説明

空調システム、空調方法、及び空調システムの流体移送装置

【課題】空調システムの管路内の摩擦抵抗を低減して空調システムのエネルギー効率を向上する。
【解決手段】熱交換部と、管路を介して前記熱交換部と接続され、該熱交換部に対して熱媒としての流体を圧送する圧送部と、前記圧送部から圧送され前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御部と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空調システム、空調方法、及び空調システムの流体移送装置に関する。
【背景技術】
【0002】
ポンプ、ファン、配管、熱交換器等を有する空調システムがある。このような従来の空調システムでは、一定流量の熱媒を流す定流量ポンプの他、流量を可変できる流量可変ポンプ(例えばインバータポンプ)が採用されている。
【0003】
また、流量を変動可能な技術として、例えば特許文献1に記載の技術がある。特許文献1には、管路と、管路内を流れる流体の速度を変化させて流体に脈動を発生させる手段とを有する流体移送装置が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第09/044764号パンフレット
【特許文献2】特開平11−315999号公報
【特許文献3】特開昭63−83500号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
乱流摩擦抵抗を低減する技術としては、本発明者が発明した、特許文献1に記載の技術がある。特許文献1に記載の技術では、管路内を流れる流体の速度を変化させて流体に脈動を発生させることで、管路内の摩擦抵抗を低減することができる。その結果、少ないエネルギーで流体を移送することができる。
【0006】
一方で、ポンプ、ファン、配管、熱交換器等を有する空調システムの省エネルギー化が求められている。配管等を流れる熱媒としての流体と配管等の内側表面との乱流摩擦抵抗を低減できれば空調システムの省エネルギー化を図ることができる。乱流摩擦抵抗を低減する技術としては、流体に界面活性剤などの薬品を添加することが考えられる。しかし、係る技術では、薬品の配管等の内側表面への影響が懸念され、また、廃液の管理の問題もある。
【0007】
本発明では、上記した背景に鑑み、空調システムの管路内の摩擦抵抗を低減して空調システムのエネルギー効率を向上する技術を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明では、上述した課題を解決するため、空調システムの管路内を流れる流体の速度を変化させて流体に脈動を発生させ、空調システムの管路内の摩擦抵抗を低減することとした。
【0009】
より詳細には、本発明は、熱交換部と、管路を介して前記熱交換部と接続され、該熱交換部に対して熱媒としての流体を圧送する圧送部と、前記圧送部から圧送され前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御部と、を備える空調システムである。
【0010】
本発明に係る空調システムでは、空調システムの管路内を流れる流体の速度を変化させて流体に脈動を発生させることで、管路内の乱流が再層流化され、空調システムの管路内
の摩擦抵抗が低減する。その結果、空調システムのエネルギー効率が向上する。
【0011】
ここで、本発明に係る空調システムは前記管路内を流れる流体の温度を検出する温度検出部と、前記温度検出部で検出された温度に基づいて、前記脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御部と、を更に備える構成としてもよい。空調システムは、管路が分岐するなど複雑な系統を有していたり、系統毎に管路の径が異なったり、更に弁や熱交換器を有するなど管路の構成が複雑である。そして、このような管路の構成が複雑であることが、空調システムにおいて乱流を発生させる要因となっている。本発明では、流体の温度に基づいて脈動制御部を制御し、流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させることで、管路内の乱流を再層流化し、空調システムの管路内の摩擦抵抗を低減することができる。なお、流体の温度に加えて流体の流量や流速を検出し、流体の流量や流速に基づいて脈動制御部を制御し、流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させるようにしてもよい。換言すると、本発明に係る空調システムは、前記管路内を流れる流体の流量と流速とのうち少なくとも何れか一方を検出する流量・流速検出部と、前記流量・流速検出部で検出された流量と流速とのうち少なくとも何れか一方に基づいて、前記脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御部とを更に備える構成とすることもできる。
【0012】
なお、空調システムが複数の系統を有している場合、複数の系統について、摩擦抵抗が大きい系統順に予め順位付けをし、順位が高い系統を優先して脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させるようにしてもよい。また、空調システムが複数の管路構成を有している場合、複数の管路構成について、摩擦抵抗が大きい管路構成順に予め順位付けをし、順位が高い管路構成を優先して脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させるようにしてもよい。これにより、より効果的に空調システムの管路内の摩擦抵抗を低減することができる。
【0013】
また、本発明に係る空調システムにおいて、前記制御部は、前記温度検出部で検出された温度が上がると、前記流体の速度を変化させ該流体の脈動の周期を長くするようにしてもよい。温度が上がったか否かは、基準温度や基準時に基づいて相対的に判断することができる。脈動の周期を長くすることで、管路内の乱流を再層流化することができ、摩擦抵抗を低減することができる。脈動の周期は、空調システムの構成、例えば管路の長さや管路の径を考慮し、実験などによって予め設定することができる。温度が下がった場合には、制御部は、脈動の周期を短くすることができる。なお、前記制御部は、前記流量・流速検出部で検出された流量と流速の少なくとも何れか一方が上がると、前記流体の速度を変化させ該流体の脈動の周期を短くするようにしてもよい。流量や流速が上がったか否かは、基準流速(流量)や基準時に基づいて相対的に判断することができる。流量や流速が上がった場合には、脈動の周期を短くすることで、管路内の乱流を再層流化することができ、摩擦抵抗を低減することができる。流量や流速が下がった場合には、制御部は、脈動の周期を長くすることができる。
【0014】
また、本発明に係る空調システムは、前記熱媒としての流体を蓄え、一部が開放されて外気と接触する蓄熱部を更に備える構成としてもよい。本発明は、このような蓄熱部を備える空調システムにも好適に用いることができる。なお、本発明は、閉じた管路によって構成されるクローズ系の空調システムに用いることもできる。
【0015】
また、本発明に係る空調システムは、前記流体の速度を減速する際、前記流体からエネルギーを回収するエネルギー回収部を更に備える構成としてもよい。また、本発明に係る空調システムは、前記エネルギー回収部で回収されたエネルギーを蓄える蓄電部を更に備える構成としてもよい。エネルギー回収部を備えることで、余剰エネルギーを回収するこ
とができる。また、蓄電部を備えることで、回収したエネルギーを蓄えることが可能となる。
【0016】
また、本発明に係る空調システムは、前記管路内を流れる流体の圧力を検出する圧力検出部を更に備える構成としてもよい。前記圧力検出部は、前記管路の下部に設けられていることが好ましい。圧力検出部を管路の下部に設けることで、より正確に圧力を検出することができる。更に、前記圧力検出部は、前記管路の下部に設けられ、かつ前記管路の側方から前記流体を取り込み、前記管路内を流れる流体の圧力を検出するようにしてもよい。流体を側方から取り込むことで、空気の混入を抑制することができる。なお、下部に設けられた圧力検出部の上部に空気排出部を設けることで、仮に圧力検出部内に空気が混入しても、混入した空気を排出することができる。その結果、より正確に流体の圧力を検出することができる。
【0017】
また、本発明に係る空調システムにおいて、前記制御部は、前記圧力検出部で検出した圧力に基づいて、脈動状態を判別するようにしてもよい。脈動状態を判別することで、より正確に脈動の周期、振幅、波形を制御することが可能となり、空調システムのエネルギー効率が向上する。
【0018】
ここで、本発明は、空調方法として特定することもできる。具体的には、本発明は、熱交換部によって熱交換する熱交換工程と、前記熱交換工程に用いる熱媒としての流体を管路を介して圧送する圧送工程と、前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御工程と、を備える空調方法である。本発明に係る空調方法によれば、空調システムの管路内の摩擦抵抗を低減して空調システムのエネルギー効率を向上することができる。
【0019】
また、本発明に係る空調方法は、前記管路内を流れる流体の温度を検出する温度検出工程と、前記温度検出工程で検出された温度に基づいて、前記流体に脈動を発生させる脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御工程と、を更に備えていてもよい。
また、本発明に係る空調方法は、前記管路内を流れる流体の流量と流速とのうち少なくとも何れか一方を検出する流量・流速検出工程と、前記流量・流速検出工程で検出された流量と流速とのうち少なくとも何れか一方に基づいて、前記流体に脈動を発生させる脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御工程と、を更に備えてもよい。
また、本発明に係る空調方法において、前記制御工程では、前記温度検出工程で検出された温度が上がると、前記流体の速度を変化させ該流体の脈動の周期を長くするようにしてもよい。
また、本発明に係る空調方法において、前記制御工程では、前記流量・流速検出工程で検出された流量と流速とのうち少なくとも何れか一方が上がると、前記流体の速度を変化させ該流体の脈動の周期を短くするようにしてもよい。
また、本発明に係る空調方法において、一部が開放されて外気と接触する蓄熱部によって前記熱媒としての流体を蓄える蓄熱工程を更に備えていてもよい。
また、本発明に係る空調方法は、前記流体の速度を減速する際、前記流体からエネルギーを回収するエネルギー回収工程を更に備えていてもよい。
また、本発明に係る空調方法は、前記エネルギー回収工程で回収されたエネルギーを蓄える蓄電工程を更に備えていてもよい。
また、本発明に係る空調方法は、前記管路内を流れる流体の圧力を検出する圧力検出工程を更に備えていてもよい。
また、本発明に係る空調方法において、前記圧力検出工程では、前記管路の下部に設けられた圧力検出部で圧力を検出するようにしてもよい。
また、本発明に係る空調方法において、前記圧力検出工程では、前記管路の側方から前記流体を取り込み、前記管路の下部に設けられた圧力検出部によって前記管路内を流れる流体の圧力を検出するようにしてもよい。
また、本発明に係る空調方法は、前記圧力検出工程で検出した圧力に基づいて、脈動状態を判別する脈動判別工程を更に備えていてもよい。
【0020】
また、本発明は、上述した空調システムにおける流体移送に関する技術とすることもできる。例えば、本発明は、空調システムの流体移送装置であり、管路を介して熱交換部と接続され、該熱交換部に対して熱媒としての流体を圧送する圧送部から圧送され前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御部を備える。
【発明の効果】
【0021】
本発明によれば、空調システムの管路内の摩擦抵抗を低減して空調システムのエネルギー効率を向上することができる。
【図面の簡単な説明】
【0022】
【図1】第一実施形態に係る空調システムの構成を示す。
【図2】空調システムの動作フローを示す。
【図3】流体の温度、流量に関するデータを示す。
【図4】第二実施形態に係る空調システムの構成を示す。
【図5】圧力計の設置状況を示す。
【図6】従来の圧力計の設置状況の一例を示す。
【発明を実施するための形態】
【0023】
次に、本発明に係る空調システム及び空調方法について図面に基づいて説明する。なお、以下に説明する実施形態は例示であり、本発明は、以下に説明する実施形態に限定されない。
【0024】
<第一実施形態>
[空調システムの構成]
図1は、第一実施形態に係る空調システムの構成を示す。図1に示す空調システム100は、第一熱交換器1a、第二熱交換器1b、配管2、ポンプ3、インバータ(INV)4、制御装置5、蓄電池6、圧力計7(圧力計71、72。特に区別する必要が無い場合には、総括して圧力計7とする。)、温度計8(温度計81、82。特に区別する必要が無い場合には、総括して温度計8とする。)、流量計9(流量計91、92。特に区別する必要が無い場合には、総括して流量計9とする。)、弁30を備える。第一実施形態に係る空調システム100は、閉じた配管によって構成されるいわゆるクローズ系の空調システムである。
【0025】
第一熱交換器1aは、熱媒としての流体と空気とを熱交換させ、室内を空調する。第一熱交換器1は、水などの熱媒としての流体が流れる配管2にフィンが取り付けられた熱交換用のコイルと、室内の空気をコイルに送る電動ファンとを備える、エアハンドリングユニットやファンコイルユニットによって構成される。第二熱交換器1bは、熱媒と屋外の外気と熱交換する。第二熱交換器1bは、熱交換用のコイルや電動ファンを備える。なお、第一熱交換器1a、第二熱交換器1bは、本発明の熱交換部に相当する。
【0026】
配管2(本発明の管路に相当する。)は、第一熱交換器1a、第二熱交換器1b、ポンプ3等と接続されて循環系を形成し、内部には熱媒としての流体が流れる。
【0027】
ポンプ3(本発明の圧送部に相当する。)は、モータの駆動力によって、配管2を流れ
る流体を圧送する。例えば、ポンプ3は、ポンプ内に設けられた羽状の回転子を回転させて配管2を流れる流体に駆動圧力を加える。
【0028】
インバータ4(本発明の脈動制御部に相当する。)は、ポンプ3のモータの回転数を制御する。蓄電池6は、モータを発電機として利用することで得られる電力を蓄える。
【0029】
圧力計7は、設置箇所において、配管2を流れる流体の圧力を検出する。温度計8は、設置箇所において、配管2を流れる流体の温度を検出する。流量計9は、設置箇所において、配管2を流れる流体の流量を検出する。第一実施形態では、圧力計7、温度計8、流量計9が、各々ポンプ3の下流側近傍と、熱交換器1の下流側近傍に配置されている。圧力計7、温度計8、流量計9は、各々が制御装置5と電気的に接続されており(図示せず)、検出された圧力は制御装置5のメモリや外部記憶装置に記憶される。圧力計7、温度計8、及び流量計9と制御装置5との接続は、無線、有線のいずれでもよい。なお、圧力計7、温度計8、流量計9は、上記に限らず、空調システム100の任意の箇所に適宜設置することができる。また、流量計9に代えて流速計を用い、流速計で検知された流速に基づいて流量を取得するようにしてもよい。
【0030】
弁30は、開度を調整することで流体の流量を調整する。図1では、第一熱交換器1aと第二熱交換器1bとの間にのみ設けられているが、弁30は、空調システム100の任意の箇所に適宜設置することができる。
【0031】
制御装置5(本発明の制御部に相当する。)は、CPU(中央演算処理装置)やメモリを備える汎用のコンピュータによって構成され、メモリに格納された制御プログラムに従って、空調システム100を構成する各機器を制御する。例えば、制御装置5は、配管2を流れる流体が脈動するよう、温度計8、流量計9の各々で検出された温度、流量に基づいてインバータ4を制御する。また、制御装置5は、圧力計7で検出された圧力に基づいて脈動状態を判断し、例えば、判断結果から異常があると判断した場合には、その旨を報知する。
【0032】
[空調システムの動作]
次に、空調システム100の動作について説明する。図2は、空調システムの動作フローを示す。ステップS01では、空調システム100が起動されると、制御装置5は、配管2を流れる流体を脈動させる。すなわち、制御装置5は、配管2を流れる流体の加速と減速を繰り返す。具体的には、配管2を流れる流体を加速させる場合、制御装置5は、インバータ4を制御してポンプ3のモータを回転させる。その結果、配管2を流れる流体に圧力が加えられ、流体が加速する。また、配管2を流れる流体を減速させる場合、制御装置5は、インバータ4を制御してポンプ3のモータを停止させる。ポンプ3内に設けられた回転子を流体の抵抗として作用させて流体を減速させることでポンプ3のモータは発電機として利用することができる。これにより、流体の運動エネルギーを電気エネルギーに変換して、蓄電池6に蓄えることが可能となる。すなわち、減速する際の流体のエネルギーを回収し、回収したエネルギーを再び流体を加速する際に利用することが可能となる。その結果、空調システム100をより少ないエネルギーで動作させることができる。上記のように、制御装置5が流体を加速状態と減速状態とに変化させることで、流体を脈動させることができる。その結果、配管2を流れる流体を乱流から層流に変えることができる。流体が脈動されるとステップS02へ進む。
【0033】
ステップS02では、制御装置5は、流体の温度、流量を取得する。具体的には、制御装置5は、温度計8で検出された温度、及び流量計9で検出された流量が記憶されたメモリ若しくは外部記憶装置にアクセスし、配管2を流れる流体の温度、流量を取得する。ここで、図3は、流体の温度、流量に関するデータを示す。図3に示すように、データとし
て検出時間と流体の温度、及び流量が記録されている。流体の温度、流量が取得されるとステップS03へ進む。
【0034】
ステップS03では、制御装置5は、既定周期と現在の設定周期とを比較する。既定周期は、取得した流体の温度、流量から求められる脈動の周期であり、空調システム100に適した理想的な周期である。現在の設定周期は、既に設定されている脈動の周期である。既定周期や設定周期は、空調システム100の配管2の長さや配管2の径を考慮して算出することができる。そして、既定周期と現在の設定周期とが一致していない場合、換言すると既定周期と現在の設定周期に差異がある場合、ステップS04へ進む。一方、既定周期と現在の設定周期とが一致している場合、換言すると既定周期と現在の設定周期に差異がない場合、ステップS01へ戻り、制御装置5は、流体の温度、流量を再度取得する。なお、設定周期と現在の既定周期との比較では、現在の設定周期に一定の幅を持たせ、既定周期が現在の所定周期の範囲内にある場合には、両者は一致していると判断するようにしてもよい。
【0035】
ステップS04では、制御装置5は、設定周期を既定周期に近づけるため、温度が上がれば設定周期を長くし、流量が増えれば設定周期を短くする。具体的には、設定周期を長くする場合、制御装置5は、インバータ4を制御してポンプ3のモータの回転数を上げてから下げるまでの一連の時間を長くする。設定周期を短くする場合、制御装置5は、インバータ4を制御してポンプ3のモータの回転数を上げてから下げるまでの一連の時間を短くする。脈動の周期が変更されると、ステップS05へ進む。
【0036】
ステップS05では、制御装置5は、空調システム100の電源が落ちていないか判断し、電源が落ちていなければ再度ステップS01の処理を実行し、電源が落ちている場合には処理を終了する。
【0037】
なお、上記の処理に加えて、制御装置5は、流体の圧力を取得し、脈動状態を判断することができる。例えば、ポンプ3のモータの回転数に対応する圧力を設定しておき、取得された圧力と設定されている圧力とを比較する。制御装置5は、取得された圧力と設定された圧力との差が所定値以上の場合、異常であると判断し、異常である旨を報知する。このような脈動状態の判断処理は、上記ステップS01から05の処理と並行して、所定のタイミングで繰り返し実行することができる。
【0038】
[効果]
以上説明した第一実施形態に係る空調システム100によれば、空調システム100の配管2を流れる流体の速度を変化させて流体に脈動を発生させることで、配管2内の乱流が再層流化され、空調システム100の配管2内の摩擦抵抗が低減する。その結果、空調システム100のエネルギー効率が向上する。
【0039】
<第二実施形態>
図4は、第二実施形態に係る空調システムの構成を示す。図4に示す空調システム101は、第一実施形態の空調システム100が有する、熱交換器1、配管2、ポンプ3、インバータ(INV)4、制御装置5、圧力計7、温度計8、流量計9、弁30に加えて、蓄熱槽10を備える。また、熱交換器1と蓄熱槽10は別フロアに設けられており、配管2には竪管21も含まれている。なお、第一実施形態に係る空調システム100と同様の構成については、同一符号を付し、説明は割愛する。熱交換器1は、第一熱交換器1aや第二熱交換器1bと同様の機能を備える。第二実施形態に係る空調システム101は、上部が開放された蓄熱槽10を有する、いわゆるオープン系の空調システムである。
【0040】
蓄熱槽10は、熱媒(例えば、冷水)としての流体を蓄える。この蓄熱槽10は、上部
が開放されて外気と接触しており、第二実施形態に係るオープン系の空調システムとして構成されている。
【0041】
竪管21は、配管2の一部であり、異なるフロアに存在する熱交換器1とポンプ3とを接続する。竪管21は、往き管21aと還り管21bとを含む。
【0042】
圧力計7、温度計8、流量計9は、第二実施形態では、各々6つ設けられている。圧力計7、温度計8、流量計9は、第一熱交換器1、竪管21、弁30、蓄熱槽10の近傍に設けられている。このように、温度計8等を複数配置することで、管路2の系統や管路2の構成ごとの温度を取得することができる。その結果、系統や管路の構成に適した周期を算出することができる。圧力計7、温度計8、流量計9で検知された圧力、温度、流量は、第一実施形態と同じく、メモリ又は外部記憶装置に記憶される。
【0043】
[空調システムの動作]
次に、第二実施形態に係る空調システム101の動作について説明する。第二実施形態に係る空調システム101の動作は、第一実施形態に係る空調システム100と基本的に同じである。すなわち、制御装置5は、上述した第一実子形態におけるステップS01からステップS05の処理を実行する。
【0044】
[効果]
以上説明した第二実施形態に係る空調システム101によっても、第一実施形態に係る空調システム100と同様に、空調システム101の配管2を流れる流体の速度を変化させて流体に脈動を発生させることで、配管2内の乱流が再層流化され、空調システム101の配管2内の摩擦抵抗が低減する。その結果、空調システム101のエネルギー効率が向上する。また、第二実施形態に係る空調システム101では、各装置の近傍に温度計、流量計を配置して、各温度計、流量計で検知される温度、流量に基づいて脈動を制御することができ、個別の空調システムに最適な制御を実現できる。
【0045】
<第三実施形態>
図5は、圧力計の設置状況を示す。一方、図6は、従来の圧力計の設置状況の一例を示す。従来の圧力計は、配管の上方から流体を取り込み、圧力計(差圧計)で計測していた。そのため、圧力計に空気が混入し流体の圧力を正確に検出することができないという問題があった。また、従来の圧力計は、圧力計が配管の上方に位置することから、重力により流体が下方に向けて移動する作用が働くと、圧力計を流体で満たせないといった事象が起こり、その結果圧力を正確に検出できないという問題があった。更に、一度空気が混入されると、空気を排出し難いという問題があった。これに対し、第三実施形態では、図5に示すように、圧力計7が、配管2の下部に設けられている。従って、圧力計7内を常に流体で満たせることができ、より正確に圧力を検出することができる。また、圧力計7が配管の側方から流体を取り込むことから、エアの混入を抑制することができる。更に、配管2の下部に設けられた圧力計7の上部にエア抜き弁を設けたことで、仮に空気が混入されても容易に排出することができる。すなわち、上記従来の圧力計における問題を何れも解消することができる。なお、図5、図6において、エア抜き弁以外の弁は、圧力計への流体の流れを遮断自在な仕切り弁である。第三実施形態に係る圧力計の設置位置は、上述した第一実施形態及び第二実施形態の空調システムに適用可能である。その結果、より正確な脈動の制御が実現でき、空調システムのエネルギー効率が向上する。
【0046】
以上、本発明の好適な実施形態を説明したが、本発明はこれらに限らず、可能な限りこれらの組合せを含むことができる。なお、脈動の周期を長くして摩擦抵抗を低減するといった技術的思想、及び脈動の周期を長くすることで摩擦抵抗の低減効果が顕著となることについては、本発明者が先に開示した「国際公開第09/044764号パンフレット」
に記載の通りである。
【符号の説明】
【0047】
1・・・熱交換器
2・・・配管
3・・・ポンプ
4・・・インバータ
5・・・制御装置
6・・・蓄電池
7・・・圧力計
8・・・温度計
9・・・流量計
10・・・蓄熱槽
11・・・脈動増幅装置
30・・・弁

【特許請求の範囲】
【請求項1】
熱交換部と、
管路を介して前記熱交換部と接続され、該熱交換部に対して熱媒としての流体を圧送する圧送部と、
前記圧送部から圧送され前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御部と、を備える空調システム。
【請求項2】
前記管路内を流れる流体の温度を検出する温度検出部と、
前記温度検出部で検出された温度に基づいて、前記脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御部と、を更に備える請求項1に記載の空調システム。
【請求項3】
前記管路内を流れる流体の流量と流速とのうち少なくとも何れか一方を検出する流量・流速検出部と、
前記流量・流速検出部で検出された流量と流速とのうち少なくとも何れか一方に基づいて、前記脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御部と、を更に備える請求項1に記載の空調システム。
【請求項4】
前記制御部は、前記温度検出部で検出された温度が上がると、前記流体の速度を変化させ該流体の脈動の周期を長くする、請求項2に記載の空調システム。
【請求項5】
前記制御部は、前記流量・流速検出部で検出された流量と流速の少なくとも何れか一方が上がると、前記流体の速度を変化させ該流体の脈動の周期を短くする、請求項3に記載の空調システム。
【請求項6】
前記熱媒としての流体を蓄え、一部が開放されて外気と接触する蓄熱部を更に備える、請求項1から5の何れか1項に記載の空調システム。
【請求項7】
前記流体の速度を減速する際、前記流体からエネルギーを回収するエネルギー回収部を更に備える、請求項1から6の何れか1項に記載の空調システム。
【請求項8】
前記エネルギー回収部で回収されたエネルギーを蓄える蓄電部を更に備える請求項7に記載の空調システム。
【請求項9】
前記管路内を流れる流体の圧力を検出する圧力検出部を更に備える、請求項1から8の何れか1項に記載の空調システム。
【請求項10】
前記圧力検出部は、前記管路の下部に設けられている、請求項9に記載の空調システム。
【請求項11】
前記圧力検出部は、前記管路の下部に設けられ、かつ前記管路の側方から前記流体を取り込み、前記管路内を流れる流体の圧力を検出する、請求項9に記載の空調システム。
【請求項12】
前記制御部は、前記圧力検出部で検出した圧力に基づいて脈動状態を判別する、請求項9から11の何れか1項に記載の空調システム。
【請求項13】
熱交換器によって熱交換する熱交換工程と、
前記熱交換工程に用いる熱媒としての流体を管路を介して圧送する圧送工程と、
前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御工程と
、を備える空調方法。
【請求項14】
前記管路内を流れる流体の温度を検出する温度検出工程と、
前記温度検出工程で検出された温度に基づいて、前記流体に脈動を発生させる脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御工程と、を更に備える請求項13に記載の空調方法。
【請求項15】
前記管路内を流れる流体の流量と流速とのうち少なくとも何れか一方を検出する流量・流速検出工程と、
前記流量・流速検出工程で検出された流量と流速とのうち少なくとも何れか一方に基づいて、前記流体に脈動を発生させる脈動制御部を制御し、前記流体の脈動の周期、振幅、及び波形のうち少なくとも何れか一つを変化させる制御工程と、を更に備える請求項13に記載の空調方法。
【請求項16】
前記制御工程では、前記温度検出工程で検出された温度が上がると、前記流体の速度を変化させ該流体の脈動の周期を長くする、請求項14に記載の空調方法。
【請求項17】
前記制御工程では、前記流量・流速検出工程で検出された流量と流速とのうち少なくとも何れか一方が上がると、前記流体の速度を変化させ該流体の脈動の周期を短くする、請求項15に記載の空調方法。
【請求項18】
一部が開放されて外気と接触する蓄熱部によって前記熱媒としての流体を蓄える蓄熱工程を更に備える、請求項13から17の何れか1項に記載の空調方法。
【請求項19】
前記流体の速度を減速する際、前記流体からエネルギーを回収するエネルギー回収工程を更に備える、請求項13から18の何れか1項に記載の空調方法。
【請求項20】
前記エネルギー回収工程で回収されたエネルギーを蓄える蓄電工程を更に備える、請求項19に記載の空調方法。
【請求項21】
前記管路内を流れる流体の圧力を検出する圧力検出工程を更に備える、請求項13から20の何れか1項に記載の空調方法。
【請求項22】
前記圧力検出工程では、前記管路の下部に設けられた圧力検出部で圧力を検出する、請求項21に記載の空調方法。
【請求項23】
前記圧力検出工程では、前記管路の側方から前記流体を取り込み、前記管路の下部に設けられた圧力検出部によって前記管路内を流れる流体の圧力を検出する、請求項21に記載の空調方法。
【請求項24】
前記圧力検出工程で検出した圧力に基づいて脈動状態を判別する脈動判別工程を更に備える、請求項21から23の何れか1項に記載の空調方法。
【請求項25】
管路を介して熱交換部と接続され、該熱交換部に対して熱媒としての流体を圧送する圧送部から圧送され前記管路内を流れる流体の速度を変化させて該流体に脈動を発生させる脈動制御部を備える空調システムの流体移送装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−202681(P2012−202681A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−71141(P2011−71141)
【出願日】平成23年3月28日(2011.3.28)
【出願人】(000003687)東京電力株式会社 (2,580)
【出願人】(504132881)国立大学法人東京農工大学 (595)
【出願人】(501009665)日本ファシリティ・ソリューション株式会社 (1)
【Fターム(参考)】