説明

粒子線治療装置

【課題】本発明の目的は、ガントリー回転によるSOBPの一様度悪化を抑制できる粒子線治療装置を提供することにある。
【解決手段】荷電粒子ビーム発生装置2から出射された荷電粒子ビームを照射対象に照射する照射野形成装置13は、RMW装置20を備える。RMW装置20のRMW21は、荷電粒子ビーム進行方向に対して直交する平面内を移動可能である。ガントリー角度が変わりRMW21へのビーム入射形状が変わったときには、テーブル25をビーム進行方向と直交する平面内で制御機構により移動させ、RMW21のビーム入射位置を変え、RMW21へのビーム入射形状が変わらないようにする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粒子線治療装置に係り、特に、陽子や炭素イオン等のイオンビーム(荷電粒子ビーム)を患部(がん病巣)に照射して治療するに好適な粒子線治療装置に関する。
【背景技術】
【0002】
従来の粒子線治療装置は、イオンビーム発生装置、イオンビーム輸送系及び照射野形成装置を備える。照射野形成装置は、回転ガントリーに設置されている。イオンビーム発生装置は、加速器としてシンクロトロン(またはサイクロトロン)を含んでいる。シンクロトロンで設定エネルギーまで加速されたイオンビームは、イオンビーム輸送系を経て照射野形成装置に達する。そのイオンビームは、照射野形成装置から患者のがんの患部に照射される。
【0003】
照射野形成装置は、イオンビーム発生装置からのイオンビームを、照射目標である患部の立体形状に合わせて整形し、照射野を形成するとともに、照射野内の照射線量を調整する装置である。一般的に、患部は3次元的な形状を持っているため、照射野形成装置はイオンビームを進行方向(以下、単に「深さ方向」と称する)とビーム進行方向に対して直交する平面(以下、単に、「横方向」と称する)内に一様にビームを広げる必要がある。
【0004】
横方向にビームを広げる方法としては、二重散乱体法が知られている(例えば、特許文献1の図11及び非特許文献1の図39参照)。二重散乱体法は、第一散乱体及び第二散乱体の二種類の散乱体を使用して、横方向に照射線量分布が一様でかつその方向に広げられたイオンビームを得るものである。二重散乱体法が適用された照射野形成装置は、第一散乱体及び第二散乱体を有し、第一散乱体を第二散乱体よりも上流に配置している。イオンビームは第一散乱体における散乱により正規分布状に広げられ、その後第二散乱体における散乱により横方向に一様な照射線量分布が形成される。このように、照射線量分布が一様化されたイオンビームは、照射野形成装置内に設置されたコリメータを通過して患部に照射される。
【0005】
二重散乱体法を用いた照射野形成装置では、深さ方向に一様な照射線量分布(SOBP:Spread Out Bragg Peak)を形成するためにブラッグピーク拡大装置(SOBP装置)が用いられる。SOBP装置としては、リッジフィルタを用いたもの(例えば、非特許文献1の2078頁図31及び2084頁図41参照)及びレンジモジュレーションホイール(RMW:Range Modulation Wheel)を用いたもの([情1]例えば、非特許文献1の2077ページ図30参照)が知られている。
【0006】
RMWは、照射野形成装置内でイオンビームの経路に回転可能に設置される。RMWは回転軸から径方向に伸びる複数の翼(ブレード)を有し、翼の単部を円筒部材で連結している。円筒部材は、回転軸と同心円になっている。各翼は、周方向に階段状の段構造を複数有している。イオンビームは回転しているRMWを通過する際、翼の段差部分を通過し、通過する段差の厚みに応じてエネルギーを失う。翼は厚みの異なる段を複数有しているため、イオンビームはRMW通過後、様々なエネルギー成分を持つことになり、時間積分で見るとそれらが重ね合わされることになり、結果として深さ方向に一様な照射線量分布(SOBP)が形成される。
【0007】
RMWを用いて深さ方向に一様な線量分布を作る場合、RMWの段差のうちで、ある特定の段差にのみビームを当てることによってSOBPの幅を調節することができる。例えば、RMWを回転させ、イオンビームを当てる際に、RMWを構成する複数の段のうち、いくつかの厚い段にはビームを当てず、その他の段にのみビームを当てると、全ての段にビームを当てた場合と比べるとSOBPの幅が短くなる。前者は後者と比較して厚い段を通過したビーム、つまりRMW通過時に、よりエネルギーを失い飛程が短くなるビームが含まれない。そのため、後者と比較しSOBPを形成する様々なエネルギーを持つビームのうちでSOBPの浅い側に寄与するエネルギー成分が含まれない。その結果、RMWの全ての段にビームを当てた場合と比較してSOBP幅が短くなる。以上の制御はRMWの回転角度を監視し、ある特定の角度範囲のみでイオンビームをON/OFFさせることにより実現される。
【0008】
【特許文献1】特開2004−69683号公報
【非特許文献1】レビュー オブ サイエンティフィック インスツルメンツ64巻8号(1993年8月)の第2074〜2086頁(REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 64 NUMBER 8 (AUGUST 1993) P2079-2083)
【発明の開示】
【発明が解決しようとする課題】
【0009】
ここで、回転ガントリーに設置された照射野形成装置は、任意の角度で患者へビームを照射することができる。ガントリーが回転した場合、照射野形成装置から見るとビーム輸送系の光学系がガントリーの回転に応じて回転することになり、結果として照射野形成装置に入射するビームの形状がガントリー角度に応じて回転することになる。ガントリー回転角度に応じて照射野形成装置へのビーム入射形状が回転すると、RMWへの入射ビーム形状もガントリー回転角度に応じて回転することになる。RMWへ入射するビームの形状が楕円形状の場合、ガントリー角度に応じてビーム形状が回転すると、RMWへビームが入射する時、ビーム形状の長径方向がRMWの径方向と略一致する場合と、長径方向がRMWの周方向と略一致する場合がある。両者ではRMWの周方向に占めるビームサイズが異なることになるため、ビームが当たるRMWの段の範囲が変わる。そのため、ビームをON/OFFしてSOBP幅を調整する制御をする場合に、両者とも同じタイミングでON/OFFを実施しても、ビームON又はビームOFF時でビームが当たる段の範囲が異なるため、ガントリー角度によってSOBPの一様度が悪化する。
【0010】
上記の問題を解決するための方法として、ガントリー入射前のビーム形状をビーム中心軸に対して略対称にすることが考えられる。この場合、ガントリーが回転しても、ビーム軸に対して略対称な形状が回転するので、RMWへ入射するビーム形状は変わらない。ただし、イオンビーム発生装置及びビーム輸送系の制約からガントリー入射前のビーム形状を円形にすることは難しい。ガントリー入射前にガントリー回転角度と同じ角度だけ反対方向にビームを回転させるような光学系(例えば複数の四極電磁石の組み合わせ)を設置する方法も考えられるが、複数の四極電磁石を設置することはスペースの制約から困難である。ガントリー回転角度に応じてビームのON/OFFタイミングを変える方法も考えられるが、全てのガントリー角度及び、全てのSOBP幅についてこのような調整をすることは現実的でない。
【0011】
RMWの径を大きくし、RMWを構成する段の周方向の幅がビームの空間的大きさと比較して充分大きくすれば、RMWへの入射ビーム形状の違いは大きな問題にならない。しかし、実際の治療では患部の位置や形状に応じて、イオンビームのエネルギーや照射野の大きさを変更する必要があり、それらに応じてRMWを交換する必要があるため、持ち運び及び交換が簡単なコンパクトなRMWへのニーズが高い。径の大きなRMWは交換を困難にし、治療人数のスループットが下がる。
【0012】
本発明の目的は、ガントリー回転によるSOBPの一様度悪化を抑制できる粒子線治療装置を提供することにある。
【課題を解決するための手段】
【0013】
(1)上記目的を達成するために、荷電粒子ビームを発生する荷電粒子ビーム発生装置と、前記荷電粒子ビーム発生装置から出射された荷電粒子ビームを患部に照射する荷電粒子ビーム照射装置とを有し、前記荷電粒子ビーム照射装置は、前記荷電粒子ビームが通過する回転可能なレンジモジュレーションホイールを備えるレンジモジュレーションホイール回転装置を有する粒子線治療装置であって、前記レンジモジュレーションホイールは、荷電粒子ビーム進行方向に対して直交する平面内を移動可能である。
かかる構成により、ガントリー回転によるSOBPの一様度悪化を抑制し得るものとなる。
【0014】
(2)上記(1)において、好ましくは、前記荷電粒子ビーム発生装置は、患部に対する荷電粒子ビームの照射角を変える回転ガントリを備え、前記荷電粒子ビーム照射装置は、前記回転ガントリーの角度が変わっても前記レンジモジュレーションホイールへのビーム入射形状が変わらないように、前記レンジモジュレーションホイールの荷電粒子ビーム通過位置を、前記回転ガントリの角度に応じて変える制御手段を備えるようにしたものである。
【0015】
(3)上記(2)において、好ましくは、前記制御手段は、前記レンジモジュレーションホイールの回転位置に応じて、前記荷電粒子ビーム発生装置から発生する荷電粒子ビームのON/OFFを制御するようにしたものである。
【0016】
(4)上記(3)において、好ましくは、前記制御手段は、前記レンジモジュレーションホイールの回転中心と前記前記荷電粒子ビームの通過位置の距離をY1とするとき、前記回転ガントリの角度がθ変化した際に、前記レンジモジュレーションホイールを、荷電粒子ビーム進行方向に対して直交するX−Y平面内で、X軸方向に−Y1・sinθ移動し、Y軸方向に−Y1−Y1・cosθ移動するように、前記レンジモジュレーションホイールの位置を制御するようにしたものである。
【0017】
(5)上記(4)において、好ましくは、前記レンジモジュレーションホイール回転装置は、前記レンジモジュレーションホイールを回転駆動する第1の駆動源と、前記レンジモジュレーションホイールを移動する第2の駆動源とを備え、前記制御手段は、前記第2の駆動源を制御して、前記レンジモジュレーションホイールの位置を制御するようにしたものである。
【0018】
(6)上記(5)において、好ましくは、前記第2の駆動源は、前記レンジモジュレーションホイールを、荷電粒子ビーム進行方向に対して直交するX−Y平面内で、X軸方向に駆動する第1のモータと、Y軸方向に駆動する第2のモータとから構成されるものである。
【0019】
(7)上記(5)において、好ましくは、前記第2の駆動源は、前記レンジモジュレーションホイールを、荷電粒子ビーム進行方向に対して直交するX−Y平面内で、荷電粒子ビーム通過位置を中心にして回転するモータから構成されるものである。
【0020】
(8)上記(3)において、好ましくは、前記レンジモジュレーションホイールは、回転中心から半径方向に延びるとともに、周方向において階段状に配置され、前記荷電粒子ビームの通過厚みが異なる複数の平面領域を備え、前記荷電粒子ビームは、前記レンジモジュレーションホイールの前記平面領域を通過する部分において、楕円形状の断面形状を備え、前記制御手段は、前記回転ガントリの角度を変えた場合にも、前記荷電粒子ビームの長径方向と前記レンジモジュレーションホイールの径方向の位置関係が変わらないように、前記レンジモジュレーションホイールの荷電粒子ビーム通過位置を変えるようにしたものである。
【発明の効果】
【0021】
本発明によれば、ガントリー回転によるSOBPの一様度悪化を抑制できるものとなる。
【発明を実施するための最良の形態】
【0022】
以下、図1〜図6を用いて、本発明の第1の実施形態による粒子線治療装置の構成及び動作について説明する。
最初に、図1を用いて、本実施形態による粒子線治療装置の全体構成について説明する。
図1は、本発明の第1の実施形態による粒子線治療装置の全体構成を示すシステム構成図である。
【0023】
本実施形態の粒子線治療装置1は、荷電粒子ビーム発生装置2と、荷電粒子ビーム照射装置である照射野形成装置(荷電粒子ビーム照射装置)13を備える。荷電粒子ビーム発生装置2は、イオン源(図示せず)、前段加速器3及びシンクロトロン4を有する。イオン源で発生したイオン(例えば、陽子、または炭素イオン)は、前段加速器(例えば直線加速器)3で加速される。前段加速器3から出射されたイオンビーム(荷電粒子ビーム)はシンクロトロン4に入射される。このイオンビームは、シンクロトロン4で、高周波加速空胴5から印加される高周波電力によってエネルギーを与えられて加速される。シンクロトロン4内を周回するイオンビームのエネルギーが設定されたエネルギーまでに高められた後、出射用の高周波印加装置6から高周波が周回しているイオンビームに印加される。安定限界内で周回しているイオンビームは、この高周波の印加によって安定限界外に移行し、出射用デフレクタ7を通ってシンクロトロン4から出射される。イオンビームの出射の際には、シンクロトロン4に設けられた四極電磁石8及び偏向電磁石9等の電磁石に導かれる電流が設定値に保持され、安定限界もほぼ一定に保持されている。高周波印加装置6への高周波電力の印加を停止することによって、シンクロトロン4からのイオンビームの出射が停止される。
【0024】
シンクロトロン4から出射されたイオンビームは、イオンビーム輸送系10を経て照射野形成装置13に達する。イオンビーム輸送系10の一部である逆U字部11及び照射野形成装置13は、回転可能な回転ガントリー17に設置される。照射野形成装置13から治療台(ベッド)14に乗っている患者15の患部に照射される。
【0025】
治療計画装置100は、患部の位置や大きさに基づいて、治療計画を策定する。治療計画には、イオンビームの照射方向,照射量等の情報が含まれる。治療計画の情報は、照射制御装置110に送出される。照射制御装置110は、治療計画に基づいて、粒子線治療装置110の各部を制御する。具体的には、イオンビームの照射方向の情報に基づいて、照射制御装置110は、回転駆動装置120を用いて、回転ガントリー17を回転させ、イオンビームの照射方向を変える。回転ガントリー17の回転角度は、例えば、0度〜360度[情2]である。また、照射量の情報に基づいて、照射制御装置110は、出射用デフレクタ7のオン・オフを制御する。
【0026】
さらに、本実施形態においては、照射制御装置110は、回転ガントリー17の回転角度、照射野形成装置13の内部のRMW装置(レンジモジュレーションホイール回転装置)のイオンビームが当たる位置を制御している。なお、[情3]RMW装置(レンジモジュレーションホイール回転装置)の詳細構成については、図2以降を用いて後述する。また、照射制御装置110は、RMW装置(レンジモジュレーションホイール回転装置)の回転角度に同期して、出射用デフレクタ7のオン・オフを制御する。
【0027】
次に、図2を用いて、本実施形態による粒子線治療装置1に用いられる照射野形成装置13の構成について説明する。
図2は、本発明の第1の実施形態による粒子線治療装置に用いられる照射野形成装置の構成を示す縦断面図である。
【0028】
照射野形成装置13は、回転ガントリーに取り付けられるケーシング16を有する。ケーシング16内には、照射野形成装置13の軸方向Z(イオンビーム進行方向)の上流側より、第一散乱体装置18、RMW装置(レンジモジュレーションホイール回転装置)20、第二散乱体装置41、飛程調整装置(例えばレンジシフタ)45、ブロックコリメータ(第一コリメータ)50、ボーラス56及び患者コリメータ(第二コリメータ)57を順次配置している。
【0029】
第一散乱体18は、イオンビーム進行方向に直交する方向にイオンビームを広げる装置であり、支持部材19によりケーシング16に設置される。第一散乱体18は、一般にイオンビームを散乱させる能力が高い鉛やタングステン等の原子番号の大きい物質によって構成される材料が用いられる。第一散乱体18は、照射野形成装置13のビーム通過経路17に配置される。
【0030】
第二散乱体装置41は、第一散乱体18によりビーム進行方向と直交する方向に略正規分布状に広げられたイオンビームを、その方向で一様な分布にするためのものである。第二散乱体41は、ケーシング16に固定された第二散乱体テーブル42に設置され、照射野形成装置13のビーム通過経路17に配置される。
【0031】
飛程調整装置45は、治療を受ける患者体内におけるイオンビームの飛程を調整する機能を有し、複数の吸収体をビームラインに挿入、排出する機能を有する。ブロックコリメータ50及び患者コリメータ57は、横方向の不要なイオンビームをコリメートする役割を持ち、ボーラス56は患者の患部の形状に合うようにイオンビームの飛程を調整する機能を有する。
【0032】
RMW装置(レンジモジュレーションホイール回転装置)20は、RMW21,ボールネジ22,タイミングベルト23,モータ24,テーブル25,テーブル26,ボールネジ27,回転軸29を備えており、これらの詳細構成については、図4を用いて後述する。
【0033】
次に、図3〜図6を用いて、本実施形態による粒子線治療装置1の照射野形成装置13に用いられるRMW装置20の構成について説明する。
図3は、本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置のRMWの構成を示す斜視図である。図4及び図5は、本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置の構成を示す平面図である。図4は、第1の位置状態を示し、図5は、第2の位置状態を示している。図6は、本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置の動作説明図である。
【0034】
図2に示したRMW装置20は、RMW(レンジモジュレーションホイール)21を有する。
【0035】
図3に示すように、RMW21は、回転軸29及び円筒部材30が同心円に配置された構造である。回転軸29に取り付けられた複数(本実施形態では3枚)の翼31が、RMW21の径方向に伸びている。これらの翼31の外側の端部は、円筒部材30に取り付けられている。翼31の周方向における幅は、円筒部材30側の端部で回転軸29側の端部よりも広くなっている。RMW21の周方向における翼31間には、それぞれ開口32(本実施形態では三箇所)が形成される。それらの開口32は、円筒部材30側の端部での周方向における幅が回転軸29側の端部でのそれよりも広くなっている。各翼31は、RMW21の周方向において階段状に配置された複数の平面領域33(本実施形態では33A、33B,33C,33Dの4段)を有しており、イオンビーム軸Zの方向におけるRMW21の底面から各平面領域33までの各厚みが異なっている(RMW21の底面から各平面領域33までのレベルが異なる)。1つの平面領域33の部分の厚みを、平面領域部分の厚みという。すなわち、翼31は、周方向で翼31の両側に位置する開口32から、イオンビーム軸Zの方向において最も厚みの厚い翼頂部33Aに向かって、各平面領域部分の厚みが増加している。平面領域33は、例えば階段において足を乗せる平面に相当する。各平面領域33は、回転軸29から円筒部材30に向かって延びている。各平面領域33のRMW21の周方向における幅も、回転軸29側の端部よりも円筒部材30側の端部で広くなっている。1つのRMW21において、3枚の翼31の相互間に位置する開口32は、3つ存在する。イオンビーム照射中にRMW21を回転させることにより、RMW21中の通過する段差に応じてイオンビームはエネルギーを失い、結果として、イオンビームは患部で様々なエネルギー成分を持つことになり、それらが時間的に重ねあわされ深さ方向に均一な線量分布(SOBP)が形成される。
【0036】
次に、図4を用いて、RMW装置20の詳細構成について説明する。図4は、第1の位置状態を示している。
【0037】
RMW21は、回転軸29、タイミングベルト23、モータ24により、矢印R1方向に、イオンビーム照射中に回転される。RMW21、回転軸29、タイミングベルト23、モータ24は、テーブル25に設置される。テーブル25は、モータM1によって回転されるボールネジ22によって、Y方向に移動できる構造となっている。また、ボールネジ22はテーブル26に設置され、テーブル26は、モータM2によって回転されるボールネジ27によって、X方向に移動可能な構造となっている。ボールネジ27は、照射野形成装置13のケーシング16に固定される。この構造によりRMW21は、ビーム進行方向と直交する平面(X−Y平面)内で移動することが可能となり、RMW21のビーム通過位置35Aを変えることができる。
【0038】
ここで、図4に示すように、あるガントリー角度でイオンビームを照射したときのビーム形状35が、X−Y平面上で縦方向が横方向に比較して大きい形状だとする。この場合、ビーム形状35の長径方向は、RMW21の径方向と略一致する。ここで、図6(A),(B)に示すように、RMW21の開口部32、段33Dにビームを照射し、段33C、段33B、段33AでビームをOFFする照射を実施する。
【0039】
この時、図6(B)に示すビームON/OFF信号が照射制御装置110により生成され、荷電粒子ビーム発生装置2のディフレクタ7に送られる。荷電粒子ビーム発生装置2は、ビームON/OFF信号80のビームONのタイミングにイオンビームを発生し、ビームOFFのタイミングではイオンビームを発生しない。同時に、RMW装置20は、RMW21の回転角を検出し、RMW21の回転位置がビームON/OFF信号と同期しているかを確認するインターロック(図示せず)を持つ。モータ24は、回転角度を検出する回転角検出装置(例えば、レゾルバ)を備えている。図6(C)に示すビーム形状82は、RMW21へ入射するビームを、ある時間間隔でサンプリングした時のビーム形状を示している。ビーム形状81は、ビーム形状82の時間積分を示している。
【0040】
次に同じ照射を、ガントリー角度を変えて実施する。ガントリーを回転すると、照射野形成装置から見たガントリーへのビーム入射形状が回転することになるため、ガントリーが120度回転するとRMW21へ入射するビーム形状も図4のビーム36に示すように120度回転する。このとき、ビーム形状36の長径方向はRMW21の径方向と合わず、RMW21の周方向に占めるビームサイズがビーム形状35と比較して大きくなる。
【0041】
ここで、図6(D)に示すビーム形状86は、RMW21へ入射するビームを、ある時間間隔でサンプリングした時のビーム形状を示している。ビーム形状85は、ビーム形状86の時間積分を示している。ビーム形状85は、ビーム形状86と比較して、RMW21のより広い段の範囲にビームが照射される。そのためビーム形状81により生成されるSOBPと比較してビーム形状85により生成されるSOBPは一様度が悪化する。
【0042】
そこで、本実施形態では、ガントリー角度を変えた場合には、図5に示すように、テーブル26及びテーブル27を移動させ、ビーム形状36の長径方向をRMWの径方向に合わせ、RMW21の周方向に占めるビームサイズをガントリー回転前と一致させる。テーブルを移動することによりRMW21へ入射するビームの形状がガントリー回転前と同じになるため、得られるSOBPの一様度は悪化しない。
【0043】
テーブル26及びテーブル27の位置はガントリー角度に応じてあらかじめ決められており、照射制御装置110により制御されて、ガントリー角度に応じて移動する。例えば、図4に示す状態が、ガントリー角度が0度の状態とする。このとき、(X−Y平面)におけるRMW21のビーム通過位置35Aを、(0,0)とする。ビーム通過位置35Aと、RMW21の回転中心の間の距離をY1とすると、RMW21の回転中心の位置は、(0,−Y1)である。
【0044】
一方、ガントリー角度をθ(図5の例では、120度)変えた場合でも、ビーム通過位置35Aは、(0,0)と変わらない。そのとき、RMW21の回転中心の位置(X2,Y2)は、(−Y1・sinθ,−Y1・cosθ)となる。すなわち、ガントリー角度をθ変えた場合の、テーブル26及びテーブル27の移動量は、(0−Y1・sinθ,−Y1−Y1・cosθ)である。
【0045】
なお、RMW21の回転中心の位置(X2,Y2)に対して、ビーム通過位置35Aから点対称の位置35Bにおいても、ビーム形状36の長径方向をRMWの径方向に合わせることができる。すなわち、ガントリー角度を120度変えた場合には、ガントリー角度を仮想的に300度(120度+180度)変えた場合(若しくは、−60度変えた場合)に相当する位置でも、ビーム形状36の長径方向をRMWの径方向に合わせることができる。この場合、ガントリー角度をθ変えた場合の、RMW21の回転中心の位置(X2,Y2)は、(−Y1・sin(θ+180),−Y1・cos(θ+180))であり、テーブル26及びテーブル27の移動量は、(0−Y1・sin(θ+180),−Y1−Y1・cos(θ+180))である。この例では、ビーム通過位置35Aとした場合に比べて、Y方向の移動量は半減できるが、X方向の移動量が倍になる。ガントリー角度が、0度〜360度[情4]である。変わる場合には、−90度〜90度の範囲で変わる場合と想定して、RMW21の位置を移動することができる。
【0046】
以上説明したように、本実施形態によれば、ガントリー角度に応じてRMW21へのビーム入射形状が変わっても、RMW21のビーム通過位置を任意に変えることが可能であるため、ガントリー角度によらずRMW21への入射ビーム形状を一定にすることができ、ガントリー角度によるSOBPの一様度悪化を抑制することができる。そのため、治療の質を向上することができる。
【0047】
次に、図7を用いて、本発明の第2の実施形態による粒子線治療装置の構成及び動作について説明する。なお、本実施形態による粒子線治療装置の全体構成は、図1に示したものと同様である。また、本実施形態による粒子線治療装置に用いられる照射野形成装置の構成は、図2に示したものと同様である。
【0048】
図7は、本発明の第2の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置のRMWの構成を示す斜視図である。
【0049】
本実施形態の粒子線治療装置は、図1,図2に示した粒子線治療装置1とは、RMW装置の構成が異なっている。
【0050】
RMW21Aは、被駆動ギア37、駆動ギア38によりビーム中心35Aを中心として回転可能なテーブル25の上に搭載される。被駆動ギア37、駆動ギア38は架台39に設置され、架台39はケーシング16に設置される。ガントリーの回転に応じて、モータM3によりギア37,38を介してテーブル25を矢印R2の方向に回転させることにより、RMW21へのビーム入射形状をガントリー角度に関わらず一定に保つことが可能になる。
【0051】
以上説明したように、本実施形態によれば、ガントリー角度に応じてRMW21へのビーム入射形状が変わっても、RMW21Aのビーム通過位置を任意に変えることが可能であるため、ガントリー角度によらずRMW21Aへの入射ビーム形状を一定にすることができ、ガントリー角度によるSOBPの一様度悪化を抑制することができる。そのため、治療の質を向上することができる。
【図面の簡単な説明】
【0052】
【図1】本発明の第1の実施形態による粒子線治療装置の全体構成を示すシステム構成図である。
【図2】本発明の第1の実施形態による粒子線治療装置に用いられる照射野形成装置の構成を示す縦断面図である。
【図3】本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置のRMWの構成を示す斜視図である。
【図4】本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置の構成を示す平面図である。
【図5】本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置の構成を示す平面図である。
【図6】図6は、本発明の第1の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置の動作説明図である。
【図7】本発明の第2の実施形態による粒子線治療装置の照射野形成装置に用いられるRMW装置のRMWの構成を示す斜視図である。
【符号の説明】
【0053】
1…粒子線治療装置
2…荷電粒子ビーム発生装置
3…前段加速器
4…シンクロトロン
5…高周波加速空洞
6…高周波印加装置
7…出射用デフレクタ
8…四極電磁石
9…偏向電磁石
10…イオンビーム輸送系
11…逆U字部
13…照射野形成装置
14…治療台
15…患者
16…ケーシング
17…ビーム経路
18…第一散乱体
19…第一散乱体支持部材
20…RMW装置、21…RMW
22,27…ボールネジ
23…タイミングベルト
24,M1,M2,M3…モータ
25,26…テーブル
29…回転軸
30…円筒部材
31…翼
32…開口部
33A、33B、33C、33D…RMWの段
35…ビーム形状
35A…ビーム通過位置
36…ビーム形状
37…被駆動ギア
38…駆動ギア
39…架台
41…第二散乱体
42…第二散乱体テーブル
45…飛程調整装置
50…第一ブロックコリメータ
56…患者ボーラス
57…患者コリメータ
59…患部
100…治療計画装置
110…照射制御装置
120…回転駆動装置

【特許請求の範囲】
【請求項1】
荷電粒子ビームを発生する荷電粒子ビーム発生装置と、
前記荷電粒子ビーム発生装置から出射された荷電粒子ビームを患部に照射する荷電粒子ビーム照射装置とを有し、
前記荷電粒子ビーム照射装置は、前記荷電粒子ビームが通過する回転可能なレンジモジュレーションホイールを備えるレンジモジュレーションホイール回転装置を有する粒子線治療装置であって、
前記レンジモジュレーションホイールは、荷電粒子ビーム進行方向に対して直交する平面内を移動可能であることを特徴とする粒子線治療装置。
【請求項2】
請求項1記載の粒子線治療装置において、
前記荷電粒子ビーム発生装置は、患部に対する荷電粒子ビームの照射角を変える回転ガントリを備え、
前記荷電粒子ビーム照射装置は、前記回転ガントリーの角度が変わっても前記レンジモジュレーションホイールへのビーム入射形状が変わらないように、前記レンジモジュレーションホイールの荷電粒子ビーム通過位置を、前記回転ガントリの角度に応じて変える制御手段を備えることを特徴とする粒子線治療装置。
【請求項3】
請求項2記載の粒子線治療装置において、
前記制御手段は、前記レンジモジュレーションホイールの回転位置に応じて、前記荷電粒子ビーム発生装置から発生する荷電粒子ビームのON/OFFを制御することを特徴とする粒子線治療装置。
【請求項4】
請求項3記載の粒子線治療装置において、
前記制御手段は、前記レンジモジュレーションホイールの回転中心と前記前記荷電粒子ビームの通過位置の距離をY1とするとき、前記回転ガントリの角度がθ変化した際に、前記レンジモジュレーションホイールを、荷電粒子ビーム進行方向に対して直交するX−Y平面内で、X軸方向に−Y1・sinθ移動し、Y軸方向に−Y1−Y1・cosθ移動するように、前記レンジモジュレーションホイールの位置を制御することを特徴とする粒子線治療装置。
【請求項5】
請求項4記載の粒子線治療装置において、
前記レンジモジュレーションホイール回転装置は、前記レンジモジュレーションホイールを回転駆動する第1の駆動源と、
前記レンジモジュレーションホイールを移動する第2の駆動源とを備え、
前記制御手段は、前記第2の駆動源を制御して、前記レンジモジュレーションホイールの位置を制御することを特徴とする粒子線治療装置。
【請求項6】
請求項5記載の粒子線治療装置において、
前記第2の駆動源は、前記レンジモジュレーションホイールを、荷電粒子ビーム進行方向に対して直交するX−Y平面内で、X軸方向に駆動する第1のモータと、Y軸方向に駆動する第2のモータとから構成されることを特徴とする粒子線治療装置。
【請求項7】
請求項5記載の粒子線治療装置において、
前記第2の駆動源は、前記レンジモジュレーションホイールを、荷電粒子ビーム進行方向に対して直交するX−Y平面内で、荷電粒子ビーム通過位置を中心にして回転するモータから構成されることを特徴とする粒子線治療装置。
【請求項8】
請求項3記載の粒子線治療装置において、
前記レンジモジュレーションホイールは、回転中心から半径方向に延びるとともに、周方向において階段状に配置され、前記荷電粒子ビームの通過厚みが異なる複数の平面領域を備え、
前記荷電粒子ビームは、前記レンジモジュレーションホイールの前記平面領域を通過する部分において、楕円形状の断面形状を備え、
前記制御手段は、前記回転ガントリの角度を変えた場合にも、前記荷電粒子ビームの長径方向と前記レンジモジュレーションホイールの径方向の位置関係が変わらないように、前記レンジモジュレーションホイールの荷電粒子ビーム通過位置を変えることを特徴とする粒子線治療装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−220647(P2010−220647A)
【公開日】平成22年10月7日(2010.10.7)
【国際特許分類】
【出願番号】特願2009−68033(P2009−68033)
【出願日】平成21年3月19日(2009.3.19)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】