説明

精製茶抽出物の製造方法

【課題】茶本来の風味を損なうことなく、没食子酸を効率よく除去しつつ非重合体カテキン類を収率よく回収することの可能な精製茶抽出物の製造方法を提供すること。
【解決手段】茶抽出物を、OH型アニオン交換樹脂及びH型カチオン交換樹脂に接触させる、精製茶抽出物の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、精製茶抽出物の製造方法に関する。
【背景技術】
【0002】
消費者嗜好の多様化や健康志向の高揚により、茶飲料が注目されている。茶飲料は、例えば、茶抽出物等を利用し非重合体カテキン類を溶解状態で配合して製造することができるが、茶飲料に配合される茶抽出物によっては、茶抽出物中の非重合体カテキン類のガレート体に起因する苦渋味や、没食子酸、シュウ酸、キナ酸等に起因する酸味により、茶本来の風味が損なわれることがあった。
【0003】
非重合体カテキン類のガレート体由来の苦渋味を低減する手段として、例えば、茶抽出物をタンナーゼ処理して非重合体カテキン類のガレート体を非重合体カテキン類と没食子酸に加水分解する方法が知られているが、非重合体カテキン類のガレート体由来の苦渋味は低減するものの、遊離した没食子酸により酸味が増強されてしまう。
【0004】
このような問題を改善すべく、例えば、茶抽出液をタンナーゼ処理した後、遊離した没食子酸を市販のアニオン交換樹脂と接触させて除去する方法が提案されている(特許文献1)。また、タンナーゼ処理した茶抽出液を、L−アスコルビン酸型アニオン交換樹脂と接触せしめ、没食子酸を選択的に除去する方法が提案されている(特許文献2)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−195458号公報
【特許文献2】特開2008−220202号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
市販のアニオン交換樹脂は、Cl型又はOH型で供給されている。しかしながら、茶抽出物をCl型アニオン交換樹脂と接触させると、雑味の発生により風味が悪化するという課題があることが判明した。これは没食子酸がアニオン交換樹脂に吸着されると同時に脱離した対イオンの影響であると推測される。また、茶抽出物をOH型アニオン交換樹脂と接触させると、pHが上昇して非重合体カテキン類が劣化し非重合体カテキン類の収率が大幅に低下し、雑味の発生により風味が悪化するという課題が見出された。
また、L−アスコルビン酸型アニオン交換樹脂と接触させる方法においては、風味の変化や没食子酸の吸着効率が低い場合があり、このため、より効率的に没食子酸を除去できる製造方法の創製が求められていた。
したがって、本発明の課題は、pH上昇や風味の悪化を生ずることなく、没食子酸を効率よく除去しつつ非重合体カテキン類を収率よく回収することの可能な精製茶抽出物の製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題に鑑み種々検討した結果、特定のアニオン交換樹脂と、特定のカチオン交換樹脂とを組み合わせて、茶抽出物に接触させることにより、イオン脱着によるpH上昇や雑味等の風味の悪化を生ずることなく、没食子酸を効率よく除去しつつ非重合体カテキン類を収率よく回収できることを見出した。
【0008】
すなわち、本発明は、茶抽出物を、OH型アニオン交換樹脂及びH型カチオン交換樹脂に接触させる、精製茶抽出物の製造方法を提供するものである。
【発明の効果】
【0009】
本発明によれば、没食子酸を効率よく除去しつつ、非重合体カテキン類を高収率で回収することができる。また、pH上昇や雑味等の風味の悪化を生ずることなく、より多くの茶抽出物をイオン交換樹脂に通液することが可能であり、生産性に極めて優れるものである。したがって、本発明の製造方法は、製造に要する労力及びコストを大幅に低減することができる。
【発明を実施するための形態】
【0010】
以下、本発明の精製茶抽出物の製造方法について説明する。
本発明の精製茶抽出物の製造方法は、茶抽出物を、OH型アニオン交換樹脂及びH型カチオン交換樹脂に接触させるものである。
【0011】
本発明で使用する「茶抽出物」としては、例えば、茶抽出液又はその濃縮物が挙げられ、その形態としては、固体、液体、溶液、スラリー等の種々のものがある。
ここで、「茶抽出液」とは、茶から熱水又は親水性有機溶媒を用いてニーダー抽出やカラム抽出等により抽出したものであって、濃縮や精製操作が行われていないものをいう。なお、親水性有機溶媒として、例えば、エタノール等のアルコールを使用することができる。
また、「茶抽出液の濃縮物」とは、茶から水又は親水性有機溶媒により抽出した茶抽出液から溶媒の少なくとも一部を除去して非重合体カテキン類濃度を高めたものをいい、例えば、特開昭59−219384号公報、特開平4−20589号公報、特開平5−260907号公報、特開平5−306279号公報等に記載の方法により調製することができる。
【0012】
抽出に使用する茶としては、例えば、Camellia属、例えば、C.var.sinensis(やぶきた種を含む)、C.var.assamica及びそれらの雑種から選択される茶樹が挙げられる。茶樹は、その加工方法により、不発酵茶、半発酵茶、発酵茶に大別することができる。
不発酵茶としては、例えば、煎茶、番茶、碾茶、釜入り茶、茎茶、棒茶、芽茶の緑茶が挙げられる。また、半発酵茶としては、例えば、鉄観音、色種、黄金桂、武夷岩茶等の烏龍茶が挙げられる。更に、発酵茶としては、ダージリン、アッサム、スリランカ等の紅茶が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。中でも、非重合体カテキン類の含有量の点から、緑茶が好ましい。
ここで、「非重合体カテキン類」とは、カテキン、ガロカテキン、カテキンガレート及びガロカテキンガレート等の非エピ体カテキン類、並びにエピカテキン、エピガロカテキン、エピカテキンガレート及びエピガロカテキンガレート等のエピ体カテキン類を併せての総称である。非重合体カテキン類濃度は、上記8種の合計量に基づいて定義される。
【0013】
本発明においては、茶抽出液又はその濃縮物の固形物として、例えば、三井農林(株)の「ポリフェノン」、伊藤園(株)の「テアフラン」、太陽化学(株)の「サンフェノン」等の市販品を使用することもできる。
【0014】
本発明で使用する茶抽出物は、溶媒を含んでいてもよい。溶媒としては水を好ましく用いることができ、更に有機溶媒を含んでいてもよい。有機溶媒としては、被吸着物質の解離性の点から、親水性有機溶媒が好ましい。具体的には、アセトン等のケトン、メタノール、エタノール等のアルコールが挙げられる。中でも、飲食品への使用の観点から、アルコール、更にエタノールが好ましい。なお、有機溶媒を使用する場合は、有機溶媒水溶液中の有機溶媒濃度は適宜選択することが可能であるが、風味、没食子酸の除去効率及び非重合体カテキン類の収率の観点から、その下限が10質量%、更に30質量%、更に50質量%であることが好ましく、他方上限は95質量%、更に90質量%、更に85質量%、更に80質量%、更に75質量%、殊更に70質量であることが好ましい。有機溶媒水溶液中の有機溶媒濃度の範囲としては、10〜95質量%、更に30〜90質量%、更に50〜85質量%、更に50〜80質量%、更に50〜75質量%、殊更に50〜70質量%が好ましい。
【0015】
また、本発明においては、茶抽出物として、タンナーゼ処理したものを使用してもよい。「タンナーゼ処理」とは、茶抽出物を、タンナーゼ活性を有する酵素と接触させることをいう。タンナーゼ活性を有する酵素としては、例えば、アスペルギルス属、ペニシリウム属、リゾプス属のタンナーゼ生産菌を培養して得られるタンナーゼが挙げられる。中でも、アスペルギルス オリゼー由来のものが好ましい。なお、タンナーゼ処理における具体的な操作方法は公知の方法を採用することが可能であり、例えば、特開2004−321105号公報に記載の方法が挙げられる。
【0016】
タンナーゼ処理により、非重合体カテキン類のガレート体が非ガレート体と没食子酸に加水分解される。ここで、「非重合体カテキン類のガレート体(以下、単に「ガレート体」とも称する)」とは、カテキンガレート、ガロカテキンガレート、エピカテキンガレート、エピガロカテキンガレート等を併せての総称であり、「ガレート体率」とは、非重合体カテキン類の総量に対する上記ガレート体4種の質量比率である。茶抽出物中のガレート体率は、5〜60質量%が好ましく、10〜50質量%がより好ましく、20〜40質量%が更に好ましく、25〜40質量%が更に好ましい。
本発明の製造方法は、没食子酸を効率よく除去可能であるから、タンナーゼ処理後の茶抽出物の精製に有効である。
【0017】
本発明で使用する茶抽出物は、没食子酸の除去効率及び非重合体カテキン類の収率の観点から、非重合体カテキン類濃度が0.1〜15質量%、更に0.5〜10質量%、更に0.8〜5質量%、殊更に1〜5質量%であることが好ましい。
【0018】
また、本発明で使用する茶抽出物は、没食子酸濃度が0.05〜1質量%、更に0.1〜1質量%、更に0.2〜0.8質量%、更に0.3〜0.7質量%、殊更0.4〜0.6質量%であることが好ましい。
【0019】
更に、本発明で使用する茶抽出物は、没食子酸/非重合体カテキン類の質量比が0.01〜1、更に0.03〜0.7、更に0.05〜0.5、更に0.07〜0.3であることが好ましい。
【0020】
本発明で使用するOH型アニオン交換樹脂は、対イオンとして水酸化物イオンを有するものである。
OH型アニオン交換樹脂の樹脂母体、母体構造及び形態は特に限定されず、適宜選択して使用することができる。
樹脂母体としては、例えば、スチレン−ジビニルベンゼン等のスチレン系、及び(メタ)アクリル酸系等が挙げられる。ここで、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸を包含する概念である。中でも、没食子酸の除去効率及び非重合体カテキン類の収率の観点から、茶抽出物の溶媒として水を使用する場合には、スチレン系が好ましい。
また、母体構造としては、例えば、ゲル型、ポーラス型が挙げられる。ここで「ゲル型」とは、膨潤によって生じる細孔であるミクロポアのみを有するものをいい、また「ポーラス型」とは、ミクロポアの他に、乾燥状態でも消滅しない物理的細孔であるマクロポアを有するものをいう。中でも、没食子酸の除去効率及び非重合体カテキン類の収率の観点から、ゲル型が好ましい。
OH型アニオン交換樹脂の形態としては、例えば、粉状、球状、繊維状、膜状等が挙げられる。
【0021】
OH型アニオン交換樹脂には、強塩基性及び弱塩基性が存在するが、中でも、没食子酸の除去効率及び非重合体カテキン類の収率の観点から、茶抽出物の溶媒として水を使用する場合には、強塩基性のものが好ましく、一方、茶抽出物の溶媒として有機溶媒を含む場合には、弱塩基性のものが好ましい。
【0022】
また、OH型アニオン交換樹脂のイオン交換容量は特に限定されないが、没食子酸の除去効率及び風味の観点から、0.5〜4.0meq/mL、更に0.8〜2.5meq/mL、更に1.0〜2.0meq/mL、更に1.2〜1.6meq/mL、更に1.2〜1.5meq/mLであることが好ましい。ここで、「イオン交換容量」とは、イオン交換樹脂1mL当たりの交換可能なイオン量(ミリ当量)であり、例えば、「オルガノ(株)編,イオン交換樹脂その技術と応用 基礎編,1997年,改訂2版,p.155-181」に準拠して測定することができる。
【0023】
本発明で使用するOH型アニオン交換樹脂は、公知の方法により製造したものでも、市販品でもよい。市販の弱塩基性OH型アニオン交換樹脂として、例えば、ダイアイオンWA10、WA30(以上、三菱化学社製)、デュオライトA375LF、A−7(以上、住友化学社製)、アンバーライトIRA67、IRA96SB(以上、オルガノ社製)が挙げられる。
また、強塩基性OH型アニオン交換樹脂として、例えば、ダイアイオンSA10A、SA20A(以上、三菱化学社製)、アンバーライトIRA400J、IRA402BL、IRA404J(以上、オルガノ社製)等の再生型が挙げられる。
【0024】
なお、OH型アニオン交換樹脂は、アニオン交換樹脂の対イオンを水酸化物イオンに交換して製造することも可能である。具体的には、Cl型アニオン交換樹脂を水酸化ナトリウム水溶液と少なくとも1回接触させる方法が挙げられる。水酸化ナトリウム水溶液中の水酸化ナトリウム濃度は0.1〜15質量%、更に1〜10質量%であることが好ましい。また、アニオン交換樹脂と接触させる際の1回当たりの水酸化ナトリウム水溶液の使用量は、アニオン交換樹脂の全質量に対して2〜100倍量、更に4〜40倍量であることが好ましい。水酸化ナトリウム水溶液との接触後においては、アニオン交換樹脂の全質量に対して5〜50倍量の水で洗浄することが好ましい。なお、Cl型アニオン交換樹脂としては、ダイアイオンSA10A、SA20A(以上、三菱化学社製)、アンバーライトIRA400J、IRA402BL、IRA404J(以上、オルガノ社製)等が挙げられる。
【0025】
OH型アニオン交換樹脂の使用量は、没食子酸の除去効率及び非重合体カテキン類の収率の観点から、アニオン交換樹脂の交換容量が、茶抽出液中の没食子酸量に対し0.5〜10モル倍、更に0.8〜6モル倍、更に1〜5モル倍、殊更1.1〜4モル倍となる量であることが好ましい。また、OH型アニオン交換樹脂の体積使用量は、茶抽出物の体積に対して0.01〜1倍量、更に0.0125〜0.1倍量、更に0.02〜0.05倍量であることが好ましい。
【0026】
一方、本発明で使用するH型カチオン交換樹脂は、対イオンとして水素イオンを有するものである。本発明においては、H型カチオン交換樹脂を併用することにより、OH型アニオン交換樹脂から脱離した水酸化物イオンによるpH上昇を抑制するとともに、茶抽出物の雑味を抑制することができる。
H型カチオン交換樹脂には、強酸性及び弱酸性のものが存在するが、中でも、より大きな通液倍数の処理が可能であるという観点より、強酸性のものが好ましい。また、H型カチオン交換樹脂のイオン交換容量は特に限定されないが、風味の観点から、0.5〜4.0meq/mL、更に1〜3meq/mL、更に1.5〜2.5meq/mLであることが好ましい。
【0027】
H型カチオン交換樹脂の使用量は、H型カチオン交換樹脂の化学種類に応じて適宜設定することが可能である。例えば、強酸性のH型カチオン交換樹脂を使用する場合、OH型アニオン交換樹脂のイオン交換容量に対して、好ましくは10〜120%、より好ましくは20〜100%、更に好ましくは30〜80%、更に好ましくは40〜70%の範囲内であり、一方、弱酸性のH型カチオン交換樹脂を使用する場合、OH型アニオン交換樹脂のイオン交換容量に対して、好ましくは50〜300%、より好ましくは100〜250%、更に好ましくは120〜200%の範囲内である。
【0028】
茶抽出物と、OH型アニオン交換樹脂及びH型カチオン交換樹脂との接触は、茶抽出物にイオン交換樹脂を添加し撹拌して吸着させた後、ろ過操作によりイオン交換樹脂を回収するバッチ方式、あるいはイオン交換樹脂を充填したカラムに茶抽出物を通液して連続的に吸着処理を行なうカラム方式などを採用することができる。
バッチ方式を採用する場合、接触方法としては、OH型アニオン交換樹脂及びH型カチオン交換樹脂の混合物と接触させても、OH型アニオン交換樹脂とH型カチオン交換樹脂を任意の順序で接触させてもよい。一方、カラム方式を採用する場合、OH型アニオン交換樹脂及びH型カチオン交換樹脂の混合物をカラムに充填して接触させても、OH型アニオン交換樹脂とH型カチオン交換樹脂を別個独立のカラムに充填し、これらを任意の順序で接触させてもよい。また、OH型アニオン交換樹脂とH型カチオン交換樹脂を充填した各カラムを直列に接続して接触させることもできる。
【0029】
アニオン交換樹脂として弱塩基性OH型アニオン交換樹脂を使用する場合は、OH型アニオン交換樹脂及びH型カチオン交換樹脂の混合物と接触させるか、あるいはH型カチオン交換樹脂とOH型アニオン交換樹脂とを任意の順序で接触させることができる。
一方、アニオン交換樹脂として強塩基性OH型アニオン交換樹脂を使用する場合にも弱塩基性OH型アニオン交換樹脂と同様の接触方法を採用することができるが、非重合体カテキン類収率の観点より、OH型アニオン交換樹脂及びH型カチオン交換樹脂の混合物と接触させるか、あるいはH型カチオン交換樹脂と接触させた後、OH型アニオン交換樹脂と接触させることが好ましい。
【0030】
接触時間は製造スケール等により一様ではなく適宜決定することが可能であるが、0.5〜10時間、更に1〜5時間が好ましい。
【0031】
また、OH型アニオン交換樹脂への接触とH型カチオン交換樹脂への接触の間には他の操作を行うことなく引き続き接触操作を行うことが好ましい。これにより、精製茶抽出物の安定性がより一層改善されるとともに、より多くの茶抽出液を通液させて生産性を向上させることができる。
茶抽出物の通液条件は、OH型アニオン交換樹脂体積量を基準とした空塔速度(SV)が1〜60/hr、更に3〜30/hr、更に5〜15/hrであることが、生産効率かつpH変動による風味低下抑制の点で好ましい。
【0032】
また、OH型アニオン交換樹脂及びH型カチオン交換樹脂と接触させる際の温度は、0〜40℃、更に10〜35℃、更に20〜30℃であることが好ましい。
【0033】
接触処理後、処理液をそのまま使用してもよいが、必要により溶媒の除去及び/又は加水してもよい。更に、溶媒の除去及び/又は加水により生成した沈殿物を固液分離により除去してもよい。これにより、精製茶抽出物の風味及び安定性をより一層向上させることができる。なお、固液分離の操作としては食品工業で通常使用されている方法を採用することができるが、例えば、ろ過、遠心分離処理等が挙げられ、これらは組み合わせて行うことができる。
【0034】
このようにして、本発明の精製茶抽出物が得られるが、茶抽出物を基準として、好ましくは70%以上、更に好ましくは80%以上、更に好ましくは90%以上の収率で非重合体カテキン類を回収することができる。
【0035】
本発明の精製茶抽出物は製品形態が液体でも固体でもよく、固体が望ましい場合は、噴霧乾燥や凍結乾燥等の公知の方法により粉体化することができる。
【0036】
本発明の精製茶抽出物は、色相が改善されたものとすることができる。
精製茶抽出物の色相(OD450)は、好ましくは0.3以下、更に好ましくは0、28以下、更に好ましくは0.25以下である。ここで、本明細書において「色相(OD450)」とは、精製茶抽出物を、非重合体カテキン類濃度が175mg/100mLとなるようにイオン交換水で希釈し、吸光度計にて測定したときの450nmにおける吸光度をいう。
【0037】
また、本発明の精製緑茶抽出物は、没食子酸由来の酸味が抑制され、茶本来の風味を味わうことができるため、幅広い用途展開が可能である。例えば、本発明の精製緑茶抽出物をそのまま、濃縮又は加水して飲食品の原料として使用することが可能である。
【実施例】
【0038】
(1)非重合体カテキン類及び没食子酸の測定
各実施例及び比較例で得られた精製茶抽出物をフィルター(0.45μm)で濾過し、高速液体クロマトグラフ(型式SCL−10AVP、島津製作所製)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム(L−カラムTM ODS、4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により行った。カテキン類の標準品としては、三井農林製のものを使用し、検量線法で定量した。移動相A液は酢酸を0.1mol/L含有する蒸留水溶液、B液は酢酸を0.1mol/L含有するアセトニトリル溶液とし、試料注入量は20μL、UV検出器波長は280nmの条件で行った。
【0039】
(2)色相(OD450)の測定
各実施例及び比較例で得られた精製茶抽出物を、非重合体カテキン類濃度が175mg/100mLとなるようにイオン交換水で希釈し、光路長1cmの石英セルを用い、吸光度計にて20℃にて450nmの吸光度を測定した。
【0040】
(3)没食子酸除去率の算出
カラム出口で採取した処理液全体中の非重合体カテキン類の質量が、カラムに通液する前の茶抽出物中の非重合体カテキン類の質量に対して70%となったとき(以下、「非重合体カテキン類収率70%時」という)の没食子酸の質量を算出した。非重合体カテキン類収率70%時の没食子酸の質量を、カラムに通液する前の茶抽出物中の没食子酸の質量で除し、100を乗ずることで没食子酸の残存率(%)を算出した。100から没食子酸の残存率を減ずることで、没食子酸の除去率(%)を算出した。
【0041】
(4)官能評価
各実施例及び比較例で得られた精製茶抽出物を、非重合体カテキン類濃度が175mg/100mLとなるようにイオン交換水で希釈して風味評価を行った。風味評価はパネラー5名により行い、協議によりスコアを決定した。風味評価は酸味と雑味に関して下記の基準で行い、評点は数値が大きいほど、風味が良好であることを意味する。
【0042】
(酸味の評価基準)
評点3:酸味なし
評点2:弱い酸味あり
評点1:強い酸味あり
【0043】
(雑味の評価基準)
評点4:雑味がかなり少ない
評点3:雑味が少ない
評点2:雑味がある
評点1:雑味が多い
【0044】
製造例1
茶抽出物1の製造
あらかじめタンナーゼ処理された緑茶抽出物の乾燥粉末(非重合体カテキン類濃度30質量%、非重合体カテキン類中のガレート体率32質量%、没食子酸濃度3.7質量%)200gを6000gのイオン交換水に25℃で30分間攪拌溶解し、茶抽出物1を調製した。茶抽出物1の分析結果は、以下の通りである。
【0045】
茶抽出物1中の非重合体カテキン類含有量=0.96質量%
茶抽出物1中の没食子酸含有量=0.119質量%
茶抽出物1中のガレート体率=32質量%
茶抽出物1中の没食子酸/非重合体カテキン類の質量比=0.123
【0046】
製造例2
茶抽出物2の製造
あらかじめタンナーゼ処理した緑茶抽出物の乾燥粉末(非重合体カテキン類濃度30質量%、非重合体カテキン類中のガレート体率32質量%、没食子酸濃度3.7質量%)130gをイオン交換水870gに25℃で15分間攪拌溶解し、茶抽出物2を調製した。茶抽出物2の分析結果は、次のとおりである。
【0047】
茶抽出物2中の非重合体カテキン類含有量=3.90質量%
茶抽出物2中の没食子酸含有量=0.481質量%
茶抽出物2中のガレート体率=32.0質量%
茶抽出物2中の没食子酸/非重合体カテキン類の質量比=0.123
【0048】
製造例3
茶抽出物3の製造
250r/minで攪拌条件下の92.4質量%エタノール水溶液800g中に酸性白土(ミズカエース#600、水澤化学社製)100gを投入し、約10分間攪拌した。次に、あらかじめタンナーゼ処理した緑茶抽出物の乾燥粉末(非重合体カテキン類濃度30質量%、非重合体カテキン類中のガレート体率32質量%、没食子酸濃度3.7質量%)200gを投入し、室温のまま6時間の攪拌を続けた(pH5.0)。その後、生成している沈殿を2号ろ紙でろ過し、ろ液を840g得た。得られたろ液にイオン交換水を405g添加し、操作温度25℃で析出した濁り成分を分離し(6000rpm、15分)、茶抽出物3を調製した。茶抽出物3の分析結果は、次のとおりである。
【0049】
茶抽出物3中の非重合体カテキン類含有量=3.90質量%
茶抽出物3中の没食子酸含有量=0.445質量%
茶抽出物3中のガレート体率=31.3質量%
茶抽出物3中の没食子酸/非重合体カテキン類の質量比=0.114
【0050】
市販のイオン交換樹脂を下記のように前処理又は調製し、使用した。
【0051】
(1)強塩基性OH型アニオン交換樹脂「SA10A(OH)」
強塩基性Cl型アニオン交換樹脂(ダイヤイオンSA10A、イオン交換容量1.3meq/mL、三菱化学社製)120mLを内径2.2cmのカラムに充填した。その後、60℃のイオン交換水をSV=10(h−1)、イオン交換樹脂充填体積に対する通液量BV=200(v/v)の条件で通液し、樹脂の洗浄を行った。さらに、濃度2mol/LのNaOH水溶液をSV=4(h−1)、イオン交換樹脂充填体積に対する通液量BV=18(v/v)の条件で通液し、OH型とした。その後、25℃のイオン交換水をSV=10(h−1)、イオン交換樹脂充填体積に対する通液量BV=40(v/v)の条件で通液し、強塩基性OH型アニオン交換樹脂を製造した。以下、「SA10A(OH)」と表記する。
【0052】
(2)弱塩基性OH型アニオン交換樹脂「WA10(OH)」
弱塩基性OH型アニオン交換樹脂(ダイヤイオンWA10、イオン交換容量1.2meq/mL、三菱化学社製)100mLを内径2.2cmのカラムに充填した。その後、50℃のイオン交換水をSV=10(h-1)、イオン交換樹脂充填体積に対する通液量BV=40(v/v)の条件で通液し、樹脂の洗浄を行なった。以下、「WA10(OH)」と表記する。
【0053】
(3)弱塩基性OH型アニオン交換樹脂「WA30(OH)」
弱塩基性OH型アニオン交換樹脂(ダイヤイオンWA30、イオン交換容量1.5meq/mL、三菱化学社製)100mLを内径2.2cmのカラムに充填した。その後、50℃のイオン交換水をSV=10(h-1)、イオン交換樹脂充填体積に対する通液量BV=40(v/v)の条件で通液し、樹脂の洗浄を行なった。以下、「WA30(OH)」と表記する。
【0054】
(4)弱塩基性アスコルビン酸型アニオン交換樹脂「WA10(アスコルビン酸)」
弱塩基性OH型アニオン交換樹脂(ダイヤイオンWA10、イオン交換容量1.2meq/mL、三菱化学社製)を106g採取し、これと5.0質量%アスコルビン酸水溶液1200gとを75分間混合攪拌した。次いで、濾別により弱塩基性イオン交換樹脂を回収した後、5.0質量%アスコルビン酸水溶液1200gを用いて75分間の混合攪拌を3回繰り返し行い、アスコルビン酸由来のアニオン基を有する弱塩基性イオン交換樹脂(弱塩基性アスコルビン酸型アニオン交換樹脂)を製造した。その後、弱塩基性アスコルビン酸型アニオン交換樹脂を水1200gで3回水洗した。以下、「WA10(アスコルビン酸)」と表記する。
【0055】
(5)強酸性H型カチオン交換樹脂「SK1BH」
強酸性H型カチオン交換樹脂(ダイヤイオンSK1BH、イオン交換容量2.0meq/mL、三菱化学社製)100mLを内径2.2cmのカラムに充填した。その後、80℃のイオン交換水をSV=10(h-1)、BV=100(v/v)の条件で通液し、樹脂の洗浄を行った。以下、「SK1BH」と表記する。
【0056】
(6)弱酸性H型イオン交換樹脂「WK40L」
弱酸性H型カチオン交換樹脂(ダイヤイオンWK40L、イオン交換容量4.4meq/mL、三菱化学社製)120mlを内径2.2cmのカラムに充填した。その後、80℃のイオン交換水をSV=10(h-1)、BV=100(v/v)の条件で通液し、樹脂の洗浄を行った。以下、「WK40L」と表記する。
【0057】
実施例1
強酸性H型カチオン交換樹脂「SK1BH」16mLを内径2.2cmのカラムに充填した。次いで、強塩基性OH型アニオン交換樹脂「SA10A(OH)」40mLを内径2.2cmのカラムに充填した。
次いで、茶抽出物1を、上記カラムにカチオン交換樹脂、アニオン交換樹脂の順で通液した。なお、通液はアニオン交換樹脂に対してSV=7.5(h-1)の条件で行った。カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。
実施例1の製造条件、精製茶抽出物の分析値を表1に示す。また、非重合体カテキン類収率70質量%時の没食子酸除去率は98%であった。茶抽出物のカラムへの通液は25℃で行った(以下の実施例、比較例においても同じ)。
【0058】
実施例2
弱酸性H型イオン交換樹脂「WK40L」20mLを内径2.2cmのカラムに充填した。次いで、強塩基性OH型アニオン交換樹脂「SA10A(OH)」40mLを内径2.2cmのカラムに充填した。
次いで、茶抽出物1を、上記カラムにカチオン交換樹脂、アニオン交換樹脂の順で通液した。なお、通液はアニオン交換樹脂に対してSV=10(h-1)の条件で行った。カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。
実施例2の製造条件、精製茶抽出物の分析値を表1に示す。また、非重合体カテキン類収率70質量%時の没食子酸除去率は82%であった。
【0059】
実施例3
強酸性H型カチオン交換樹脂「SK1BH」12.8mLと、強塩基性OH型アニオン交換樹脂「SA10A(OH)」40mLを混合し、内径2.2cmのカラムに充填した。
茶抽出物1を、アニオン交換樹脂に対してSV=10(h-1)の条件で通液し、カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。
実施例3の製造条件、精製茶抽出物の分析値を表1に示す。また、非重合体カテキン類収率70質量%時の没食子酸除去率は90%であった。
【0060】
実施例4
弱酸性H型イオン交換樹脂「WK40L」20mLと、強塩基性OH型アニオン交換樹脂「SA10A(OH)」40mLを混合し、内径2.2cmのカラムに充填した。
茶抽出物1を、アニオン交換樹脂に対してSV=7.5(h-1)の条件で通液し、カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。
実施例4の製造条件、精製茶抽出物の分析値を表1に示す。また、非重合体カテキン類収率70質量%時の没食子酸除去率は97%であった。
【0061】
比較例1
強塩基性OH型アニオン交換樹脂「SA10A(OH)」40mLを内径2.2cmのカラムに充填した。
茶抽出物1を、アニオン交換樹脂に対してSV=10(h-1)の条件で通液し、カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。比較例1の製造条件、精製茶抽出物の分析値を表1に示す。また、非重合体カテキン類収率70質量%時の没食子酸除去率は58%であった。
【0062】
【表1】

【0063】
表1は、溶媒として水を用いて茶抽出物を精製した具体例である。実施例の製造方法は、比較例の製造方法に比べて、非重合体カテキン類収率70%時の没食子酸の除去率が優れていた。また、没食子酸/非重合体カテキン類の質量比=0.044まで通液した場合、通液倍数(BV)が大きく、多量の茶抽出物を処理することができた。また、非重合体カテキン類の収率も高いものであった。実施例の製造方法で得られた精製茶抽出物は、pHが弱酸性領域にコントロールされ、比較例に比べ雑味が顕著に改善され、色相も良好であった。
【0064】
実施例5
弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLと、強酸性H型カチオン交換樹脂「SK1BH」3mL(アニオン交換樹脂交換容量に対して33%容量分)を混合し、内径2.2cmのカラムに充填した。
次いで、茶抽出物2を、アニオン交換樹脂量に対してSV=9(h-1)の条件で通液し、カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。アニオン交換樹脂体積の20倍であった(BV=20(v/v))。
実施例5の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表2に示す。
【0065】
実施例6
強酸性H型カチオン交換樹脂「SK1BH」9mL(アニオン交換樹脂交換容量に対して100%容量分)を、内径2.2cmのカラムに充填した。次いで、弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLを内径2.2cmの別のカラムに充填した。
次いで、茶抽出物2を、上記カラムにアニオン交換樹脂、カチオン交換樹脂の順で通液した。なお、通液は、アニオン交換樹脂量に対してSV=9(h-1)の条件で行った。カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。アニオン交換樹脂体積の24倍であった(BV=24(v/v))。
実施例6の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表2に示す。
【0066】
比較例2
弱塩基性アスコルビン酸型アニオン交換樹脂「WA10(アスコルビン酸型)」15mLを内径2.2cmのカラムに充填し、茶抽出物2をSV=9(h-1)の条件で通液した。
カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。通液量は、アニオン交換樹脂体積の12倍であった(BV=12(v/v))。
比較例2の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表2に示す。
【0067】
比較例3
弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLを内径2.2cmのカラムに充填し、茶抽出物2をSV=9(h-1)の条件で通液した。カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。
比較例3の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表2に示す。
【0068】
【表2】

【0069】
表2は、溶媒として水を用いて茶抽出物を精製した具体例である。実施例の製造方法はいずれも比較例の製造方法に比べて、pHが弱酸性領域にコントロールされ、非重合体カテキン類の風味が良好であった。一方、アニオン交換樹脂による処理のみを行ったもの(比較例2,比較例3)では雑味が劣るものであった。
【0070】
実施例7
弱塩基性OH型アニオン交換樹脂「WA10(OH)」8mL(イオン交換容量として9.6meq)と、強酸性H型カチオン交換樹脂「SK1BH」1.6mL(アニオン交換樹脂のイオン交換容量に対して、33%容量分)を、100gの茶抽出物3に混合し、振とう機にて12時間振とうを行った。その後、2号ろ紙で樹脂を取り除き、得られた処理液から40℃、2.7kPaでエタノールを留去し、その後、水分量を調整して精製緑茶抽出物を得た。実施例7の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表3に示す。
【0071】
実施例8
弱塩基性OH型アニオン交換樹脂「WA30(OH)」8mLと、強酸性H型カチオン交換樹脂「SK1BH」2mL(アニオン交換樹脂交換容量に対して33%容量分)を、100gの茶抽出物3に混合し、振とう機にて4時間振とうを行った。その後、2号ろ紙で樹脂を取り除き、得られた処理液を40℃、2.7kPaでエタノールを留去し、その後、水分量を調整して精製緑茶抽出物を得た。実施例8の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表3に示す。
【0072】
比較例4
弱塩基性OH型アニオン交換樹脂「WA10(OH)」8mL(イオン交換容量として9.6meq)を、100gの茶抽出物3に混合し、振とう機にて12時間振とうを行った。その後、実施例7同様の処理を行い、精製緑茶抽出物を得た。比較例4の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表3に示す。
【0073】
【表3】

【0074】
表3は、溶媒として有機溶媒水溶液(エタノール濃度60質量%)が含まれる茶抽出物を、バッチ式により精製した具体例である。実施例の製造方法はいずれも比較例の製造方法に比べて、非重合体カテキン類の収率が高いものであった。また、pHが弱酸性領域にコントロールされ、比較例に比べ雑味が顕著に改善され、色相も良好であった。
【0075】
実施例9
弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLと、強酸性H型カチオン交換樹脂「SK1BH」3mL(アニオン交換樹脂交換容量に対して33%容量分)を混合し、内径2.2cmのカラムに充填した。
次いで、茶抽出物3を、アニオン交換樹脂量に対してSV=9(h-1)の条件で通液し、カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。通液量は570mLであり、アニオン交換樹脂体積の38倍であった(BV=38(v/v))。通液した茶抽出液中の没食子酸は2.5g(14.7meq)であり、没食子酸に対するアニオン交換樹脂の交換容量は1.22モル倍であった。
得られた処理液を40℃、2.7kPaでエタノールを留去し、その後、水分量を調整して精製緑茶抽出物を得た。実施例9の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表4に示す。
【0076】
実施例10
強酸性H型カチオン交換樹脂「SK1BH」の使用量を9mL(アニオン交換樹脂交換容量に対して100%容量分)に変更したこと以外は、実施例9と同様な操作を行い、精製緑茶抽出物を得た。実施例10の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表4に示す。
【0077】
実施例11
強酸性H型カチオン交換樹脂「SK1BH」3mL(アニオン交換樹脂交換容量に対して33%容量分)を、内径2.2cmのカラムに充填した。次いで、弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLを、内径2.2cmの別のカラムに充填した。
次いで、茶抽出物3を、上記カラムにカチオン交換樹脂、アニオン交換樹脂の順で通液した。なお、通液は、アニオン交換樹脂量に対してSV=9(h-1)の条件で行った。アニオン交換カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。得られた処理液を40℃、2.7kPaでエタノールを留去し、その後、水分量を調整して精製緑茶抽出物を得た。実施例11の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表4に示す。
【0078】
実施例12
強酸性H型カチオン交換樹脂「SK1BH」3mL(アニオン交換樹脂交換容量に対して33%容量分)を、内径2.2cmのカラムに充填した。次いで、弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLを内径2.2cmの別のカラムに充填した。
次いで、茶抽出物3を、上記カラムにアニオン交換樹脂、カチオン交換樹脂の順で通液した。なお、通液は、アニオン交換樹脂量に対してSV=9(h-1)の条件で行った。カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。得られた処理液を40℃、2.7kPaでエタノールを留去し、その後、水分量を調整して精製緑茶抽出物を得た。実施例12の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表4に示す。
【0079】
実施例13
強酸性H型カチオン交換樹脂「SK1BH」の使用量を9mL(アニオン交換樹脂交換容量に対して100%容量分)に変更したこと以外は、実施例12と同様な操作を行い、精製緑茶抽出物を得た。実施例13の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表4に示す。
【0080】
比較例5
弱塩基性OH型アニオン交換樹脂「WA10(OH)」15mLを内径2.2cmのカラムに充填し、茶抽出物3をSV=9(h-1)の条件で通液した。カラム出口で採取した処理液全体の没食子酸/非重合体カテキン類の質量比が0.044になったところで通液を停止した。得られた処理液を40℃、2.7kPaでエタノールを留去し、その後、水分量を調整して精製緑茶抽出物を得た。比較例5の製造条件、並びに精製緑茶抽出物の分析値及び評価結果を表4に示す。
【0081】
【表4】

【0082】
表4は、溶媒として有機溶媒水溶液(エタノール濃度60質量%)が含まれる茶抽出物をカラム式で精製した具体例である。実施例の製造方法はいずれも比較例の製造方法に比べて、pHが弱酸性領域にコントロールされ、比較例に比べ雑味が顕著に改善され、色相も良好であった。

【特許請求の範囲】
【請求項1】
茶抽出物を、OH型アニオン交換樹脂及びH型カチオン交換樹脂に接触させる、精製茶抽出物の製造方法。
【請求項2】
茶抽出物をOH型アニオン交換樹脂とH型カチオン交換樹脂との混合物に接触させる、請求項1記載の精製茶抽出物の製造方法。
【請求項3】
茶抽出物をH型カチオン交換樹脂に接触させた後、OH型アニオン交換樹脂に接触させる、請求項1記載の精製茶抽出物の製造方法。
【請求項4】
茶抽出物をOH型アニオン交換樹脂に接触させた後、H型カチオン交換樹脂に接触させる、請求項1記載の精製茶抽出物の製造方法。
【請求項5】
OH型アニオン交換樹脂が弱塩基性OH型アニオン交換樹脂である、請求項1〜4いずれか1項に記載の精製茶抽出物の製造方法。
【請求項6】
OH型アニオン交換樹脂が強塩基性OH型アニオン交換樹脂である、請求項1〜3いずれか1項に記載の精製茶抽出物の製造方法。
【請求項7】
OH型アニオン交換樹脂は、母体構造がゲル型である、請求項1〜6のいずれか1項に記載の精製茶抽出物の製造方法。
【請求項8】
茶抽出物がタンナーゼ処理されたものである、請求項1〜7のいずれか1項に記載の精製茶抽出物の製造方法。
【請求項9】
茶抽出物が溶媒として有機溶媒を含む、請求項1〜8のいずれか1項に記載の精製茶抽出物の製造方法。

【公開番号】特開2012−147782(P2012−147782A)
【公開日】平成24年8月9日(2012.8.9)
【国際特許分類】
【出願番号】特願2011−289919(P2011−289919)
【出願日】平成23年12月28日(2011.12.28)
【出願人】(000000918)花王株式会社 (8,290)
【Fターム(参考)】