説明

粒子の濃度検出方法およびその装置

【課題】液中の粒子を定量的に且つ連続的に把握する粒子の濃度検出方法およびその装置を提供する。
【解決手段】粒子を含み得る液Sの流路L2に磁性部材14と対応部材16とを配置し、液S中で磁性部材14と対応部材16との少なくとも一方を他方に押圧して動かし、液S中の粒子により磁性部材14を摩耗して磁性粒子を発生させる磁性粒子発生手段2と、
磁性粒子発生手段2と同じ流路L2に位置して液S中の磁性粒子の濃度を計測する磁性粒子計測手段3と、
予め測定した磁性粒子の濃度と液S中の粒子の濃度との相関関係を示す検量線から、磁性粒子計測手段による磁性粒子の濃度を液中の粒子の濃度に換算し、液S中に含まれる粒子の濃度を検出する制御部4とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液中に含まれる粒子の濃度検出方法およびその装置に関するものである。
【背景技術】
【0002】
一般に、舶用ディーゼルエンジンの主な燃料であるC重油等の液中には、石油精製時の流動接触分解(FCC)の残渣分としてアルミナ、シリカ、カーボン等の硬質の粒子が混入している。
【0003】
これらの粒子がエンジンのピストンリング・シリンダライナ等の駆動機関に過剰に流入した場合には、摺動状況の悪化、焼き付き、機械的摩耗等の悪影響を生じる可能性があるため、船舶管理会社では、補油毎に燃料をサンプリングして化学分析し、燃料中の粒子を定量的に把握し、規定値以上の粒子を含む燃料が船舶に補油された場合には、船舶に対して粒子が規定値以上である旨を連絡し、注意を促していた。
【0004】
また従来、粒子を検出する際には、液中からサンプリングした燃料をフィルタ等で濾過し、残渣の顕微鏡による観察や定量分析等により粒子を検出している。
【0005】
尚、粒子の濃度検出方法およびその装置の一般的技術水準を示すものとしては、例えば、特許文献1がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平11−153541号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、従来の粒子の濃度検出方法およびその装置では、その結果を船舶に報告するまでにある程度の日数を要するため、分析結果が明らかになる前に燃料を使用する必要がある場合には、駆動機関への悪影響を未然に防止することができないという問題があった。また粒子を含む夾雑物が貯留中に沈殿して粒子の濃度が上昇する場合や、燃料タンクから機関入口までの燃料の処理系統で遠心分離清浄機やフィルタ等の不具合が発生した場合には、多量の粒子が駆動機関に突発的に供給される可能性があり、燃料中の粒子を定量的に且つ連続的に把握することが求められていた。
【0008】
更にアルミナ、シリカ等の粒子は導電性や磁性に顕著な特徴を持たないため、電気的、磁気的に検知することが困難であると共に、粒子は化学的に安定な物質であるため、化学反応を利用して検出することが困難であるという問題があった。更にC重油等の液は、高粘度、不透明でアルミナ・シリカ粒子以外にも種々のスラッジ等の粒子を含むため、特許文献1の如く光学的検知でも十分に対応できないという問題があった。
【0009】
本発明は、斯かる実情に鑑み、液中の粒子を定量的に且つ連続的に把握する粒子の濃度検出方法およびその装置を提供しようとするものである。
【課題を解決するための手段】
【0010】
本発明の粒子の濃度検出方法は、粒子を含み得る液の流路に位置して磁性部材と対応部材とを配置する磁性粒子発生手段と、該磁性粒子発生手段と同じ流路に位置して液中の磁性粒子の濃度を計測する磁性粒子計測手段とを備える粒子の濃度検出方法であって、
粒子の濃度を計測する際には、液中で磁性部材と対応部材との少なくとも一方を他方に押圧して動かし、磁性部材を摩耗して磁性粒子を発生させ、次に液中に発生した磁性粒子の濃度を磁性粒子計測手段で計測し、予め測定した磁性粒子の濃度と液中の粒子の濃度との相関関係を示す検量線から磁性粒子の濃度を液中の粒子の濃度に換算し、液中に含まれる粒子の濃度を検出するものである。
【0011】
また本発明の粒子の濃度検出方法においては、磁性粒子発生手段で磁性粒子を発生させる前に、液中に予め含まれる磁性粒子の濃度を測定し、磁性粒子発生手段で液中に発生した磁性粒子の濃度から、液中に予め含まれる磁性粒子の濃度を減算し、粒子の濃度に換算することが好ましい。
【0012】
本発明の粒子の濃度検出装置は、粒子を含み得る液の流路に磁性部材と対応部材とを配置し、液中で磁性部材と対応部材との少なくとも一方を他方に押圧して動かし、磁性部材を摩耗して磁性粒子を発生させる磁性粒子発生手段と、
該磁性粒子発生手段と同じ流路に位置して液中の磁性粒子の濃度を計測する磁性粒子計測手段と、
予め測定した磁性粒子の濃度と液中の粒子の濃度との相関関係を示す検量線から、磁性粒子計測手段による磁性粒子の濃度を液中の粒子の濃度に換算し、液中に含まれる粒子の濃度を検出する制御部とを備えるものである。
【0013】
また本発明の粒子の濃度検出装置においては、磁性粒子発生手段の上流側に位置し且つ液中に予め含まれる磁性粒子の濃度を測定する前段の磁性粒子計測手段を備えることが好ましい。
【0014】
また本発明の粒子の濃度検出装置において、磁性粒子計測手段は、液の流路に接続される検出部本体と、流路の液を前記検出部本体に導入し得るように流路と検出部本体内とを接続する可動仕切手段と、前記検出部本体の外部に位置する励磁用コイルと、前記検出部本体の外部に位置して励磁用コイルの交流電流により励磁電圧を発生する出力用コイルと、前記励磁用コイルと前記出力用コイルの位相差の変化を計測する信号処理部とを備えることが好ましい。
【0015】
また本発明の粒子の濃度検出装置において、磁性粒子計測手段の検出部本体は、磁性粒子発生手段へ向かう流入側の流路と、磁性粒子発生手段から排出される排出側の流路とに対して連通可能に配置され、
磁性粒子計測手段の可動仕切手段は、流入側の流路に対して配置される流入側ピストン体と、流出側の流路に対して配置される流出側ピストン体と、前記流入側ピストン体と流出側ピストン体との間に配置される中間ピストン体と、流入側ピストン体および流出側ピストン体並びに中間ピストン体を配して往復動するピストンロッドとを備え、
前記ピストンロッドが一方向に移動した際には、流入側ピストン体および中間ピストン体により流入側の流路と検出部本体内とを接続する状態に切り替え、流入側の流路を流れる液を検出部本体へ導入すると共に、前記ピストンロッドが他方向に移動した際には、流出側ピストン体および中間ピストン体により流出側の流路と検出部本体内とを接続する状態に更に切り替え、流出側の流路を流れる液を検出部本体へ導入するように構成することが好ましい。
【0016】
また本発明の粒子の濃度検出装置においては、流入側の流路に、流入側の温度を調整する温度調整手段と、液を一定の流量で送る流量調整手段とを備えることが好ましい。
【発明の効果】
【0017】
本発明の粒子の濃度検出方法およびその装置によれば、磁性部材を摩耗して磁性粒子を発生させ、液中に発生した磁性粒子の濃度を計測し、検量線から磁性粒子の濃度を液中の粒子の濃度に換算し、液中に含まれる粒子の濃度を検出するので、液中の粒子を定量的に把握することができる。また同時に磁性粒子発生手段と磁性粒子計測手段とを同じ流路に備えるので、液中の粒子の濃度を連続的に把握することができる。更に液が油の場合には、未検査の燃料を使用する状況や、多量の粒子が駆動機関に突発的に供給される状況を防止し、駆動機関への悪影響を抑制することができる。更にまた磁性部材の摩耗により生じた磁性粒子を用いて間接的に粒子の濃度を検出するので、液自体を物理的、化学的に処理して粒子を直接検出する操作や処理を不要にし、好適に液中の粒子を定量的に且つ連続的に把握することができるという優れた効果を奏し得る。
【図面の簡単な説明】
【0018】
【図1】本発明の粒子の濃度検出装置の位置を示す概念図である。
【図2】本発明の粒子の濃度検出装置の構成であってピストンを下方に移動した状態を示す全体概念図である。
【図3】本発明の粒子の濃度検出装置の構成であってピストンを上方に移動した状態を示す全体概念図である。
【図4】磁性粒子発生手段の他の複数の例を示す概念図である。
【図5】磁性粒子計測手段における信号処理部の構成を示すブロック図である。
【図6】本発明の粒子の濃度検出装置の構成の他例を示す全体概念図である。
【図7】本発明の粒子の濃度検出方法であって流体の流れを示すフローである。
【図8】磁性粒子計測手段の可動仕切手段を駆動した際における、時間と、磁性粒子の濃度に対する信号との関係を示すグラフである。
【図9】磁性粒子発生手段の駆動時間(研磨時間)と磁性粒子(磁性粉体Fe)の濃度との関係を示すグラフである。
【図10】粒子(硬質粒子)の濃度と磁性粒子(磁性粉体)の濃度との関係を示す検量線である。
【図11】励磁用コイルおよび出力用コイルの出力信号から比較用の出力値までの処理を示す概念図である。
【図12】励磁用コイルおよび出力用コイルの出力信号から磁性粒子の濃度用の出力値までの処理を示す概念図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施の形態例を図1〜図12を参照して説明する。図1〜図12は粒子の濃度検出方法およびその装置を実施する形態例である。また実施の形態例は、流路を流れる液が燃料の油である場合を説明する。
【0020】
実施の形態例の粒子の濃度検出装置1は、図1に示す如く、燃料サービスタンクAからバッファーコラムBを介して原動機Cへ燃料の油が流入する流路L1に対し、影響を与えることなく粒子(硬質粒子)の濃度を計測し得るように、原動機Cの手前で分岐する流路L2に配置されている。また流路L2は、粒子の濃度検出装置1で測定した燃料を最終的にスラッジタンク(図示せず)へ排出するようになっている。ここで図1の構成では、燃料サービスタンクAからバッファーコラムBまでの流路L1に、燃料供給ポンプD、バイパスフィルタE、ファインフィルタF等を配置しており、バッファーコラムBから原動機Cまでの流路L1には、循環ポンプG、ヒータH、フィルタI、粘度調整器Jを配置している。またバッファーコラムBから燃料サービスタンクAには、燃料サービスタンクAへの戻し流路L3を備えると共に、原動機CからバッファーコラムBには、バッファーコラムBへの戻し流路L4を備えている。
【0021】
また粒子の濃度検出装置1は、図2、図3に示す如く、流路L2を折り返した箇所に位置して油S中に磁性粒子を発生させる磁性粒子発生手段2と、磁性粒子発生手段2と同じ流路L2に位置して油S中の磁性粒子の濃度を計測する磁性粒子計測手段3と、磁性粒子計測手段3からの情報を処理する制御部4と、流入側の流路L2aに位置して流入側の温度を調整する温度調整手段5と、流入側の流路L2aに位置して油Sを一定の流量で送るギアポンプ51の流量調整手段6とを備えている。
【0022】
磁性粒子発生手段2は、図2〜図4(a)に示す如く、流路L2の油Sが流出入するケース部7と、ケース部7の上方に位置するモータ等の駆動部8と、駆動部8の回転軸8aに接続された接続軸9を介してケース部7内の上部に位置する円盤状の回転座10と、ケース部7の底面からスプリング等の弾性手段11を介して上方に付勢され且つケース部7内の下部に位置する台座12と、回転座10の下面に固定ピン等の固定手段13を介して配置される板状の磁性部材14と、台座12の上面に固定ピン等の固定手段15を介して配置され且つ磁性部材14の下面に面接触する板状の対応部材16とを備えている。またケース部7と接続軸9の間、ケース部7と台座12の間にはシールリング17を配置して油Sが外部へ漏れないようにしている。ここで磁性部材14は、磁性を有する鉄系材料等の素材で構成され、対応部材16は、磁性部材14よりも硬く摩耗しづらい炭素鋼等の素材で構成されている。また磁性部材14の素材は、摩耗により所定粒径の磁性粒子を構成するならば鉄に限定されるものでなく、他の素材でも良い。更に対応部材16の素材は、磁性部材14から磁性粒子を発生させるならば他の素材でも良いし、磁性部材14と同じ素材にしても良い。更にまた磁性部材14と対応部材16は、配置を逆にしても良い。
【0023】
また磁性粒子発生手段2は図4(b)に示す如く他の例があり、他の例は、流路L2の油Sが流出入するケース部18と、ケース部18の上方に位置するモータ等の駆動部19と、駆動部19の軸19aに接続されてケース部18内で回転するロッド状の磁性部材14aと、ケース部18の側面からスプリング等の弾性手段20を介して一方に付勢され且つロッド状の磁性部材14aを外嵌する対応部材16aとを備えている。またケース部18とロッド状の磁性部材14aの間にはシールリング21を配置して油Sが外部へ漏れないようにしている。ここで磁性部材14aは、磁性を有する鉄系材料等の素材で構成され、対応部材16aは、磁性部材14aよりも硬く摩耗しづらい炭素鋼等の素材で構成されている。また磁性部材14aの素材は、摩耗により所定粒径の磁性粒子を構成するならば鉄に限定されるものでなく、他の素材でも良い。更に対応部材16aの素材は、磁性部材14aから磁性粒子を発生させるならば他の素材でも良いし、磁性部材14aと同じ素材にしても良い。更に磁性部材14aと対応部材16aは、配置を逆にしても良い。
【0024】
更に磁性粒子発生手段2は図4(c)に示す如く別の例があり、別の例は、流路L2の油Sが流出入するケース部22と、ケース部22の上方に位置するモータ等の駆動部23と、駆動部23の軸23aの回転を偏心ピン等により往復動に変換する変換部24と、変換部24に接続されてケース部22内で上下動にするロッド状の磁性部材14bと、ケース部22の側面からスプリング等の弾性手段25を介して一方に付勢され且つロッド状の磁性部材14bを外嵌する対応部材16bとを備えている。またケース部22とロッド状の磁性部材14bの間にはシールリング26を配置して油Sが外部へ漏れないようにしている。ここで磁性部材14bは、磁性を有する鉄系材料等の素材で構成され、対応部材16bは、磁性部材14bよりも硬く摩耗しづらい炭素鋼等の素材で構成されている。また磁性部材14bの素材は、摩耗により所定粒径の磁性粒子を構成するならば鉄に限定されるものでなく、他の素材でも良い。更に対応部材16bの素材は、磁性部材14bから磁性粒子を発生させるならば他の素材でも良いし、磁性部材14bと同じ素材にしても良い。更に磁性部材14bと対応部材16bは、配置を逆にしても良い。
【0025】
一方、磁性粒子計測手段3は、図2、図3、図5に示す如く、油Sの流路L2に接続される検出部本体27と、流路L2の油Sを検出部本体27に導入し得るように流路L2と検出部本体27内とを接続する可動仕切手段28と、検出部本体27の外部に位置する二個の励磁用コイル29と、検出部本体27の外部に位置して励磁用コイル29に隣接する出力用コイル30と、励磁用コイル29および出力用コイル30に接続される信号処理部31aと、信号処理部の信号を変換する濃度計測部31bを備えている。
【0026】
検出部本体27は、磁性粒子発生手段2へ向かう流入側の流路L2aと、磁性粒子発生手段2から排出される流出側の流路L2bとに対して両者を接続するように連通可能に配置されており、検出部本体27の一端は、流入側の流路L2aより外方へ延在し、検出部本体27の他端は、流出側の流路L2bより外方へ延在している。
【0027】
可動仕切手段28は、流入側の流路L2aに対して流路外方壁面の一部となって移動し得る流入側ピストン体32と、流出側の流路L2bに対して流路外方壁面の一部となって移動し得る流出側ピストン体33と、流入側ピストン体32と流出側ピストン体33との間に位置する中間ピストン体34と、流入側ピストン体32および流出側ピストン体33並びに中間ピストン体34を配置するピストンロッド35と、ピストンロッド35を往復動させるように回転体やクランク等からなる駆動部36とを備えている。ここで図2に示すようにピストンロッド35を一方向(下方向)に移動した際には、流入側ピストン体32および中間ピストン体34により流入側の流路L2aと検出部本体27内とを接続する状態に切り替え、流入側の流路L2aを流れる油Sを検出部本体27内へ導入すると共に、図3に示すようにピストンロッド35を他方向(上方向)に移動した際には、流出側ピストン体33および中間ピストン体34により流出側の流路L2bと検出部本体27内とを接続する状態に切り替え、流出側の流路L2bを流れる油Sを検出部本体27内へ導入するようになっている。更に流入側の流路L2aから検出部本体27内へ導入された油Sは、ピストンロッド35を他方向(上方向)に移動した際に、流入側ピストン体32および中間ピストン体34により検出部本体27内から流入側の流路L2aおよび一方の外部側へ押し出され、流入側の流路L2aへ新たに流れてくる油Sによって下流側へ導出されるようになっており、流出側の流路L2bから検出部本体27内へ導入された油Sは、ピストンロッド35を一方向(下方向)に移動した際に、流出側ピストン体33および中間ピストン体34により検出部本体27内から流出側の流路L2bおよび他方の外部へ押し出され、流出側の流路L2bへ新たに流れてくる油Sによって下流側へ導出されるようになっている。更にまたピストンロッド35を往復動させる際には、油Sが二個の励磁用コイル29と出力用コイル30との間を通るように、中間ピストン体34が、流入側の流路L2aの流路内方壁面から流出側の流路L2bの流路内方壁面まで移動し、または流出側の流路L2bの流路内方壁面から流入側の流路L2aの流路内方壁面まで移動している。
【0028】
励磁用コイル29は、互いに逆方向に巻かれて直列に接続される二個のコイルであって所定の間隔を介して配置されていると共に、出力用コイル30は、二個の励磁用コイル29の間に近接配置されている。励磁用コイル29に交流電圧を印加した際には、出力用コイル30に交流電圧(励磁電圧)の出力信号を生じさせるようになっている。また二個の励磁用コイル29と、出力用コイル30は、相互インダクタンスが略均等になるようにコイルの巻き数、コイル間の距離を調整して、相互インダクタンスが略同じとなるように調整している。更に励磁用コイル29と出力用コイル30の個数は特に限定されるものではなく、一個の励磁用コイル29と、一個の出力用コイル30とにしても良い。
【0029】
信号処理部31aは、図5に示す如く出力用コイル30の出力信号から磁性粒子の検出信号または補正用検出信号を取得するよう、出力用コイル30に接続されて微弱な波形信号を増幅する増幅回路37と、増幅回路37に接続されて波形信号のノイズを所定範囲で削除するバンドパスフィルタ38と、励磁用コイル29に接続されて励磁用の正弦波を得る正弦波発振回路39と、正弦波発振回路39に接続されて正弦波の位相をずらす位相回路40と、位相回路40に接続されて正弦波を矩形波にするエッジトリガー回路41とを備えている。
【0030】
ここで位相回路40は、設定の際や調整の際に、磁性粒子非検出時の状態で位相を10°〜170°、好ましくは45°〜135°、更に好ましくは90°前後ずらすことが好ましい。また位相回路40は、バンドパスフィルタ38と信号処理装置42との間に位置し、リファレンス信号の代わりに、磁性粒子の検出信号および補正用検出信号をずらすようにしても良い。
【0031】
また信号処理部31aは、バンドパスフィルタ38とエッジトリガー回路41とに夫々接続される信号処理装置42と、信号処理装置42に接続されて出力信号を直流電圧信号に変換するローパスフィルタ43と、ローパスフィルタ43に接続されて直流電圧信号を増幅する増幅器44と、増幅器44に接続され且つ油Sの導出入による直流電圧信号の変動量のみを透過させる交流信号透過回路45と、交流信号透過回路45に接続される増幅器46とを備えている。ここで信号処理装置42は、ロックインアンプが好ましいが、位相差の変化を計測できる構成ならばどのようなものでも良い。
【0032】
更に濃度計測部31bは、信号処理部31aの増幅器46に接続されており、計測値に基づいて磁性粒子の濃度(濃度信号)に変換するようになっている。
【0033】
ここで磁性粒子計測手段3は、図6に示す如く、流出側の流路L2bに後段の磁性粒子計測手段3bとして配置されると共に、流入側の流路L2aに前段の磁性粒子計測手段3aとして配置されても良い。この場合、後段の磁性粒子計測手段3bは、流入側の流路L2のみに接続される検出部本体27bと、検出部本体27bへ流路L2から油Sを導出入するピストン28bとを備えると共に、他の構成を図2に示す構成と同じにしている。更に前段の磁性粒子計測手段3aは、流入側の流路L2のみに接続される検出部本体27aと、検出部本体27へ流路L2から油Sを導出入するピストン28aとを備えると共に、励磁用コイル29および出力用コイル30からの信号を後段の磁性粒子計測手段3bの信号処理部へ送るようになっている。なお図6中、上方の記号αは下方の記号αへつながっていることを示す。
【0034】
一方、図2、図3に示す制御部4は、磁性粒子計測手段3の濃度計測部31bに接続されており、磁性粒子計測手段3で計測された磁性粒子の濃度(濃度信号)を、磁性粒子の濃度と油S中の粒子の濃度との相関関係を示す検量線(図10参照)に対比して油S中の粒子の濃度に換算するように構成されている。また制御部4には、粒子の濃度を表示する表示手段47が備えられていると共に、警告音や警告表示等を出す警告手段48が備えられている。
【0035】
ここで磁性粒子発生手段2の駆動時間(研磨時間)と磁性粒子(磁性粉体Fe)の濃度との関係を試験すると、図9に示す如く研磨時間の経過に伴って直線的に油S中の磁性粒子の濃度が増加することが明らかとなっており、また油S中に予め含まれる粒子の濃度を図9に示す如くαppm、約α/2ppm、粒子含有せず(0ppm)と変えて試験すると、粒子の濃度と磁性粒子の発生濃度とが同様に比例関係にあることが明らかとなっている。このため制御部4の検量線は、磁性粒子発生手段2の駆動時間(研磨時間)を一定にする条件下で、粒子(硬質粒子)の濃度と磁性粒子(磁性粉体)の濃度とを対比して作成されている。
【0036】
また、温度調整手段5は、流入側の流路L2aの上流に位置する温度計49と、流入側の流路L2aを冷却するように温度計49と磁性粒子計測手段3の間に位置する冷却ファン50aおよび空冷フィン50bとを備えている。更に流量調整手段6は、温度調整手段5と磁性粒子計測手段3との間に位置するギアポンプ51で構成されている。更にまた、流入側の流路L2aで磁性粒子計測手段3と磁性粒子発生手段2との間には、温度計52および圧力計53を配置している。
【0037】
以下本発明の実施の形態例の作用を説明する。
【0038】
粒子を含み得る燃料等の油(検体)Sを検査する際には、原動機Cの手前で分岐した流路L2から油Sを粒子の濃度検出装置1へ流入させる(図7のステップS11)。ここで検体となる燃料等の油Sは、C重油等の重油に限定されるものではなく、粒子を含み得るものならばガソリン、灯油、軽油等の他の油でも良い。また油Sの用途は、船舶等の原動機Cへの供給に限定されるものではなく、タービンプラント等の種々の駆動機関や機器へ供給するものでも良い。また油Sの代わりに水や水溶液を用いても良く、粒子を含み得るものならば特に制限されるものではない。更に水や水溶液を検査する場合には、水循環式コンプレッサ等の循環水中に混入した粒子状不純物の検出に用いても良いし、水圧機器の作動水の水質検査に用いても良いし、水処理設備における処理水の水質管理に用いても良い。更に粒子は、油Sや水等の液中に含まれる非導電性および非磁性の硬質粒子であって磁性部材14を摩耗し得るものであり、アルミナ、シリカ、カーボン等に限定されるものではない。
【0039】
粒子の濃度検出装置1では、最初に、温度調整手段5の温度計49で油(検体)Sの温度を計測し、油Sの温度に基づき、必要に応じて冷却ファン50a等により流入側の温度を冷却し、油Sの温度調整をする(ステップS12)。ここでバッファーコラムBから原動機Cに流れる燃料の油Sの場合には、油Sの温度が百数十度になっているため、磁性粒子計測手段3の計測や、磁性粒子計測手段3および磁性粒子発生手段2の耐久性に影響を与えないように、40度〜60度に冷却することが好ましい。
【0040】
次に、ギアポンプ51の流量調整手段6で、油(検体)Sを一定の流量で流すように制御すると共に減圧を行い(ステップS13)、磁性粒子計測手段3の計測、および磁性粒子発生手段2の処理を安定的に行うようにする。
【0041】
続いて油(検体)Sが流入側(上流側)の流路L2で磁性粒子計測手段3を通過する際に(ステップS14)、ピストンロッド35を一方向(図2の下方向)に移動して流入側ピストン体32および中間ピストン体34により流入側の流路L2aと検出部本体27内とを接続する状態に切り替え、流入側の流路L2aを流れる油Sを検出部本体27内へ導入し、油S中に予め含まれる磁性粒子の濃度信号を計測する。
【0042】
次に油(検体)Sが磁性粒子発生手段2を通過する際に(ステップS15)、駆動部8を駆動し、接続軸9および回転座10等を介して磁性部材14を対応部材16に押圧しつつ回転させ、磁性部材14と対応部材16の間に入り込んだ粒子により磁性部材14をアブレシブ摩耗して油S中に磁性粒子を発生させる。また図4に示す磁性粒子発生手段2の他の構成の場合や、図4に示す磁性粒子発生手段2の別の構成の場合にも、同様に磁性部材14a,14bをアブレシブ摩耗して油S中に磁性粒子を発生させる。ここで油Sの粘度は一定に保たれているため、磁性部材14と対応部材16の押し付け面圧を適切に保てば、ある一定の大きさ以上の粒子(硬質粒子)のみによって磁性粒子(鉄粉)を発生させ、それ未満の径の粒子では磁性部材14と対応部材16の間隙を通過するのみで磁性粒子を発生させない。また磁性部材14a,14bと対応部材16a,16bの場合も同様にある一定の大きさ以上の粒子のみによって磁性粒子(鉄粉)を発生させ、それ未満の径の粒子では磁性粒子を発生させない。
【0043】
続いて油(検体)Sが流出側(下流側)の流路L2で磁性粒子計測手段3を通過する際に(ステップS16)、ピストンロッド35を他方向(図3の上方向)に移動して流出側ピストン体33および中間ピストン体34により流出側の流路L2bと検出部本体27内とを接続する状態に切り替え、流出側の流路L2bを流れる油Sを検出部本体27内へ導入し、流出側の磁性粒子の濃度信号を計測する。そして流出側の流路L2bの磁性粒子の濃度を検出した後には、磁性粒子計測手段3の可動仕切手段28の移動等を介して油Sを流出側の流路L2bへ戻し、流出側の流路L2bからオリフィス(図示せず)等を介してスラッジタンク(図1参照)へ排出する(ステップS17)。
【0044】
そして磁性粒子の濃度の計測は、可動仕切手段28のピストンロッド35を連続的に往復動することにより、検出部本体27内に流入側の流路L2aの油Sを導入した状態での計測と、検出部本体27に流出側の流路L2bの油Sを導入した状態での計測とを交互に測定し、図8に示す如く流出側の磁性粒子の濃度(濃度信号)P2から、油S中に予め含まれる磁性粒子の濃度(濃度信号)P1を減算し、磁性粒子発生手段2で発生した磁性粒子の濃度(濃度信号)ΔSを算出する。なお図8中、P1の位置は、磁性粒子計測手段3の可動仕切手段28が流入側の流路L2aから油Sを導入した位置であり、P2の位置は、磁性粒子計測手段3の可動仕切手段28が流出側の流路L2bから油Sを導入した位置である。
【0045】
ここで、信号処理部31aと濃度計測部31bにより磁性粒子の濃度を計測する処理を具体的に説明すると、信号処理部31aでは、油Sを流入側の流路L2aから検出部本体27内に導入した際に、検出部本体27から出力用コイル30、増幅回路37およびバンドパスフィルタ38を介して補正用検出信号を取得する(図11では(A))と共に、励磁用コイル29、正弦波発振回路39、位相回路40およびエッジトリガー回路41により所定の角度で位相をずらして励磁電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備する(図11では(B)、位相は90°前後ずらす)。そして信号処理装置42によりリファレンス信号をあわせてノイズ除去を行うと共に、補正用検出信号とリファレンス信号との位相差を検出し、ローパスフィルタ43により比較用の出力値(流路L2に予め含まれる磁性粒子の濃度)として平滑な直流電圧信号に変換し(図11では(D))、増幅器44を介して交流信号透過回路45に入力する。一方、油Sを流出側の流路L2bから検出部本体27内へ導入した際には、油Sから、出力用コイル30、増幅回路37およびバンドパスフィルタ38を介して磁性粒子の検出信号を取得する(図12では(A'))と共に、励磁用コイル29、正弦波発振回路39、位相回路40およびエッジトリガー回路41により、所定の角度で位相をずらして励磁電圧と同一周波数で一定の位相差を生じる矩形波のリファレンス信号を準備する(図12では(B')、位相は90°前後ずらす)。そして信号処理装置42によりリファレンス信号をあわせてノイズ除去を行うと共に、磁性粒子の検出信号とリファレンス信号との位相差を検出し、ローパスフィルタ43により、磁性粒子の濃度用の出力値として平滑な直流電圧信号に変換し(図12では(D'))、増幅器44を介して交流信号透過回路45に入力する。そして交流信号透過回路45により、流路L2に予め含まれる磁性粒子の濃度を減算するよう、図12に示す如く磁性粒子の濃度用の出力値と、比較用の出力値とから差分ΔVを求め、増幅器46を介して計測値を濃度計測部31bに送る。次いで濃度計測部31bでは、予め求めた濃度との相関性(関数処理)によって差分の計測値を磁性粒子の濃度(濃度信号)ΔSに変換している。なお、図11中(C)はリファレンス信号により、磁性粒子の検出信号を反転させた状態を示し、この面積を積分処理すると図11の(D)となることを概念的に示しており、また図12中(C')はリファレンス信号により、磁性粒子の検出信号を反転させた状態を示し、この面積を積分処理すると図12の(D')となることを概念的に示している。
【0046】
磁性粒子の濃度ΔSを算出した後には、制御部4によって検量線から磁性粒子の濃度を油S中の粒子の濃度に換算し、粒子の濃度を表示手段47に表示する。また粒子の濃度が、所定の閾値を超えた場合には警告手段48によって警告音や警告表示等を出力する。ここで粒子の濃度は、濃度計測部31bの処理を介することなく、交流信号透過回路45の差分ΔVの段階から直接、粒子の濃度に変換しても良いし、他の手順で処理しても良い。また所定の閾値は、原動機Cへの粒子の流入可能な許容量等によって適宜設定することができる。
【0047】
これにより船舶等の所定の原動機Cに燃料等の油Sを供給する場合には、アルミナ・シリカ等の粒子の濃度を現場で監視し、粒子に起因する駆動機関への悪影響を未然に回避する。
【0048】
ここで図6に示す如く粒子の濃度検出装置1の他例の場合には、流入側の流路L2aに位置する前段の磁性粒子計測手段3aと、流出側の流路L2bに位置する後段の磁性粒子計測手段3bとで別々に磁性粒子の濃度(濃度信号)を計測し、流出側の磁性粒子の濃度(濃度信号)から、油S中に予め含まれる磁性粒子の濃度(濃度信号)を減算し、磁性粒子発生手段2で発生した磁性粒子の濃度(濃度信号)を算出し、その後、制御部4によって検量線から磁性粒子の濃度を油S中の粒子の濃度に換算している。
【0049】
また、図6に示す磁性粒子計測手段3bで磁性粒子の濃度を計測する処理を説明すると、信号処理部31aで、油Sを検出部本体27内から排出した場合と、油Sを検出部本体27内に導入した場合とを比較して交流信号透過回路45の差分ΔVを求め、次に濃度計測部31bで差分ΔVから磁性粒子の濃度を求めている。また磁性粒子計測手段3aの場合も磁性粒子計測手段3bと同様に磁性粒子の濃度を求めている。
【0050】
而して、このように実施の形態例によれば、油S中の粒子の存在により磁性部材14を摩耗して磁性粒子を発生させ、油S中に発生した磁性粒子の濃度を計測し、検量線から磁性粒子の濃度を油S中の粒子の濃度に換算し、油S中に含まれる粒子の濃度を検出するので、従来の測定手段の如く粒子の濃度の検出までに日数を要することがなく、油S中の粒子を定量的に把握することができる。また同時に磁性粒子発生手段2と磁性粒子計測手段3とを同じ流路L2に備えるので、液中の粒子の濃度を連続的に把握することができる。
【0051】
また油S中の粒子を定量的に且つ連続的に把握することにより、未検査の燃料を使用する状況や、多量の粒子が駆動機関に突発的に供給される状況を防止し、駆動機関への悪影響を抑制することができる。更に磁性部材14の摩耗により生じた鉄粉等の磁性粒子を用いて間接的に粒子の濃度を検出するので、油S自体を物理的、化学的に処理して粒子を直接検出するような操作や処理を不要にし、好適に油S中の粒子を定量的に且つ連続的に把握することができる。
【0052】
実施の形態例において、磁性粒子発生手段2で磁性粒子を発生させる前に、油S中に予め含まれる磁性粒子の濃度を測定し、磁性粒子発生手段2で液中に発生した磁性粒子の濃度から、油S中に予め含まれる磁性粒子の濃度を減算し、粒子の濃度に換算すると、磁性粒子発生手段2で油S中に発生した磁性粒子のみの濃度を計測するので、油S中の粒子を好適に把握することができる。
【0053】
磁性粒子計測手段3の検出部本体27は、磁性粒子発生手段2へ向かう流入側の流路L2aと、磁性粒子発生手段2から排出される流出側の流路L2bと対して連通可能に配置され、磁性粒子計測手段3の可動仕切手段28は、流入側の流路L2aに対して配置される流入側ピストン体32と、流出側の流路L2bに対して配置される流出側ピストン体33と、流入側ピストン体32と流出側ピストン体33との間に配置される中間ピストン体34と、流入側ピストン体32および流出側ピストン体33並びに中間ピストン体34を配して往復動するピストンロッド35とを備え、ピストンロッド35が一方向に移動した際には、流入側ピストン体32および中間ピストン体34により流入側の流路L2aと検出部本体27内とを接続する状態に切り替え、流入側の流路L2aを流れる油Sを検出部本体27へ導入すると共に、ピストンロッド35が他方向に移動した際には、流出側ピストン体33および中間ピストン体34により流出側の流路L2bと検出部本体27内とを接続する状態に更に切り替え、流出側の流路L2bを流れる油Sを流出側の流路L2bから検出部本体27へ導入するように構成されるので、一つの磁性粒子計測手段3で、液中に予め含まれる磁性粒子の濃度を容易に計測し、磁性粒子発生手段2による磁性粒子の濃度を適切に計測して油S中の粒子を好適に把握することができる。
【0054】
尚、本発明の粒子の濃度検出方法およびその装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【符号の説明】
【0055】
1 濃度検出装置
2 磁性粒子発生手段
3 磁性粒子計測手段
3a 磁性粒子計測手段
3b 磁性粒子計測手段
4 制御部
5 温度調整手段
6 流量調整手段
14 磁性部材
14a 磁性部材
14b 磁性部材
16 対応部材
16a 対応部材
16b 対応部材
27 検出部本体
27a 検出部本体
27b 検出部本体
28 可動仕切手段
28a 可動仕切手段
28b 可動仕切手段
29 励磁用コイル
30 出力用コイル
31a 信号処理部
32 流入側ピストン体
33 流出側ピストン体
34 中間ピストン体
35 ピストンロッド
S 油(液)

【特許請求の範囲】
【請求項1】
粒子を含み得る液の流路に位置して磁性部材と対応部材とを配置する磁性粒子発生手段と、該磁性粒子発生手段と同じ流路に位置して液中の磁性粒子の濃度を計測する磁性粒子計測手段とを備える粒子の濃度検出方法であって、
粒子の濃度を計測する際には、液中で磁性部材と対応部材との少なくとも一方を他方に押圧して動かし、磁性部材を摩耗して磁性粒子を発生させ、次に液中に発生した磁性粒子の濃度を磁性粒子計測手段で計測し、予め測定した磁性粒子の濃度と液中の粒子の濃度との相関関係を示す検量線から磁性粒子の濃度を液中の粒子の濃度に換算し、液中に含まれる粒子の濃度を検出することを特徴とする粒子の濃度検出方法。
【請求項2】
磁性粒子発生手段で磁性粒子を発生させる前に、液中に予め含まれる磁性粒子の濃度を測定し、磁性粒子発生手段で液中に発生した磁性粒子の濃度から、液中に予め含まれる磁性粒子の濃度を減算し、粒子の濃度に換算することを特徴とする請求項1に記載の粒子の濃度検出方法。
【請求項3】
粒子を含み得る液の流路に磁性部材と対応部材とを配置し、液中で磁性部材と対応部材との少なくとも一方を他方に押圧して動かし、磁性部材を摩耗して磁性粒子を発生させる磁性粒子発生手段と、
該磁性粒子発生手段と同じ流路に位置して液中の磁性粒子の濃度を計測する磁性粒子計測手段と、
予め測定した磁性粒子の濃度と液中の粒子の濃度との相関関係を示す検量線から、磁性粒子計測手段による磁性粒子の濃度を液中の粒子の濃度に換算し、液中に含まれる粒子の濃度を検出する制御部とを備えたことを特徴とする粒子の濃度検出装置。
【請求項4】
磁性粒子発生手段の上流側に位置し且つ液中に予め含まれる磁性粒子の濃度を測定する前段の磁性粒子計測手段を備えたことを特徴とする請求項3に記載の粒子の濃度検出装置。
【請求項5】
磁性粒子計測手段は、液の流路に接続される検出部本体と、流路の液を前記検出部本体に導入し得るように流路と検出部本体内とを接続する可動仕切手段と、前記検出部本体の外部に位置する励磁用コイルと、前記検出部本体の外部に位置して励磁用コイルの交流電流により励磁電圧を発生する出力用コイルと、前記励磁用コイルと前記出力用コイルの位相差の変化を計測する信号処理部とを備えたことを特徴とする請求項3または4に記載の粒子の濃度検出装置。
【請求項6】
磁性粒子計測手段の検出部本体は、磁性粒子発生手段へ向かう流入側の流路と、磁性粒子発生手段から排出される排出側の流路とに対して連通可能に配置され、
磁性粒子計測手段の可動仕切手段は、流入側の流路に対して配置される流入側ピストン体と、流出側の流路に対して配置される流出側ピストン体と、前記流入側ピストン体と流出側ピストン体との間に配置される中間ピストン体と、流入側ピストン体および流出側ピストン体並びに中間ピストン体を配して往復動するピストンロッドとを備え、
前記ピストンロッドが一方向に移動した際には、流入側ピストン体および中間ピストン体により流入側の流路と検出部本体内とを接続する状態に切り替え、流入側の流路を流れる液を検出部本体へ導入すると共に、前記ピストンロッドが他方向に移動した際には、流出側ピストン体および中間ピストン体により流出側の流路と検出部本体内とを接続する状態に更に切り替え、流出側の流路を流れる液を検出部本体へ導入するように構成したことを特徴とする請求項5に記載の粒子の濃度検出装置。
【請求項7】
流入側の流路に、流入側の温度を調整する温度調整手段と、液を一定の流量で送る流量調整手段とを備えたことを特徴とする請求項3に記載の粒子の濃度検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2011−133292(P2011−133292A)
【公開日】平成23年7月7日(2011.7.7)
【国際特許分類】
【出願番号】特願2009−291799(P2009−291799)
【出願日】平成21年12月24日(2009.12.24)
【出願人】(000000099)株式会社IHI (5,014)
【出願人】(591083406)株式会社ディーゼルユナイテッド (30)
【Fターム(参考)】