説明

積層鋼板

【課題】軽量で、剛性及び耐衝撃性が高く、かつ、せん断、曲げ、深絞り、張り出し等の加工性や加工後の形状安定性に優れる積層鋼板を提供する。
【解決手段】コア層の両面に鋼板が積層された積層鋼板において、コア層を鋼線材を用いて網状に形成した金網で構成し、金網を形成する鋼線材の炭素濃度を0.24質量%以上で、かつ、金網の目開きを鋼板の厚みの3.5倍以下とした。このように、鋼線材の組成を規定することで、軽量性と高い剛性や耐衝撃性とを両立でき、金網の目開きを規定することで、加工性や加工後の形状安定性を向上させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、軽量化のためのコア層の両面に鋼板が積層された積層鋼板に関する。
【背景技術】
【0002】
自動車部材、家電の筐体、家具、OA機器部品等の様々な用途において、軽量で、剛性及び耐衝撃性が高く、かつ、せん断、曲げ、深絞り、張り出し等の加工性や、加工後の形状安定性に優れる鋼板が広く求められている。近年、地球温暖化対策として、COの排出量が厳しく規制されており、特に、自動車部材の用途においては、COの排出量を削減するために、軽量化のニーズが特に高いだけでなく、剛性や耐衝撃性、加工性や加工後の形状安定性も高い水準の性能が要求される。このような要求に対する解決策として、樹脂シート、無機フィラー入り樹脂シート、加工金属板、ハニカム、繊維等からなるコア層を鋼板間に積層した積層鋼板が種々提案されている。
【0003】
具体的には、例えば、特許文献1〜5では、金属板間に、PP(ポリプロピレン)シートを積層する製法及び金属板、特許文献6では、鋼板間に変性PP接着層を介してPA(ポリアミド)シートを積層した鋼板、特許文献7では、鋼板間にPET(ポリエステル)シートを積層した鋼板、特許文献8では、金属板間に熱硬化性樹脂を接着剤として含浸させた熱可塑性樹脂のポリマー繊維の布地シートを積層した金属板、特許文献9では、降伏強度や厚みの異なる鋼板間に樹脂シートを積層した鋼板、特許文献10では、鋼板間に引張り弾性率が高い樹脂シートを積層した鋼板が、それぞれ提案されている。
【0004】
また、例えば、特許文献11では、ステンレス板間に接着用樹脂フィルムを介して発泡ポリオレフィンシートを積層したステンレス鋼板、特許文献12では、金属板間に発泡する際に生じる面内方向の発泡力を抑制するシート状物を介してポリオレフィン系樹脂発泡体を積層した金属板、特許文献13及び14では、金属板もしくは金属箔間に発泡ポリエステルシートを接着層なしで積層する製造法、特許文献15及び16では、金属板間に発泡樹脂シートを接着層なしで積層する製造法、特許文献17では、鋼板間に複数の予備発泡シートを接着樹脂フィルムで接合したシートを積層する製法、特許文献18では、金属板間に無発泡熱可塑性樹脂層を介して扁平状の独立気泡を有する発泡樹脂層を積層した金属シート、特許文献19では、硬質板に未発泡樹脂シートを積層して加工後に発泡する防音板、特許文献20では、形状を形成した鋼板間に予備発泡した樹脂シートを積層し、ガラス転移温度以上に加熱して発泡させる芳香族ポリエステル系樹脂積層体の製法が、それぞれ提案されている。
【0005】
また、例えば、特許文献21では、鋼板間に無機フィラーが添加されたPPをコア層として積層した鋼板、特許文献22では、金属シート間に無機フィラーを添加した発泡ポリオレフィンシートをコア層として積層した金属シートが、それぞれ提案されている。
【0006】
また、例えば、特許文献23では、金属シートや樹脂シートからなるカバー層間に凹凸を付与したフレキシブルな金属シートをコア層として積層したパネル、特許文献24及び25では、鋼板間にミクロ窪み付ディンプル加工鋼板をコア層として積層した構造が、それぞれ提案されている。
【0007】
また、例えば、特許文献26〜29では、発泡樹脂を充填したハニカム状の板をコア層として金属板間に積層した金属板が提案されている。
【0008】
また、例えば、特許文献30では、金属板間に熱可塑性樹脂で覆った有機もしくは金属の繊維状ポーラス体をコア層として積層した金属板、非特許文献1では、短繊維SUSファイバーをブレーズ接合コア層を鋼板間に積層した構造が、それぞれ提案されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開昭51−84880号公報
【特許文献2】特開昭51−84879号公報
【特許文献3】特開昭64−45632号公報
【特許文献4】特開平6−270325号公報
【特許文献5】特開昭61−123537号公報
【特許文献6】特開昭52−21089号公報
【特許文献7】特開平4−299133号公報
【特許文献8】特表2003−523853号公報
【特許文献9】特開昭62−259839号公報
【特許文献10】特開昭62−9951号公報
【特許文献11】特開2000−225664号公報
【特許文献12】特開2001−150616号公報
【特許文献13】特許第2983133号
【特許文献14】特開平9−39139号
【特許文献15】特開2003−96969号
【特許文献16】特開平10−305545号
【特許文献17】特開平10−231580号
【特許文献18】特開平6−182884号
【特許文献19】特開2004−42649号
【特許文献20】特許第3594877号
【特許文献21】特開昭62−264941号公報
【特許文献22】特許第3118066号
【特許文献23】特表2003−508270号公報
【特許文献24】国際公開第2008/097984号パンフレット
【特許文献25】国際公開第2007/062061号パンフレット
【特許文献26】特許2838982号
【特許文献27】特開平8−82021号公報
【特許文献28】特開平8−105127号公報
【特許文献29】特開平8−20086号公報
【特許文献30】国際公開第2006/050610号パンフレット
【非特許文献】
【0010】
【非特許文献1】D.Mohr著、Int.J.Mech.Sci.,Vol.45.,P.253(2003年)
【発明の概要】
【発明が解決しようとする課題】
【0011】
上記特許文献1〜20のように、鋼板間に樹脂シートや発泡樹脂シートを積層した積層鋼板では、単一の鋼板の中心部を樹脂シートや発泡樹脂シートで代替するため、同一厚みの単一の鋼板やAl板と比較して軽量化が可能となる。また、積層鋼板全体の重量を軽くしても、積層鋼板全体の厚みを厚くできるので、軽量性を保持したまま、剛性(積層鋼板全体の厚みの3乗に比例)を高くすることができる。従って、上記特許文献1〜20に記載された鋼板は、パネル等のように変形時の中立軸が積層鋼板の内部にあるような部品としては有効である。
【0012】
しかし、箱型部材等のように変形時の中立軸が積層鋼板の外部にある部品に適用すると、鋼板間に積層した樹脂のヤング率が小さいため、剛性(ヤング率と積層鋼板全体厚みの3乗の積に比例)が不十分になる場合がある。また、鋼板間に積層した樹脂の降伏強度が小さいため、耐衝撃性(降伏強度と積層鋼板全体厚みの約1.6乗の積に比例)を確保するためには、積層鋼板全体の厚みをさらに大きくする必要がある。この結果、積層鋼板の曲げ変形時に表層の鋼板に加わる負荷が過大になって表層鋼板が破壊したり、樹脂層(コア層)のせん断変形が大きくなって上下面にズレが発生することにより剛性や耐衝撃強度が低下したり、さらにはコア層が破壊するなどの欠陥が発生する場合があった。また、耐熱性の低いポリオレフィンをコア層に使用している場合には、焼き付け塗装時にコア層が変形する場合があった。
【0013】
また、上記特許文献21及び22に記載された積層鋼板では、積層する樹脂もしくは発泡シートからなるコア層を無機フィラーで補強しているため、コア層の引張強度及びせん断強度を向上させ、特許文献1〜20に記載された積層鋼板に起こり得るような表層鋼板及びコア層の破壊や、剛性や耐衝撃性の低下をある程度は改善することができる。
【0014】
しかし、特許文献21及び22に記載されている積層鋼板では、短繊維フィラーを用いてコア層を補強しており、補強部分が不連続となるため、補強効果が不十分であった。
【0015】
また、上記特許文献23〜25に記載されている積層鋼板では、コア層が樹脂ではなく金属からなるため、樹脂からなるコア層と比較するとヤング率や降伏強度がやや高くなり、特許文献1〜20に記載された積層鋼板に起こり得るような表層鋼板及びコア層の破壊や、剛性や耐衝撃性の低下をある程度は改善することができる。
【0016】
しかし、特許文献23〜25におけるコア層には、積層鋼板全体の軽量化を図るために、金属箔や極薄軟鋼が使用されているため、積層鋼板の用途によっては降伏強度が不十分となる場合があり、上記の改善効果としては不十分であった。
【0017】
また、上記特許文献26〜29に記載されている積層鋼板は、いずれも建築用の断熱パネルや遮音パネル等の建材パネル用途を意図した金属板であり、パネル状の部品としては有効であるものと考えられる。
【0018】
しかし、特許文献26〜29に記載されている積層鋼板では、積層後に張り出し加工、絞り加工、曲げ加工、プロファイリング加工等の強加工をする部材への適用を想定していない。従って、これらの鋼板では、弾性域では軽量・高剛性を兼備できるものの、ハニカム構造が適正でなく、張り出し、絞り加工等を行うとコア層がせん断破壊や圧縮破壊して、欠陥となる場合が多い。さらに、コア層の補強に利用するハニカム板がコア層全体に分布しているため、曲げ変形時の中立軸となるコア層中心部近傍に分布しているハニカム板は剛性アップには寄与せず、効率的に剛性をアップし、かつ軽量化することが困難であった。
【0019】
また、特許文献30に記載されている積層鋼板は、コア層を構成する繊維状ポーラス体の好適な空孔率を規定しており、軽量性と高剛性をバランス良く実現しようとするものであると考えられる。
【0020】
しかし、特許文献30では、コア層の適正な構造(特に、空孔の構造)については一切規定されていない。また、コア層がポーラス状である場合、表層鋼板のうち、コア層内の空孔上に積層された部分は、コア層内の中充部分上に積層された部分よりも、強度が弱くなる。その結果、適正な構造のコア層を形成しないと、引張変形時に空孔部上に積層された部分に応力が集中して伸びが低下したり、曲げ変形時に表層鋼板が空孔部に陥入したりして欠陥となる場合があった。
【0021】
また、非特許文献1に記載された構造では、短繊維ファイバーを使用しているため、コア層の降伏強度やせん断強度が小さく、強加工時に欠陥を発生する場合が多い。
【0022】
このように、これまでに提案されている積層鋼板では、軽量性、高剛性、高耐衝撃性、優れた加工性(せん断加工性、曲げ加工性、深絞り加工性、張り出し加工性等)、優れた加工後の形状安定性など、全ての性能を満足できるまでに至っていない、という問題があった。
【0023】
そこで、本発明は、このような問題に鑑みてなされたもので、軽量で、剛性及び耐衝撃性が高く、かつ、せん断、曲げ、深絞り、張り出し等の加工性や加工後の形状安定性に優れる積層鋼板を提供することを目的とする。
【課題を解決するための手段】
【0024】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、鋼線材を用いて網状に形成した金網でコア層を構成し、さらに、鋼線材の組成及び金網の目開きを制御することにより、軽量性、高剛性、高耐衝撃性、優れた加工性及び優れた加工後の形状安定性を全て満足できることを見出し、この知見に基づいて本発明を完成するに至った。
【0025】
すなわち、本発明によれば、鋼線材を用いて網状に形成した金網からなるコア層の両面に鋼板が積層されており、前記鋼線材の炭素濃度が0.24質量%以上であり、かつ、前記金網の目開きが前記鋼板の厚みの10倍以下である、積層鋼板が提供される。
【0026】
ここで、前記積層鋼板において、前記鋼線材の炭素濃度が、0.60質量%以上であることが好ましい。
【0027】
また、前記積層鋼板において、前記金網の目開きが、前記鋼板の厚みの0.1倍以上であることが好ましく、前記鋼板の厚みの0.5倍以上5倍以下であることがさらに好ましい。
【0028】
また、前記積層鋼板において、前記金網と前記鋼板とは、融点が400℃以下ブレーズ剤又は導電性接着剤を用いて接合されていてもよい。
【0029】
また、前記積層鋼板において、前記金網と前記鋼板とが接着剤を用いて接合されており、前記接着剤と前記鋼板とのせん断密着強度が30N/cm以上であり、前記接着剤の100℃〜160℃での貯蔵弾性率G’が0.05MPa以上100MPa以下であることが好ましい。
【0030】
また、前記積層鋼板において、前記金網は、縦線及び横線に対して斜め方向に織りが加えられていてもよく、さらに、前記金網は、正方目の金網であり、前記斜め方向は、前記縦線及び前記横線の方向に対して45°の方向であることが好ましい。
【0031】
また、前記積層鋼板において、前記コア層が、n(nは2以上の整数)層の積層された前記金網からなり、各層の前記金網を形成する前記鋼線材の方向を、隣接する層の前記金網間で360/3n°以上360/n°以下の角度ずつ一定方向にずらして、各層の前記金網が積層されることが好ましい。
【0032】
また、前記積層鋼板において、前記コア層が、積層された3枚以上の前記金網からなり、3枚以上の前記金網から任意に選択された隣接する2枚の前記金網のうち、前記コア層の厚み方向の中央位置に対して、より遠い側に積層された前記金網の目開きが、より近い側に積層された前記金網の目開きよりも小さいことが好ましい。
【発明の効果】
【0033】
本発明によれば、鋼線材を用いて網状に形成した金網でコア層を構成し、さらに、鋼線材の炭素濃度を0.24質量%以上であり、かつ、金網の目開きを鋼板厚みの10倍以下にすることにより、軽量で、剛性及び耐衝撃性が高く、かつ、せん断、曲げ、深絞り、張り出し等の加工性や加工後の形状安定性に優れる積層鋼板を提供することが可能となる。
【図面の簡単な説明】
【0034】
【図1】本発明の一実施形態に係る積層鋼板の全体構成の一例を示す説明図である。
【図2】同実施形態に係る金網の構成の一例を示す説明図である。
【図3】同実施形態に係る金網の変形例の構成を示す説明図である。
【図4】同実施形態に係る金網による表層鋼板の拘束効果の一例を示す説明図である。
【図5】同実施形態に係る積層鋼板の変形例の構成を示す説明図である。
【図6】実施例26及び比較例9の積層鋼板における引張変形時の表層鋼板の歪測定の結果を示すグラフである。
【発明を実施するための形態】
【0035】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0036】
[積層鋼板の構成]
初めに、図1を参照しながら、本発明の一実施形態に係る積層鋼板の全体構成について説明する。図1は、本実施形態に係る積層鋼板の全体構成の一例を示す説明図である。
【0037】
図1に示すように、本実施形態に係る積層鋼板1は、コア層10の両面にそれぞれ鋼板(以下、「表層鋼板」と称する。)5(5A,5B)が積層された構造、すなわち、表層鋼板5A上にコア層10が積層され、さらにその上に表層鋼板5Bが積層された構造を有している。コア層10は、鋼線材を用いて網状に形成した1枚又は2枚以上の金網11からなる層である。コア層10が、2枚以上の金網11で構成されている場合には、これらの金網11は積層された構造となっている。なお、図1では、コア層10が、積層された2枚の金網11からなる例を示している。
【0038】
また、詳しくは後述するが、本実施形態に係る積層鋼板1では、金網11を構成する鋼線材の炭素濃度が0.24質量%以上であり、かつ、金網11の目開きが表層鋼板20の厚みtの10倍以下であることが必要である。以下、積層鋼板1を構成する各部材について詳細に説明する。
【0039】
(金網の構成)
まず、図1及び図2を参照しながら、本実施形態に係る金網11の構成について詳細に説明する。図2は、本実施形態に係る金網11の構成の一例を示す説明図であり、(a)は平面図、(b)は側面図を示している。
【0040】
図2に示すように、金網11は、鋼線材を縦線111と横線113に使用して網状に形成したものである。ここで、縦線111とは、金網11を構成する全ての鋼線材のうち、長さ方向(図2では縦方向)に走る鋼線材を意味し、横線113とは、金網11を構成する全ての鋼線材のうち、長さ方向と直交する幅方向(図2では横方向)に走る鋼線材を意味する。また、金網11の目開きw(w,w)とは、2本の隣接する縦線111又は横線113間の距離のことであり、2本の隣接する縦線111間の距離を縦目開きw、2本の隣接する横線113間の距離を横目開きwと区別することもある。金網11が正方目である場合には、w=wとなる。また、金網11には、縦線111と横線113とで囲われた部分に空孔(網目)115が存在しており、この空孔115があることにより、コア層10を鋼板やAl板等と比べて軽量化することができる。なお、金網11を形成する鋼線材の直径(線径)dと目開きwとの和は(メッシュ)ピッチpと称される。
【0041】
また、図2(b)に示すように、金網11の厚みtは、縦線111又は横線113(図2に示した例では横線113)の一方(図2では上側)の屈曲部111aと他方(図2では下側)の屈曲部111bとの距離で表される。本実施形態に係る積層鋼板1では、コア層10は、1枚の金網11、又は、積層された2枚以上の金網11からなるので、金網11の枚数をnとすると、コア層10の厚みtは、t=n*tとなる。
【0042】
<鋼線材の組成>
ここで、本実施形態における金網11を構成する鋼線材の炭素濃度は、0.24質量%以上であることが必要である。鋼線材の炭素濃度を0.24質量%以上とすることにより、鋼線材の引張強度を確保でき、コア層10内の鋼線材密度を必要とされる板密度(コア層10内における鋼線材の質量比)まで低下させても、積層鋼板1の加工や加工後の製品として必要とされるコア層10(本実施形態では、金網11)の引張強度及び降伏強度を確保することができるため、積層鋼板1の剛性や耐衝撃性を高く保ちつつ、積層鋼板1を十分に軽量化することが可能となる。一方、鋼線材の炭素濃度が0.24質量%未満では、鋼線材の引張強度や降伏強度が小さくなってしまい、コア層10内の鋼線材強度を増大させて補強しなければ、必要とされるコア層10の引張強度や降伏強度を確保することができず、積層鋼板1の軽量化が不十分となる。具体的には、鋼線材として、JIS G 3506−2004、JIS G 3502−2004等を好適に使用できるが、これらに限定するものでなく、上記組成を満足した鋼線材であれば、本実施形態に係る金網11を構成する鋼線材として使用できる。
【0043】
コア層10の引張強度や降伏強度をより向上させるという観点から、鋼線材の炭素濃度は0.60質量%以上であることが好ましい。これにより、コア層10の板密度を従来よりも低下させても、コア層10の引張強度や降伏強度を十分に確保することができるため、より高度な軽量化と剛性や耐衝撃性との両立を図ることが可能となる。一方、鋼線材の炭素濃度が高すぎると、コア層10(金網11)の引張強度や降伏強度を増大させることはできるが、鋼線材が高炭素濃度となり硬質になり過ぎるため、金網11の目開きを表層鋼板5の厚みの10倍以下という微細な間隔に制御することが困難となるおそれがある。このような観点から、鋼線材の炭素濃度は0.96質量%以下であることが好ましい。
【0044】
<鋼線材の径>
鋼線材の径(線径)dは、特に限定されず、積層鋼板1の用途に応じて必要とされる剛性や耐衝撃性の観点から、必要とされるコア層10の厚み以下であればよく、用途ごとに優先させる積層鋼板1の特性(板密度、剛性、耐衝撃性等)に応じて適宜決定することができる。例えば、積層鋼板1の板密度が特に重要な場合には、金網11の目開き、コア層10の目標とする板密度ρ目標に応じて、下記(1)式及び(2)式から、(3)式の不等式を満足するように決定できる。また、積層鋼板1の耐衝撃性が特に重要な場合には、耐衝撃性の支配因子である塑性変形域の曲げモーメントMp目標に応じて、下記(3)式及び(4)式のように鋼線材の炭素濃度に応じて求めた鋼線材の線径dと降伏強度σYcとの関係式に従い、(3)式の不等式を満足するように、線径dを決定することができる。なお、下記(4)式には、炭素濃度[C]を[C]=0.96質量%として求めた関係式を示している。
ρ目標>7.8*(1−Vair)*n ・・・(1)
air=w/(w+d) ・・・(2)
Mp目標<1/4σYs[(t+t−t]+1/8(1−Vair)σYc
・・・(3)
σYc=−26500d+4640 ・・・(4)
(上記(1)〜(4)式で、ρ目標はコア層10の目標板密度、Vairはコア層10中の空孔115部分の体積、nは金網11の積層枚数、wは金網11の目開き、Mp目標は目標曲げモーメント、σYsは表層鋼板5の降伏強度、σYcはコア層10の降伏強度、tは表層鋼板5の厚み、tはコア層10の厚み、dは金網11の線径を示す。)
【0045】
<金網の目開き>
本実施形態に係る積層鋼板1では、金網11の目開きwが、表層鋼板5の厚みtの10倍以下であることが必要である。このように、金網11の目開きwを表層鋼板5の厚みtの10倍以下としたのは、本発明者の検討によって、コア層10の母材(本実施形態の場合は鋼線材)と表層鋼板5との引張強度比が1/50(引張強度の大きい方を分母とした値)以下であるコア層10を有する積層鋼板1を引張変形させた場合、コア層10に存在する空孔115の大きさ(目開き)を表層鋼板5の厚みの10倍超とすると、表層鋼板1のうち空孔115上に位置する部分に応力が集中し、早期に表層鋼板5が破断してしまうことがFEM(有限要素法)解析により判明したためである。すなわち、表層鋼板5において、コア層10の空孔115上に位置する部分と、鋼線材(縦線111及び横線113)上に位置する部分とでは、実質上の鋼板厚みが異なり、空孔115上に位置する部分の強度(引張強度や降伏強度)の方が、鋼線材上に位置する部分の強度よりも小さくなる。その結果、積層鋼板1に引張変形や圧縮変形などが加わると、表層鋼板5の中でも強度が低い空孔115上に位置する部分に応力が集中し、破断伸びが減少し、これにより加工性が低下してしまう。
【0046】
そこで、金網11の目開きwを表層鋼板5の厚みtの10倍以下と微細化することにより、積層鋼板1の引張・圧縮変形時に、表層鋼板5のうちの空孔115上に位置する部分に集中する応力を分散させることができ、表層鋼板5の破断伸びを大きくすることができる。その結果、積層鋼板1の加工性を向上させることができ、曲げ加工や深絞り加工等の強加工を加えても、積層鋼板1の加工安定性を確保することができる。
【0047】
また、金網11の目開きを小さくするほど、表層鋼板5のうちの空孔115上に位置する部分に集中する応力を分散させることができ、かつ、仮に表層鋼板5に亀裂が発生したとしても、当該亀裂が微小な目開きwを有する空孔115内に閉じ込められて他の部分に伝播しにくくなる。従って、金網11の目開きwが小さいほど、加工性の面から好ましい。一方、金網11の目開きwを小さくすると、上述した(1)式及び(2)式により、コア層10の板密度が増加するため、軽量性を確保する観点からは、金網11の目開きwは、表層鋼板5の厚みtの0.1倍以上であることが好ましい。
【0048】
以上述べたような、優れた加工性及び加工安定性と軽量性とをより高度に両立させるという観点から、金網11の目開きwは、表層鋼板5の厚みtの0.5倍以上5倍以下であることがより好ましい。
【0049】
また、本実施形態では、コア層10が金網11からなるので、空孔115の大きさ(すなわち、目開きw)を表層鋼板5の厚みtの10倍以下という微小な大きさに制御することが、金属材等の板材を打ち抜き加工やディンプル加工等して空孔を形成する場合よりも容易となるため、コストを削減したり、生産性を向上させたりすることも可能となる。
【0050】
<金網の形成方法>
金網11の形成方法については、上述した鋼線材の炭素濃度及び目開きの条件を満足するものであれば、織り方や編み方などは特に制限されず、例えば、正方目、ひし形、亀甲状等の矩形目などのいずれでもよい。正方目の金網11としては、織金網、クリンプ金網などがある。織金網の具体例としては、平織り、綾織、たたみ織り、たたみ綾織り等が挙げられる。また、クリンプ金網の具体例としては、クリンプ織り、ロッククリンプ織り、ダブルクリンプ織り、フラットクリンプ織り、トンキャップスクリーン織り、スロットスクリーン織り等が挙げられる。また、金網11の形成方法としては、織りや編みではなくても、溶接によっても構わない。すなわち、縦線111と横線113とを溶接により接合し、網状に形成してもよい。さらに、金網11の織り方としては、2次元織りではなく、3次元の立体織りにしてもよい。
【0051】
以上の金網11の形成方法のうち、製造の容易さや経済性の観点からは平織り金網が好ましく、表層鋼板5とコア層10との接合性の観点からはフラットトップ織り金網が好ましい。
【0052】
また、本実施形態に係る金網11では、上述した鋼線材を用いて、正方目に斜め方向の織り(線)を加えてもよい。この斜め方向とは、縦線111及び横線113の双方と交差する方向のことを意味し、具体的には、例えば、縦線111又は横線113の方向に対して15°、30°、45°等の方向の織り(線)を正方目の金網11に加えることができる。
【0053】
<金網による表層鋼板の拘束効果について>
特に、本実施形態では、以下に説明する金網11による表層鋼板5の拘束効果を効率よく発現させるために、図3に示した金網11’のように、縦線111と横線113とからなる正方目の金網に、縦線111及び横線113の方向に対して45°の方向の斜め方向の織り(線)117が加えられていることが好ましい。なお、図3は、本実施形態に係る金網の変形例の構成を示す説明図である。
【0054】
ここで、図4を参照しながら、金網11による表層鋼板5の拘束効果について説明する。図4は、本実施形態に係る金網による表層鋼板の拘束効果の一例を示す説明図である。なお、図4では、説明の便宜のため、縦線111及び横線113を実線で示している。
【0055】
本実施形態では、コア層10が金網11で構成されているが、図4に示すように、金網11を、例えば、縦線111の方向に沿った力Tで引張加工したとする。すると、図4の右図に示すように、縦線111の方向には引張変形が生ずる一方で、横線113の方向には引張変形が生じない。すなわち、引張加工後の縦目開きwL2は、引張加工前の縦目開きwL1よりも大きくなるが、引張加工後の横目開きwH2は、引張加工前の横目開きwH1と同一で、横目開きは引張加工前後で変化しない。
【0056】
このように、コア層10が金網11からなる場合、金網11を構成する鋼線材(縦線111、横線113)の一部を曲げ加工時の圧縮変形・引張変形方向に対して垂直に配列すると、金網11を構成する鋼線材は変形せずに表層鋼板5のポアッソン変形を拘束する効果が得られる。この拘束効果により、表層鋼板5のヤング率Eを増大させることができ、下記(5)式で表される積層鋼板1の剛性EIを効率的に増大させることが可能となる。なお、このような拘束効果は、金網11を用いることにより発現されるものであり、例えば、金属材等の板材を打ち抜き加工等したものなどによっては得ることができない。
EI=(1/12)E[(t+t−t]+1/12E
・・・(5)
(上記(5)式において、EIは積層鋼板1の剛性、Eは表層鋼板5のヤング率、Eは、コア層10のヤング率、tは表層鋼板5の厚み、tはコア層10の厚みを示す。)
【0057】
従って、本実施形態では、等方性を確保して、上述したような変形方向に垂直な鋼線材(縦線111及び横線113)の配列による表層鋼板5の拘束効果を広範な変形方位で発現させるために、コア層10を構成する金網として、縦線111と横線113とからなる正方目の金網に、縦線111及び横線113の方向に対して45°の方向の斜め方向の織り(線)117が加えられている金網11’を使用することが好ましい。
【0058】
なお、本実施形態に係るコア層10は、金網11(11’)のみで構成されており、樹脂等を含まないため、耐熱形状安定性を確保することが容易である。
【0059】
<金網の積層>
上述したように、本実施形態に係るコア層10を構成する金網11は、1枚であっても、2枚以上積層されていてもよい。特に、本実施形態では、コア層10の等方性を増加させるために、コア層10としてn層(nは2以上)の金網11を積層する場合に、各層の金網11を形成する鋼線材の方向を、隣接する層の金網11間で360/3n°以上360/n°以下の角度ずつ一定方向にずらして、各層の金網11を積層することも可能である。このような積層方法を例示すると、最下層の金網11に対し、その上層の各金網11を45°ずつ回転させて4層積層する方法などがある。等方性を増加させる観点からは、金網11の層数nを大きくして、金網11を微細な角度ずつ(360/3n〜360/n°ずつ)回転させて積層することが好ましいが、経済的合理性の観点からは、積層する金網11の数は、2層以上20層以下であることが好ましい。
【0060】
また、本実施形態では、コア層10が積層された3枚以上の金網11からなり、3枚以上の金網11から任意に選択された隣接する2枚の金網11のうち、コア層10の厚み方向の中央位置に対してより遠い側に積層された金網11の目開きが、コア層10の厚み方向の中央位置に対してより近い側に積層された金網11の目開きよりも小さいことが好ましい。ここで、図5を参照しながら、コア層10が、金網11を積層した構造を有する場合の好適な例について説明する。図5は、本実施形態に係る積層鋼板の変形例の構成を示す説明図である。
【0061】
図5に示すように、本実施形態の変形例に係る積層鋼板1’は、コア層10として、3枚の金網11A,11B,11Cが積層された構造を有している。そして、コア層10の厚み方向の中央位置に対してより遠い側(図5の例では、表層鋼板5に近い側)に配置された2枚の金網11A,11Cの目開きwの方が、コア層10の厚み方向の中央位置に対してより近い側(図5の例では、表層鋼板5から遠い側)に配置された金網11Bの目開きwよりも小さくなっている。これは、次のような理由による。
【0062】
一般に、鋼板の中心部は、剛性や耐衝撃性への寄与が比較的小さい。そのため、剛性や耐衝撃性に対して比較的寄与の小さい積層鋼板1の中心部(コア層10の厚み方向の中央部)に、目開きが大きく強度の小さな金網11Bを配置してさらなる軽量化を図る一方で、剛性や耐衝撃性に対して比較的寄与の大きな表層鋼板5側には、目開きが小さく強度の大きな金網11A,11Cを配置して剛性や耐衝撃性を確保するために、本実施形態の変形例に係る積層鋼板1’では、表層鋼板5側の金網11A,11Cの目開きwを比較的大きくし、コア層10の中央側の金網11Bの目開きwを比較的小さくしている。
【0063】
なお、複数の金網11を積層する場合には、後述する接着剤やブレーズ剤等を用いることにより、各金網11を接合することができる。
【0064】
(金網と表層鋼板との接合)
次に、本実施形態において、金網11と表層鋼板5との接合について説明する。まず、金網11と表層鋼板5との好適な密着力は、ピール強度によって評価することができるが、本実施形態における金網11と表層鋼板5とは、5N/cm以上のピール強度で接合されることが好ましい。ピール強度が5N/cm未満では、積層鋼板1の曲げ変形や引張変形の際に、コア層10の両面の表層鋼板5が一体となって変形せず、積層鋼板1の剛性や耐衝撃性を発現させることができないおそれがある。積層鋼板1の曲げ変形時のせん断によるコア層10両面の表層鋼板のずれを小さくするために、ピール強度を25N/cm以上とすることがより好ましく、40N/cm以上とすることがさらに好ましく、60N/cm以上とすることがさらに一層好ましい。なお、ピール強度は、JIS Z0238のTピール試験により評価することができる。
【0065】
金網11と表層鋼板5との接合方法としては、公知の鋼材の接合方法を応用することができ、具体的には、例えば、接着接合、ブレーズ接合、溶接等を使用することができる。
【0066】
金網11と表層鋼板5との接合を接着接合により行う場合には接合材として接着剤を使用するが、加工後にも耐熱形状安定性を保持するため、接着剤の100℃〜160℃での貯蔵弾性率G’が、0.05MPa以上100GPa以下であることが好ましい。0.05MPa未満では、積層鋼板1を成形する場合に発生した鋼板/接着剤界面の残留応力により、積層鋼板1の成形品を当該温度(100℃〜160℃)に加熱すると、接着剤の層がクリープ変形し、接着剤層が破壊したり、接着剤層を起点とした剥離を引き起こしたりする場合がある。接着剤層のクリープ変形をより確実に防止するためには、G’1.0MPa以上であることがより好ましく、G’が5MPa以上であることがさらに好ましい。一方、100GPa超の場合、常温のG’はより大きくなるので、加工追従性が低下して加工時に破壊し、接着剤層を起点とした剥離を生じ易くなるおそれがある。なお、接着剤の貯蔵弾性率G’は、周波数0.1〜10Hzで測定した接着剤の貯蔵弾性率の最大値で評価できる。熱硬化性接着剤の場合は、積層条件と同一の熱履歴を付与して架橋硬化した接着剤フィルム、熱可塑性接着剤の場合は接着剤フィルムを公知の動的粘弾性測定装置で測定できる。
【0067】
さらに、接着剤の100℃〜160℃での損失弾性率G”と貯蔵弾性率G’の比tanδ(=G”/G’)は、tanδ<1であることが好ましく、tanδ<0.8であることがより好ましく、tanδ<0.5であることがさらに好ましく、tanδ<0.1であることがさらに一層好ましい。tanδが小さいほど、加熱しても残留応力による接着剤層のクリープ変形を抑制し、形状を安定させることができる。tanδ≧1では、100℃〜160℃に加工品を加熱すると、接着剤層が粘性流動し、形状が不安定になったり、クリープ変形破壊して剥離したりする場合がある。
【0068】
金網11と表層鋼板5との接合材に使用可能な接着剤の具体例としては、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、ポリエステル系、ポリウレタン系、ポリアミド系、ポリベンズイミダゾール系、アクリレート系等の熱硬化樹脂系接着剤、酢酸ビニル樹脂系、ポリビニルアセタール系、エチレン−酢酸ビニル系樹脂系、塩ビ系、アクリル、アクリレート樹脂系、ポリアミド系、セルロース系、ポリエステル系、ポリオレフィン系等の熱可塑性樹脂系接着剤、アスファルト、天然ゴム、たんぱく、でんぷん系等の天然接着剤、ニトリルゴム、スチレン系ゴム、ポリサルファイド系、ブチルゴム系、シリコンゴム系、アクリルゴム系、変性シリコンゴム系、ウレタンゴム系、シリル化ウレタンゴム系等のエラストマー系接着剤、γ−グリシドキシプロピルトリメトキシシランあるいは、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のシランカップリング剤、チタンカップリング剤等の無機系接着剤等が挙げられ、表層鋼板5や金網10を構成する鋼線材の材質に応じて適宜選択できる。また、接着剤の耐熱性を確保するという観点から、上述した接着剤基材に架橋剤を添加した反応型ホットメルト接着剤が好ましく、中でもポリエステル系接着剤基材に架橋剤を添加したポリエステル系反応型ホットメルト接着剤が、ハンドリング性の面からさらに好ましい。
【0069】
反応型ホットメルト接着剤に使用可能なポリエステル基材としては、例えば、ジオール残基とジカルボン酸残基からなる飽和ポリエステルが挙げられる。中でも、複数のジオール残基もしくは複数のジカルボン酸残基をあるいはこれらの組み合わせからなる共重合ポリエステルが、結晶化度を下げて接着性を向上できるので好ましい。具体的には、1,4−ブタジオールとテレフタル酸残基を主成分にして他のジオール残基やジカルボン酸残基を共重合したポリエステルが好ましく、より具体的に例示すると、東洋紡績製”バイロン”、旭日化成製”ハーデック”、東レ製”ケミット”、東亜合成製”アロンメルトPES”、日本合成化学工業製”ポリエスター”等が挙げられ、非晶質グレードよりも結晶グレードの方が、耐熱性から好ましい。
【0070】
反応型ホットメルト接着剤に使用可能な架橋剤としては、例えば、イミダゾール、イソシアネート、エポキシ樹脂、フェノールノボラック化合物、メラミン化合物等が挙げられる。中でも、架橋反応速度制御性からイソシアネート化合物が特に好ましい。イソシアネート化合物とは、2個以上のイソシアネート官能基を有する芳香族もしくは脂肪族イソシアネート化合物及びこの混合物である。具体的には、ジフェニルメタンジイソシアネート化合物(MDI)、カルボジイミド変性MDI、ジフェニルメタン4,4−ジイソヒアネート、ジフェニルメタン−2,2’−ジイソシアネート、ジフェニル−メタン−2,4’−ジイソシアネート、オリゴマーフェニルメチレンイソシアネート(TDI)、テトラメチルキシレンジイソシアネート(TMXDI)、ナフチレンジイソシアネート、トリファニルメタントリイソシアネート等の芳香族イソシアネート化合物、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、水素化芳香族ジイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等の脂肪族のジイソシアネート、トリイソシアネート、ポリイソシアネートを挙げることができる。
【0071】
さらに、金網11と表層鋼板5との間の接着面積を増大させる目的で、薄い熱可塑性接着フィルムと他の接着剤とを複合することが好ましい。具体的には、薄い熱可塑性接着フィルムの両面に他の接着剤をコートしたものを接着層として使用し、熱可塑性接着フィルムが可塑化する温度以上で金網11と表層鋼板5とを圧着することが好ましい。これにより、熱可塑性シートに金網11を構成する鋼線材が食い込み、金網11と表層鋼板5との間の接触面積が増加し、かつ、他の接着剤も接着に作用するので、さらに接着力を増大できる。
【0072】
このような薄い熱可塑性接着フィルムと他の接着剤との複合化の中でも、特に、ポリエステルフィルムと反応型ホットメルト型接着剤との複合化が、接着性、耐熱性の観点から好ましい。なお、使用する薄い熱可塑性接着フィルムの厚みは、1μm以上、50μm以下、さらにコア層10を構成する金網11厚みが50μm以下の場合は、金網11厚みの40%以下でなければならない。熱可塑性接着フィルムの厚みが1μm未満では接着面積を十分に増加できない。一方、熱可塑性樹脂フィルムの厚みが50μm超では、金網11と表層鋼板との間の有機層(接着層)厚みが大きくなり、積層鋼板1の溶接性が低下する場合がある。また、金網11厚みが50μm以下の場合、接着フィルム厚みを金網11厚みの40%超にすると、金網11の大半が接着フィルム内に包埋され、溶接時にガスが発生したり、通電性が低下し、溶接が困難になる場合がある。
【0073】
また、本実施形態おける金網11と表層鋼板5との接合に使用する接着剤としては、積層鋼板1の溶接性を確保するという観点からは、導電性接着剤が好ましい。この導電性接着剤としては、例えば、上述したような接着剤に、銀粉や銅粉等の金属粉を所定量添加したものなどが挙げられる。
【0074】
金網11と表層鋼板5との接合をブレーズ接合により行う場合には接合材としてブレーズ剤を使用するが、このときに使用可能なブレーズ剤としては、例えば、鉛、錫、アンチモン、カドミウム、亜鉛などの合金からなる軟ろう(はんだ)、Ni−Cr系のロウ剤、銅ろう、金ろう、パラジウムろう、銀ろう、アルミろうなどの硬ろう等が挙げられる。
【0075】
金網11と表層鋼板5との接合を溶接により行う場合には、公知の溶接法を使用することができるが、具体的な溶接法として、例えば、スポット溶接、シーム溶接などの抵抗溶接、電子ビーム溶接、レーザー溶接、アーク溶接等が挙げられる。
【0076】
また、金網11の鋼線材の強度を保持するため、鋼線材の初期の金属組織を維持することが重要である。このような観点から、金網11と表層鋼板5とを接合する際の接合温度は、鋼組織の相転移が起こらない400℃以下であることが好ましく、300℃以下であることがより好ましく、200℃以下であることがさらに好ましく、100℃以下であることがさらに一層好ましい。また、100℃以下で金網11と表層鋼板5とを接合することができれば、表層鋼板5の焼き付け硬化を防止することができ、強加工が容易となる。
【0077】
さらに、金網11と表層鋼板5との接合方法として、積層鋼板1の生産性及び溶接性の確保という見地から特に好ましいのは、耐熱性を有する導電性接着剤による接合か、あるいは、融点が400℃以下のブレーズ剤(例えば、はんだ等)による接合である。
【0078】
(表層鋼板の構成)
本実施形態に係る表層鋼板5としては、特に限定はされないが、具体的には、例えば、ブリキ、薄錫めっき鋼板、電解クロム酸処理鋼板(ティンフリースチール)、ニッケルめっき鋼板等の缶用鋼板や、溶融亜鉛めっき鋼板、溶融亜鉛−鉄合金めっき鋼板、溶融亜鉛−アルミニウム−マグネシウム合金めっき鋼板、溶融アルミニウム−シリコン合金めっき鋼板、溶融鉛−錫合金めっき鋼板等の溶融めっき鋼板や、電気亜鉛めっき鋼板、電気亜鉛−ニッケルめっき鋼板、電気亜鉛−鉄合金めっき鋼板、電気亜鉛−クロム合金めっき鋼板等の電気めっき鋼板等の表面処理鋼板、冷延鋼板、熱延鋼板、ステンレス鋼板等を使用することができる。また、表層鋼板5は、塗装鋼板、プリント鋼板、フィルムラミネート鋼板等の表面処理鋼板であってもよい。
【0079】
さらに、異なる鋼種の鋼板間に、コア層10を積層することも可能である。具体的には、曲げ加工、絞り加工等が必要な用途では、強度が異なる鋼板間にコア層10を積層し、曲率rが小さく加工の厳しい面に軟鋼を使用し、他方の面には強度確保のため、高張力鋼を使用することなども可能である。
【0080】
また、本実施形態に係る表層鋼板5の表面に、密着力や耐食性向上のため、公知の表面処理を施すことも可能である。このような表面処理としては、例えば、クロメート処理(反応型、塗布型、電解)、リン酸塩処理、有機樹脂処理等が挙げられるが、これらには限定されない。
【0081】
(積層鋼板の厚み)
本実施形態に係る積層鋼板1の厚みは特に制限されず、目的とする特性に応じて適宜変更することが可能である。例えば、積層鋼板1の特性として剛性や耐衝撃性を優先させたい場合には、選択する金網11の構成(鋼線材の線径、目開き、降伏強度等)に応じて、それぞれ、上記(5)式や(3)式等によって、積層鋼板1の厚みを決定することができる。
【0082】
本実施形態に係る積層鋼板1の総厚み、構成厚み比(表層鋼板5とコア層10との厚み比)は特に限定されず、表層鋼板5の厚み及び剛性Dと軽量性とのバランスによって決定できる。具体的には、以下の(6)〜(8)式により、所望の剛性と板密度(鋼板比重ρ)から、必要なコア層10と表層鋼板5の厚みを決定できる。
D=1/3[(E1-E2)(y1-ye)3+(E2-E3)(y2-ye)3+E1ye3+E3(h-ye)3] ・・・(6)
ye=[(e1-E2)y12+(E2-E3)y22+E3h2]/[2((E1-E2)y1+(E2-E3)y2+E3h)] ・・・(7)
ρ=[7.8(h-y2+y1)+ρコア層 (y2-y1) ]/h ・・・(8)
(上記(6)〜(8)式において、Eは下面側の表層鋼板5Aのヤング率であり、Eはコア層10のヤング率であり、Eは上面側の表層鋼板5Bのヤング率であり、yは表層鋼板5の厚みであり、yはy+コア層10の厚みであり、yは中立軸位置であり、hはy+上面側の表層鋼板5Aの厚み、ρコア層:コア層密度である。)
【0083】
また、好ましい表層鋼板5の厚み及びコア層10の厚みは、それぞれ、0.2mm〜2.0mm及び0.1mm〜3.0mmである。表層鋼板5の厚みが0.2mm未満では曲げ加工時に座屈しやすい場合がある。一方、表層鋼板5の厚みが2.0mmを超えると軽量化効果が不十分になりやすい。軽量化の観点からは、表層鋼板5の厚みは1.0mm以下が好ましい。一方、コア層10の厚みが0.1mm未満では、積層鋼板1のトータルの厚みが稼げないため、軽量性を維持して剛性を大きくすることは困難となる場合がある。また、コア層10の厚みが3.0mmを超えると、積層鋼板1自体の厚みが大きくなるため、表層鋼板5に加わる曲げ応力が大きくなって、鋼板が座屈しやすくなる。
【0084】
さらに、本実施形態に係る積層鋼板1では、厚みの異なる表層鋼板5間にコア層10を積層しても良い。従って、厚い表層鋼板面を曲率が大きい部位にして加工し、加工性を改善することも可能である。また、表層鋼板5と金網11との接合に接着剤を使用する場合、接着層の厚みは、100℃〜160℃の全温度範囲で貯蔵弾性率G’が0.05MPa以上100GPa以下であれば、厚みを小さくしても接着層に十分な耐熱耐久性を付与できるので、特に制限はない。ただし、経済性の面からは、接着層の厚さは、30μm以下が好ましい。また、接着層の効果を十分発揮するためには、接着層の厚さは1μm以上であるのがより好ましい。
【0085】
[積層鋼板の製造方法]
以上、本発明の一実施形態に係る積層鋼板1の構成について詳細に説明したが、続いて、上述したような構成を有する積層鋼板1の製造方法について詳細に説明する。
【0086】
本実施形態に係る積層鋼板1は、公知の鋼板の積層方法を適用して製造することが可能である。具体的には、以下の工程等で製造することができる。
(1) 炭素濃度が0.24質量%以下の鋼線材を網状に形成して金網11を製造する。
(2) コア層10(1枚又は2枚以上の金網11)の両面に必要に応じて接合材(接着剤、ブレーズ剤等)を塗布し、表層鋼板5A、金網11(1枚又は2枚以上を積層)、表層鋼板5Bの順に積層し、常温もしくは加熱しながら加圧する。
【0087】
なお、(2)の工程において、接合材をせずに、コア層10と表層鋼板5A,5Bとを溶接により接合してもよい。また、接合材や接合方法の具体例については上述したとおりであるので、ここでは詳細な説明を省略する。
【0088】
[まとめ]
以上説明したような本実施形態に係る積層鋼板1は、軽量で、剛性、耐衝撃性が高く、かつ、加工性にも優れ、曲げ加工、絞り加工等の強加工を行っても加工後の耐熱形状安定性に優れるものとなる。従って、本実施形態に係る積層鋼板1は、自動車用、家電用、家具用、OA機器などの部材用に利用でき、特に、絞り加工、曲げ加工、プロファイリング加工等の強加工によって成形した後に塗装するシート部品用の鋼板として好適に使用することができる。
【実施例】
【0089】
以下、実施例を用いて本発明をさらに具体的に説明する。
【0090】
(使用した鋼板、鋼線材、金網と鋼板との接合方法)
本実施例及び比較例では、表1に示す表層鋼板及び表2に示す鋼線材を使用して積層鋼板を製造した。また、鋼線材を織り込んだ金網と表層鋼板との接合剤については、表3に示す接着剤を両面にコートした20μm厚の無延伸PET系アロイフィルム(PET(RN163:東洋紡績製)/アイオノマー(ハイミラン1706:三井デシュポン製)/エチレン系ゴム(EBM2401P:JSR製)の質量比は80質量部/10質量部/10質量部)を接着剤1、表3に示す接着剤単体を接着剤2、両面に表3に示す接着剤をコートした50μm厚の無延伸PET系アロイフィルムを接着剤3、表3の接着剤に銀粉を30質量部添加した接着剤を導電性接着剤、はんだシート(低温ろう剤)をブレーズ剤1、Ni−Cr系のロウ剤(商品名:Coclburn 2003)をブレーズ剤2として、それぞれ使用した。なお、表2の「織り」における「平織り+45°」とは、平織りの金網に、縦線及び横線の方向に対して45°の方向の斜め線を織り込んだものを示している。
【0091】
【表1】

【0092】
【表2】

【0093】
【表3】

【0094】
(積層鋼板の製造)
本実施例及び比較例における積層鋼板の具体的な製造方法としては、300mm×300mmの表1の表層鋼板上に接合材、表2の金網、接合材、表1の表層鋼板の順に積層し、真空下で所定の温度(接着剤1及び導電性接着剤を接合材として使用する場合は220℃、ブレーズ剤1を接合材として使用する場合は300℃、ブレーズ剤2を接合材として使用する場合は1100℃)まで加温した。次いで、積層した表層鋼板、接合材及び金網を圧着力10〜40kgf/cm(0.98〜2.92MPa)で2分間加熱圧着し、その後室温まで冷却して、大気開放し、表4に示した各積層鋼板を得た。なお、コア層の金網を2枚以上積層した実施例では、鋼板と金網との間に使用した接合材と同一の接合材を金網同士の間にも積層した後に加熱圧着し、金網同士の間を接合した。また、実施例18以外は、金網の格子(縦線及び横線)が全て平行となるように金網を積層した。さらに、各実施例において、鋼板/金網間の接合材の厚みは、最大でも50μm以下になるように加圧力やシムの厚みを調整した。
【0095】
また、各比較例の積層鋼板の製造方法は以下の通りである。
【0096】
(比較例1)
上記特許文献25に準じて、0.2mmDの鋼板(引張強度:270MPa)にディンプル加工を施して2×2mm×0.5mHの正方型凹凸を2mm間隔で付与した。凸部の中央には0.5×0.5mm×0.2mmの窪みを設けた。凸部にブレーズ剤2を塗布し、凸部同士が接触するように2枚のディンプル加工板を積層した。当該積層加工鋼板の両面に、ブレーズ剤2を塗布した鋼板を積層し、実施例21と同一の条件で加熱プレスし、積層鋼板を得た。なお、270MPa以上のハイテン鋼での上記サイズの凹凸を付与するディンプル加工は不可能であった。
【0097】
(比較例2)
1.1mmの100Kハイテン鋼をパンチング加工し、2.0mmΦの円形孔を付与した(開孔率66%)。そして、パンチング加工後の加工板をコア層とした積層鋼板を実施例1と同様にして製造した。
【0098】
(比較例3−6)
実施例1と同様にして表4の積層鋼板を得た。
【0099】
(比較例7)
ガラス短繊維入りのナイロンシート(1.7mm厚、ガラス繊維30質量%、引張強度:34MPa)をコア層とした積層鋼板を実施例1と同様にして製造した。
【0100】
(比較例8)
コア層として厚さ1mmのPPシート、接着層として厚さ0.05mmの酸変性PPを使用して、実施例1と同様にして積層鋼板を製造した。
【0101】
【表4】

【0102】
(積層鋼板の物性、加工・溶接性試験)
上述したようにして得られた各実施例の積層鋼板からASTM D−790に準じて試験片(25×150mm)を切り出し、支点間距離を50mm、速度を5mm/minに設定して3点曲げ試験を実施した。このとき、実施例1−22では、試験片の長手方向及び幅方向が最下層金網の正方格子の方向と一致するように試験片を切り出した。また、実施例23、24では、試験片の長手方向及び幅方向が最下層金網の正方格子の対角線の方向と一致するように試験片を切り出した。実測ひずみ−荷重曲線の傾きδ(最大荷重の1/3の荷重までの荷重を使用して算出)を(i)式に代入して、曲げ剛性Dを算出した。また、積層鋼板の塑性域の曲げモーメントMを(ii)式で算出した。なお、鋼板の耐衝撃性が塑性域の曲げモーメントと相関があることが知られていることから、(2)式で算出した塑性域の曲げモーメントを耐衝撃性の指標とした。
【0103】
δ=P/48D ・・・(i)
M=Pl/4b ・・・(ii)
【0104】
ここで、上記(i)式及び(ii)式において、P:実測荷重、P:実測曲げ最大荷重、δ:ひずみ量、l:支点間距離、b:試験片幅である。
【0105】
さらに、各実施例の積層鋼板から125×30mmの試験片を切り出し、エリクセン社製20T総合試験機の角型深絞り実験装置(r=100mm、BHF(ブランクホールドフォース):2ton)にて、U型ハット曲げ試験片を作成した。
【0106】
また、実施例1、4、19−22の積層鋼板から試験片(10×25mm)を切り出し、加圧力3.5kN、電流6.2kA、通電時間10サイクルで同一積層鋼板間をスポット溶接した。
【0107】
(評価)
<1.軽量性の評価>
各々の積層鋼板の板密度ρを(iii)式により算出した。
【0108】
ρ=vρ+vρ ・・・(iii)
【0109】
ここで、上記(iii)式において、v、vは、それぞれ、金網、表層鋼板の体積分率であり、ρ、ρは、それぞれ、金網、表層鋼板の板密度である。なお、接着層の厚みは、積層鋼板全体の厚みに比べて薄いため、その影響は無視できるものとして扱った。
【0110】
さらに、(i)式で求めた剛性Dから、(iv)式で積層鋼板と同一の曲げ剛性を発現するのに必要な表層鋼板単独での板厚みtを算出し、この単位面積当たりの質量Wを(v)式で求めた。積層鋼板の単位面積当たりの質量Wと(v)式の鋼板の単位面積当たりの質量Wとの比(W/W)で、曲げ剛性を一定とした場合の軽量性を評価した。
【0111】
=12D/E ・・・(iv)
=ρ ・・・(v)
【0112】
ここで、上記(iv)式及び(v)式において、Eは表層鋼板のヤング率(本実施例では180GPa)であり、Wは積層鋼板と同一の剛性を有する鋼板の単位面積当たりの質量である。
【0113】
<2.曲げ剛性、耐衝撃性の評価>
(v)式で算出した積層鋼板の単位面積当たりの質量Wと同一質量を有する鋼板単独の剛性Dを(vi)式により算出した。また、(vi)式で求めた剛性Dと積層鋼板の剛性Dとの比(D/D)を算出し、積層鋼板の剛性を評価した(D/D>1であれば、鋼板単独の場合と比較して合理的に剛性が増大していると評価される)。
【0114】
=E/12(ρ/ρ ・・・(vi)
【0115】
曲げ剛性の評価と同様に、同一単位面積当たりの質量の鋼板単独の曲げモーメントMを(vii)式で算出し、このMと(ii)式で求めたMとの比(M/M)で、耐衝撃性の大きさを評価した(M/M>1であれば、鋼板単独の場合と比較して合理的に耐衝撃性が増大していると評価される)。
【0116】
=T/4(ρ/ρs) ・・・(vii)
【0117】
ここで、上記(vii)式において、P:曲げ最大荷重、T:表層鋼板の引張強度、l:支点間距離、b:試験片幅である。なお、コア層の上下両面の表層鋼板でTが異なる場合には、上下両面の表層鋼板のT平均値を表層鋼板の引張強度として使用した。
【0118】
<3.加工健全性の評価>
ハット曲げ試験片の断面を目視ならびに実態顕微鏡で観察して表層鋼板の剥離、表層鋼板の破壊や座屈およびコア層への陥入、コア層の破損、座屈の有無を検査し、すべて異常がない場合には加工健全性に優れると評価し、表5(ハット曲げ加工の欄)に○で示した。また、当該加工片を180℃に加熱したオーブンに装入し、30分保持後、オーブンから取り出し、室温まで冷却した。加工後の加熱形状健全性(表層鋼板の剥離、コア層の破壊、流れなど)を評価し、すべて異常がない場合には、加熱形状健全性に優れると評価し、表5(180℃耐熱の欄)に○で示した。
【0119】
<4.スポット溶接性の評価>
スポット溶接部の外観評価(割れ、膨れなどの外観不良)および人力での剥離試験を実施し、外観不良及び剥離の有無により溶接可否を評価し、外観不良及び剥離が無い場合には、表5(スポット溶接性の欄)に○で示した。
【0120】
(評価結果)
以上の評価結果を下記表5に示す。
【0121】
【表5】

【0122】
実施例1−23の積層鋼板は、W/Wp<1.0であり、同一剛性の鋼板に比較して板密度が小さく、軽量性に優れることがわかった。さらに、実施例1−23の積層鋼板は、D/Dp>1.0、M/Mp>1.0であり、同一板密度のものと比較して曲げ剛性及び塑性域の曲げモーメントが大きく、高剛性かつ耐衝撃特性に優れることがわかった。
【0123】
さらに、実施例1−24ともに、ハット曲げ加工、加工後の加熱でも表層鋼板の剥離、表層鋼板の破壊や座屈およびコア層への陥入、コア層の破損、座屈はなく、加工および加工後加熱後の健全性が保持できることがわかった。
【0124】
また、実施例1、4、19−22とも、外観不良は無く、かつ、人力では剥離できないレベルの溶接性を発現できた。ただし、実施例1、4では、表層鋼板の溶接部近傍に若干の膨れが観察されるサンプルもあった。
【0125】
また、実施例5に比較して実施例18のD,Mがやや小さいのは、以下のように推測される。実施例5、18では、表層鋼板の幅方向に平行に配列した鋼線材を含有する金網は各々10層、1層である。幅方向に平行に配列した鋼線材は曲げ変形荷重では変形しないため、表層鋼板のポアッソン変形を拘束する。その結果、当該鋼線材をより多く含有する実施例5の積層鋼板の方が表層鋼板の拘束力が強く、ヤング率及び降伏強度がより増加し、D,Mが増加したと考えられる。
【0126】
一方、実施例5に比較して実施例23のD,Mが小さいのは、実施例23では金網の格子の対角線が曲げ試験片の長手方向及び幅方向と一致しているため、曲げ荷重を加えると金網がせん断変形して、上下両面の表層鋼板間にずれが生じたためと考えられる。他方、実施例24では実施例18と変化がないが、これは、金網の積層方向を変えて積層したため、等方的になったためと推察される。
【0127】
実施例21よりも実施例20のMが大きいのは、実施例21ではブレーズ温度が高く、コア層の鋼線材の引張強度が低下したためと推察される。
【0128】
また、実施例7が、実施例8と比較して表層鋼板/金網間の密着力が若干弱く、加工時に一部で剥離しているのは、金網の平坦性が実施例8の方が優れ、鋼板と金網との接触面積が大きいためと考えられる。同様に、実施例19よりも実施例4の方が表層鋼板/金網間の密着力に優れるのも、加熱圧着時に軟化したPETフィルムに鋼線材が押し込まれ、接着面積を増大したためと推察される。
【0129】
さらに、実施例1,4の一部のサンプルで、表層鋼板の溶接部近傍に若干の膨れがあったのは、当該積層鋼板では鋼板/金網間が有機層になっているため、実施例19−22に比較して抵抗値が大きく、より多くのジュール発熱により接着層の一部がガス化したためと考えられる。
【0130】
また、実施例25の積層鋼板は、実施例5の積層鋼板と比較してD,Mはほぼ同等であるのに、Wが約5%小さいのは、D,Mの寄与が小さいコア層の中心部に、目開きの大きな金網4で金網5を置換しているので、効率的にD,Mを増加し、かつ軽量化できた結果と推定される。
【0131】
また、比較例1の積層鋼板のトータル厚みは、実施例1,4,6−8、20−22と同一であるが、板密度は大きくて重く、かつ、曲げ剛性、塑性域の曲げモーメントは小さかったことから、本発明の積層鋼板より軽量性、剛性、耐衝撃性の面で劣ることがわかる。これは、本発明では、鋼線材をコア層に使用しているので、高強度な鋼材でも容易に微細な空孔を付与して軽量化することができるため、ディンプル加工板材をコア層とするよりも容易に軽量性、剛性、耐衝撃性を達成できるからであると考えられる。
【0132】
また、比較例2に関しては、曲げ試験によりD,Mを評価した。その結果、比較例2の積層鋼板は、実施例1とWは同一であったが、D,Mは小さかった。これは、比較例2では、曲げ変形時にポアッソン変形に従って変形する加工板材をコア層にしているのに対し、本発明を適用した実施例1では金網をコア層に使用しているために、コア層の変形がポアッソン変形から乖離することから、表層鋼板の拘束力が働き、ヤング率及び降伏強度がより増加した効果によるものであると推定される。
【0133】
比較例3の積層鋼板のD,Mは、実施例1と比較して小さかった。これは、鋼線材の多炭素濃度が0.24質量%未満であり、コア層の引張強度が不十分なためと推定される。
【0134】
さらに、比較例4−5の積層鋼板では、ハット曲げ加工によって、表層鋼板のコア層への陥入(コア層の空孔へ表層鋼板の食込み)、および表層鋼板の端部からの亀裂が発生し、加工健全性が保持できなかった。これは、金網の目開きが表層鋼板の厚みの10倍超であり、表層鋼板のうちの空孔の上に位置する部分に応力集中が発生したためと推定される。
【0135】
また、比較例6では、圧着力を40kgf/cmまで増大させたが、金網/鋼板間の接着層の厚みは60μmであった。この比較例6の積層鋼板をスポット溶接すると、導通せず、溶接が不可能であった。この比較例6と実施例1との差異は、接着層が50μm以上であり、有機物である接着層が厚すぎるために導通が不可能になったものと推定される。
【0136】
また、比較例7の積層鋼板は、(viii)式により、実施例1とほぼ同一の塑性域での曲げモーメントを発現するように、積層鋼板全体の厚みを設計したが、実測では実施例1よりも小さくなった。この比較例7の曲げ試験片を解析した結果、比較例7の積層鋼板では、コア層の70%が樹脂であり、かつ、補強繊維が不連続であるため、せん断変形抵抗が実施例1よりも小さかった。その結果、コア層のせん断変形により、上下両面の表層鋼板は最大で1.5mm(実施例1の10倍)のずれが発生し、このずれにより塑性域での曲げモーメントが低下したものと推定される。
実施例1=1/4(T((t+t−t))−T(t))
・・(viii)
【0137】
また、比較例8の積層鋼板については、ハット曲げ加工品の耐熱形状安定性を評価した。その結果、鋼板端部から樹脂の流出があり、形状が不良となった。
【0138】
(実施例26、比較例9)
なお、表4,5には示していないが、実施例1の積層鋼板(実施例26)、表1のGI鋼板(比較例9)の表面に、それぞれ長手方向、幅方向に歪ゲージを装着し、JIS 2201に準拠して引張り試験を実施した(試験片は長手方向及び幅方向が金網を構成する鋼線材の方向と一致するように作成した)。
【0139】
その結果、実施例26の積層鋼板の幅方向の歪は、比較例9のGI鋼板に比較して小さかった。これは、引張変形時に図4で示す横線113の鋼線材が表層鋼板を拘束した結果であると推定される。
【0140】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【符号の説明】
【0141】
1 積層鋼板
5(5A,5B) (表層)鋼板
10 コア層
11 金網
111 縦線
113 横線
115 空孔(網目)
117 斜め方向の織り(線)
表層鋼板の厚み
コア層の厚み
,w 目開き
p (メッシュ)ピッチ
d 線径



【特許請求の範囲】
【請求項1】
鋼線材を用いて網状に形成した金網からなるコア層の両面に鋼板が積層されており、
前記鋼線材の炭素濃度が0.24質量%以上であり、かつ、前記金網の目開きが前記鋼板の厚みの10倍以下であることを特徴とする、積層鋼板。
【請求項2】
前記鋼線材の炭素濃度が、0.60質量%以上であることを特徴とする、請求項1に記載の積層鋼板。
【請求項3】
前記金網の目開きが、前記鋼板の厚みの0.1倍以上であることを特徴とする、請求項1又は2に記載の積層鋼板。
【請求項4】
前記金網の目開きが、前記鋼板の厚みの0.5倍以上5倍以下であることを特徴とする、請求項3に記載の積層鋼板。
【請求項5】
前記金網と前記鋼板とは、融点が400℃以下ブレーズ剤又は導電性接着剤を用いて接合されていることを特徴とする、請求項1〜4のいずれか1項に記載の積層鋼板。
【請求項6】
前記金網と前記鋼板とが接着剤を用いて接合され、
前記接着剤と前記鋼板とのせん断密着強度が30N/cm以上であり、
前記接着剤の100℃〜160℃での貯蔵弾性率G’が、0.05MPa以上100MPa以下であることを特徴とする、請求項1〜5のいずれかに記載の積層鋼板。
【請求項7】
前記金網は、縦線及び横線に対して斜め方向に織りが加えられていることを特徴とする、請求項1〜6のいずれか1項に記載の積層鋼板。
【請求項8】
前記金網は、正方目の金網であり、
前記斜め方向は、前記縦線及び前記横線の方向に対して45°の方向であることを特徴とする、請求項7に記載の積層鋼板。
【請求項9】
前記コア層が、n(nは2以上の整数)層の積層された前記金網からなり、
各層の前記金網を形成する前記鋼線材の方向を、隣接する層の前記金網間で360/3n°以上360/n°以下の角度ずつ一定方向にずらして、各層の前記金網が積層されることを特徴とする、請求項1〜8のいずれか1項に記載の積層鋼板。
【請求項10】
前記コア層が、積層された3枚以上の前記金網からなり、
3枚以上の前記金網から任意に選択された隣接する2枚の前記金網のうち、前記コア層の厚み方向の中央位置に対して、より遠い側に積層された前記金網の目開きが、より近い側に積層された前記金網の目開きよりも小さいことを特徴とする、請求項1〜9のいずれか1項に記載の積層鋼板。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−31482(P2011−31482A)
【公開日】平成23年2月17日(2011.2.17)
【国際特許分類】
【出願番号】特願2009−179850(P2009−179850)
【出願日】平成21年7月31日(2009.7.31)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】