
以上説明したように、本実施形態の短絡監視システムによれば、短絡点標定部214は、三相短絡か単相短絡かに応じて式(4)もしくは(5)又は式(9)もしくは(10)を用いて短絡距離を算出することができる。したがって、短絡の種類に応じて適切な式を用いることができるので、精度良く短絡距離を算出することができる。
【0042】
また、本実施形態の短絡監視システムによれば、三相短絡の場合には、停電が生じた箇所から上流に最も近い箇所における電圧降下率に基づき短絡距離を算出することができる。三相短絡の場合には、停電の発生している箇所の近くに短絡点5が存在することが考えられるので、精度良く短絡距離を算出することができる。一方、単相短絡の場合には、著しく電圧降下が発生している箇所のうち、最も送電元(フィーダ3)に近いところでの電圧降下率に基づき、短絡距離を算出することができる。単相短絡の場合には、柱上変圧器7の接続構成によって電圧降下率が異なる上に、配電路4は短絡が発生していなくても下流ほど電圧降下が生じて電圧降下率が正確な値とならないため、著しい電圧降下が発生した箇所の中でも、より上流の場所を基準に短絡距離を算出することにより、より精度良く短絡距離を算出することができる。
【0043】
また、本実施形態の短絡監視システムでは、目標点とそこからの標定距離として短絡点5を出力することができる。したがって、短絡改修のための作業員は、監視装置20からの出力を参考に改修箇所を容易に特定することが可能となる。
【0044】
また、本実施形態の短絡監視システムでは、基準となる1つのスマートメータ10についてのみ短絡距離及び標定距離を算出している。したがって、大量のスマートメータ10の全てについて計算をする必要がなく、迅速に短絡点5を標定することができる。よって、早期に短絡点5を改修することが可能となる。
【0045】
なお、本実施形態では、全ての柱上変圧器7は2つの単相変圧器71及び72から構成されることを前提としたが、例えば3つの単相変圧器あるいは1つの三相変圧器から構成される柱上変圧器7が存在する場合も考えられる。この場合、監視装置20は各スマートメータ10について接続されている柱上変圧器7の構成を記憶するようにし、2つの単相変圧器71及び72から構成される柱上変圧器7に対応するスマートメータ10のみについて、上述した処理を行うようにすることができる。
【0046】
また、本実施形態では、スマートメータ10は測定した電圧を監視装置20に送信し、監視装置20が電圧降下率を算出するものとしたが、これに限らず、スマートメータ10が、測定した電圧の履歴を記録し、所定期間における電圧変化率を測定することもできる。この場合、例えば電圧降下率取得部211は、電圧降下率及び電圧を取得するためのコマンドをスマートメータ10に送信し、当該コマンドに対してスマートメータ10から応答される電圧降下率及び電圧を受信するようにしてもよいし、スマートメータ10が、所定時間ごとに、電圧を測定し、測定した電圧に基づいて電圧降下率を算出し、算出した電圧降下率と測定した電圧とを自動的に監視装置20に送信するようにしてもよい。
【0047】
また、電圧降下率取得部211は、短絡検知部212が短絡を検知した場合にのみ、定期的に各スマートメータ10から電圧降下率を取得するようにしてもよい。
【0048】
また、本実施形態では、設備情報データベース231には、スマートメータ10ごとに設備情報が記憶されるものとしたが、接続点6ごとに設備情報を記憶するようにしてもよい。
【0049】
また、本実施形態では、スマートメータ10は接続点6における電圧降下率を測定するものとしたが、接続点6からスマートメータ10までの引き込み線を考慮してもよい。この場合、
スマートメータ10の設置点から接続点6までの距離を設備情報に登録しておき、短絡距離から減算する。
【0050】
また、本実施形態では、パーセント抵抗%Rl及びパーセントリアクタンス%Xlは、1km当たりのパーセント抵抗%R及びパーセントリアクタンス%Xに基づいて算出するものとしたが、配電路4を構成する区間ごとの線種に応じた%R及び%Xに基づいて算出するようにしてもよい。この場合、監視装置20は、配電線の線種ごとに%R及び%Xを記憶する配電線情報記憶部と、スマートメータ10ごとに、フィーダ3からスマートメータ10までの各区間を構成する線種及びその区間の距離を記憶する配電路構成記憶部と、を備えるようにし、短絡距離算出部213が、スマートメータ10に対応する線種及びその距離を配電路構成記憶部から読み出し、読み出した線種に対応する%R及び%Xを配電線情報記憶部から読み出し、上記式(1)に代えて、各線種について%Rに距離を乗じた値を合計して%Rlを算出し、上記式(2)に代えて、各線種について%Xに距離を乗じた値を合計して%Xlを算出するようにする。これにより、より精度高く短絡距離を算出することができる。
【0051】
また、本実施形態では、図6の標定処理において、基準設備情報を1つだけ取得し、その基準設備情報に基づいて短絡点5を標定するものとしたが、これに限らず、短絡点標定部214は、基準設備から線路長の長い順に所定数の設備情報のそれぞれについて、短絡距離算出部213が短絡距離を算出し、短絡点標定部214が標定距離を算出し、これを短絡点出力部215が出力するようにしてもよい。また、標定距離をフィーダ3からの距離に換算し、この換算した距離の平均を標定距離としてもよい。さらに、所定数の設備情報に最も数多く含まれる目標点を特定し、所定数の設備情報のうち、特定した目標点を含むものについてのみ、短絡距離及び標定距離を算出して出力するようにしてもよい。
【0052】
以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。
【符号の説明】
【0053】
1 配電系統
2 電気所
3 フィーダ
4 配電路
5 短絡点
6 接続点
7 柱上変圧器
71 単相変圧器
72 単相変圧器
73 三相変圧器
10 スマートメータ
20 監視装置
30 通信路
201 CPU
202 メモリ
203 記憶装置
204 通信インタフェース
205 入力装置
206 出力装置
211 電圧降下率取得部
212 短絡検知部
214 短絡点標定部
215 短絡点出力部
231 設備情報データベース

【特許請求の範囲】
【請求項1】
三相三線式の配電路における短絡点を標定する装置であって、
前記配電路には、2つの単相変圧器から構成され、前記2つの単相変圧器が接続される四線の組み合わせの異なる変圧器が複数接続されており、
前記変圧器の前記配電路への接続点のそれぞれにおける電圧の降下率を取得する電圧降下率取得部と、
前記配電路に電力を供給するフィーダから前記変圧器までの線路長が長いほど前記降下率が大きいかどうかにより、三相短絡か単相短絡かを判定する短絡種判定部と、
三相短絡か単相短絡かに応じて、前記降下率に基づき前記接続点から前記短絡点までの距離を算出する短絡距離算出部と、
を備えることを特徴とする短絡点標定装置。
【請求項2】
請求項1に記載の短絡点標定装置であって、
前記短絡距離算出部は、
前記線路長を変化させ、前記変化させた線路長に基づいて前記接続点から前記短絡点までのパーセントインピーダンス及びインピーダンスを算出し、三相短絡の場合、定格電流を前記パーセントインピーダンスで割った商に100を乗じて短絡電流を算出し、前記短絡電流、前記インピーダンス及び3の平方根を乗じて前記短絡点における線路側電圧降下を算出し、単相短絡の場合、前記定格電流を前記パーセントインピーダンスで割った商に100および3を乗じた値を2の平方根で割って前記短絡電流を算出し、前記短絡電流、前記インピーダンス及び2を乗じて前記線路側電圧降下を算出して、前記線路側電圧降下に基づいて電圧変化率を算出していき、
前記電圧変化率が前記降下率と一致する前記線路長を、前記接続点から前記短絡点までの距離として算出すること、
を特徴とする短絡点標定装置。
【請求項3】
請求項1又は2のいずれかに記載の短絡点標定装置であって、
前記降下率に基づいて前記接続点において停電が発生しているか否かを判定する停電判定部をさらに備え、
前記短絡距離算出部は、三相短絡と判定された場合には、停電が発生した前記接続点から最も近く、かつ停電が発生していない前記接続点からの前記距離のみを算出すること、
を特徴とする短絡点標定装置。
【請求項4】
請求項1乃至3のいずれか1項に記載の短絡点標定装置であって、
前記短絡距離算出部は、単相短絡と判定された場合には、前記接続点である第1の接続点のうち、前記第1の接続点についての前記降下率と、前記第1の接続点の次に長い前記線路長の第2の前記接続点についての前記降下率との差が所定の閾値を超えるものを特定し、特定した前記第1の接続点についてのみ、前記接続点から前記短絡点までの前記距離を算出すること、
を特徴とする短絡点標定装置。
【請求項5】
請求項1乃至4のいずれか1項に記載の短絡点標定装置であって、
前記変圧器に接続される、前記変圧器から出力される前記電圧を測定する電圧測定装置と通信可能に接続され、
前記電圧降下率取得部は、前記電圧測定装置から前記電圧を取得し、取得した前記電圧に基づいて前記降下率を算出すること、
を特徴とする短絡点標定装置。
【請求項6】
請求項1乃至4のいずれか1項に記載の短絡点標定装置であって、
前記変圧器に接続される、前記降下率を測定する電圧測定装置と通信可能に接続され、
前記電圧降下率取得部は、前記電圧測定装置から前記降下率を取得すること、
を特徴とする短絡点標定装置。
【請求項7】
請求項5又は6に記載の短絡点標定装置であって、
前記電圧測定装置は通信機能を有する電力量計であること、
を特徴とする短絡点標定装置。
【請求項8】
請求項1乃至7のいずれか1項に記載の短絡点標定装置であって、
前記接続点ごとに、前記配電路における目標点と、前記目標点から前記接続点までの距離である目標点距離とを記憶する設備情報記憶部と、
前記接続点に対応する前記目標点及び前記目標点距離を前記設備情報記憶部から読み出し、読み出した前記目標点距離に前記距離を加算した距離である標定距離を算出し、前記目標点から前記標定距離の地点を前記短絡点として標定する短絡点標定部と、
をさらに備えることを特徴とする短絡点標定装置。
【請求項9】
三相三線式の配電路における短絡点を標定する方法であって、
前記配電路には、2つの単相変圧器から構成され、前記2つの単相変圧器が接続される四線の組み合わせの異なる変圧器が複数接続されており、
コンピュータが、
前記変圧器の前記配電路への接続点のそれぞれにおける電圧の降下率を取得し、
前記配電路に電力を供給するフィーダから前記変圧器までの線路長が長いほど前記降下率が大きいかどうかにより、三相短絡か単相短絡かを判定し、
三相短絡か単相短絡かに応じて、前記降下率に基づき前記接続点から前記短絡点までの距離を算出すること、
を特徴とする短絡点標定方法。
【請求項10】
三相三線式の配電路における短絡点を標定するためのプログラムであって、
前記配電路には、2つの単相変圧器から構成され、前記2つの単相変圧器が接続される四線の組み合わせの異なる変圧器が複数接続されており、
コンピュータに、
前記変圧器の前記配電路への接続点のそれぞれにおける電圧の降下率を取得するステップと、
前記配電路に電力を供給するフィーダから前記変圧器までの線路長が長いほど前記降下率が大きいかどうかにより、三相短絡か単相短絡かを判定するステップと、
三相短絡か単相短絡かに応じて、前記降下率に基づき前記接続点から前記短絡点までの距離を算出するステップと、
を実行させるためのプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−220383(P2012−220383A)
【公開日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2011−87710(P2011−87710)
【出願日】平成23年4月11日(2011.4.11)
【出願人】(000211307)中国電力株式会社 (6,505)
【Fターム(参考)】