説明

絶縁診断方法、絶縁診断システムおよび回転電機

【課題】診断対象機器の絶縁欠陥種別を判別する。
【解決手段】診断対象機器から発生する信号を計測し、計測された信号から最大振幅強度を示す周波数または周波数帯域を検出する(ステップ0702、0704、0706)。そして、検出された最大振幅強度を示す周波数または周波数帯域に基づいて、診断対象機器の絶縁欠陥種別を判別する(ステップ0703、0705、0707)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁診断方法、絶縁診断システムおよび回転電機に関する。
【背景技術】
【0002】
ガス絶縁機器内で発生する部分放電を検出器により検出して部分放電信号を周波数解析し、解析結果の数百MHz〜数GHzの周波数スペクトルに基づいて、またはガス絶縁機器の印加周波数に同期している部分放電の電圧位相に基づいて、絶縁欠陥種別を推定するようにしたガス絶縁機器の部分放電診断方法が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2006−170815号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述した従来のガス絶縁機器の部分放電診断方法を回転電機に適用して絶縁診断を行うと、部分放電信号の高周波側では信号成分が減衰しやすく、また低周波側では周辺環境のノイズの信号強度が大きいため、回転電機において問題となる絶縁欠陥種別、すなわち線間放電欠陥、ボイド放電欠陥、沿面放電放電欠陥を判別できないという問題がある。
【課題を解決するための手段】
【0005】
(1) 請求項1の発明は、診断対象機器から発生する信号を計測する計測処理と、計測処理で計測された信号から最大振幅強度を示す周波数または周波数帯域を検出する検出処理と、検出処理により検出された最大振幅強度を示す周波数または周波数帯域に基づいて、診断対象機器の絶縁欠陥種別を判別する判別処理とを実行する絶縁診断方法である。
(2) 請求項2の発明は、請求項1に記載の絶縁診断方法において、検出処理では、計測処理で計測された信号の周波数スペクトルを検出し、周波数スペクトル上で最大振幅強度を示す周波数を検出する。
(3) 請求項3の発明は、請求項1に記載の絶縁診断方法において、検出処理では、計測処理で計測された信号を周波数帯域特性が異なる複数のバンドパスフィルターに通し、複数のバンドパスフィルターを通過した信号の強度を比較して最大振幅強度を示す周波数帯域を検出する。
(4) 請求項4の発明は、請求項1に記載の絶縁診断方法において、計測処理では、周波数帯域特性が異なる複数のセンサーにより信号を計測し、検出処理では、計測処理で複数のセンサーにより計測された信号の強度を比較して最大振幅強度を示す信号の周波数帯域を検出する。
(5) 請求項5の発明は、請求項1〜4のいずれか一項に記載の絶縁診断方法において、計測処理では、同一特性の複数のセンサーにより診断対象機器から発生する信号を計測し、同一特性の複数のセンサーにより計測した信号の強度比に基づいて絶縁欠陥位置を推定する推定処理を実行する。
(6) 請求項6の発明は、請求項5に記載の絶縁診断方法において、複数のセンサーは、診断対象機器との相対位置が固定された固定センサーと、診断対象機器との相対位置が移動可能な可動センサーとからなり、推定処理では、固定センサーと可動センサーにより計測した信号の強度比に基づいて絶縁欠陥位置を推定する。
(7) 請求項7の発明は、請求項5または請求項6に記載の絶縁診断方法において、計測処理では、同一特性の複数のセンサーにより計測した信号の強度を比較し、比較結果に基づいて絶縁欠陥による部分放電の信号とノイズとを分離する。
(8) 請求項8の発明は、請求項1〜4のいずれか一項に記載の絶縁診断方法において、計測処理では、計測した信号から予め計測したノイズとの差分をとって絶縁欠陥による部分放電の信号を抽出する。
(9) 請求項9の発明は、請求項1〜4のいずれか一項に記載の絶縁診断方法において、計測処理では、計測信号の種類が異なる第1センサーと第2センサーにより診断対象機器から発生する信号を計測し、第1センサーと第2センサーにより同時に検出された信号を絶縁欠陥による部分放電の信号として抽出する。
(10) 請求項10の発明は、請求項1〜4のいずれか一項に記載の絶縁診断方法において、計測処理では、計測した信号の内、予め設定したしきい値を超える信号を絶縁欠陥による部分放電の信号として抽出する。
(11) 請求項11の発明は、請求項1〜10のいずれか一項に記載の絶縁診断方法において、判別処理では、回転電機を診断対象機器として線間放電欠陥、ボイド放電欠陥および沿面放電欠陥を判別する。
(12) 請求項12の発明は、請求項11に記載の絶縁診断方法において、判別処理では、最大振幅強度を示す周波数が50〜70MHzの範囲にある場合は線間放電欠陥、2〜20MHzの範囲にある場合はボイド放電欠陥、30〜50MHzの範囲にある場合は沿面放電欠陥であると判別する。
(13) 請求項13の発明は、請求項11または請求項12に記載の絶縁診断方法において、計測処理では、回転電機に設置されたセンサーにより回転電機から発生する信号を計測する。
(14) 請求項14の発明は、請求項1〜13のいずれか一項に記載の絶縁診断方法により絶縁診断を行う回転電機である。
(15) 請求項15の発明は、絶縁診断機器から発生する信号を計測する計測器からの信号に基づいて、最大振幅強度を示す周波数または周波数帯域を検出する検出部と、検出部で検出された最大振幅強度を示す周波数または周波数帯域に基づいて、診断対象機器の絶縁欠陥種別を判別する判別部とを備える絶縁診断システムである。
(16) 請求項16の発明は、請求項15に記載の絶縁診断システムにおいて、検出部は、計測器で計測された信号の周波数スペクトルを検出し、周波数スペクトル上で最大振幅強度を示す周波数を検出する。
(17) 請求項17の発明は、請求項15に記載の絶縁診断システムにおいて、検出部は、計測器で計測された信号を周波数帯域特性が異なる複数のバンドパスフィルターに通し、最大振幅強度を示す周波数帯域を検出する。
(18) 請求項18の発明は、請求項15に記載の絶縁診断システムにおいて、計測器は、周波数帯域特性が異なる複数のセンサーにより信号を計測し、検出部は、複数のセンサーにより計測された信号の中から最大振幅強度を示す信号の周波数帯域を検出する。
【発明の効果】
【0006】
本発明によれば、診断対象機器の絶縁欠陥種別を正確に判別することができる。
【図面の簡単な説明】
【0007】
【図1】第1の実施の形態の絶縁診断システムの構成を示す図
【図2】回転電機で発生する部分放電を計測するセンサー部分の詳細を示す図
【図3】ノイズ分離器による部分放電信号とノイズの分離処理を示す図
【図4】部分放電発生正面位置からの距離に対する部分放電信号とノイズの信号強度を示す図。
【図5】部分放電信号の周波数変換処理を示す図
【図6】絶縁欠陥種別ごとの部分放電信号の周波数スペクトルを示す図
【図7】絶縁欠陥種別の判別プログラムを示すフローチャート
【図8】絶縁欠陥種別の第1の表示例を示す図
【図9】絶縁欠陥種別の第2の表示例を示す図
【図10】絶縁欠陥種別の第3の表示例を示す図
【図11】絶縁欠陥種別の第4の表示例を示す図
【図12】絶縁診断によって得られた絶縁欠陥種別と絶縁欠陥位置などの情報を、絶縁診断対象の回転電機の管理者に報告するシステムの構成例を示す図
【図13】第2の実施の形態の絶縁診断システムの構成を示す図
【図14】回転電機で発生する部分放電を計測するセンサー部分の詳細を示す図
【図15】絶縁欠陥種別の判別プログラムを示すフローチャート
【図16】第3の実施の形態の回転電機で発生する部分放電を計測するセンサー部分の詳細を示す図
【図17】ノイズ分離器による部分放電信号とノイズの分離処理を示す図
【図18】第4の実施の形態の回転電機で発生する部分放電を計測するセンサー部分の詳細を示す図
【図19】ノイズ分離器による部分放電信号とノイズの分離処理を示す図
【図20】第5の実施の形態の回転電機で発生する部分放電を計測するセンサー部分の詳細を示す図
【図21】ノイズ分離器による部分放電信号とノイズの分離処理を示す図
【図22】第6の実施の形態のノイズ分離器による部分放電信号とノイズの分離処理を示す図
【図23】第7の実施の形態の絶縁診断システムの構成を示す図
【図24】回転電機で発生する部分放電を計測するセンサー部分の詳細を示す図
【図25】判別器で実行される絶縁欠陥種別の判別プログラムを示すフローチャート
【図26】第8の実施の形態の複数の部分放電信号取得用センサーを回転電機に設置した例を示す図
【図27】第9の実施の形態の電源により駆動される回転電機で発生する部分放電による電磁波を、固定センサーと可動センサーにより取得する構成を示す図
【図28】固定センサーと可動センサーの距離に対する信号強度比を示す図
【発明を実施するための形態】
【0008】
本発明の絶縁診断方法および絶縁診断システムを回転電機に適用した発明の実施の形態を説明する。なお、本発明は回転電機に限定されず、ガス絶縁機器などの一般の電気機器に対しても適用することができる。
【0009】
ここで、風力発電機、タービン発電機、車両用電動発電機、一般産業用電動発電機などの回転電機において、絶縁劣化が懸念される主な部位としてエナメル電線間の線間放電による絶縁劣化、スロット内コイルとコア間のアース絶縁内のボイド放電による絶縁劣化、コイル端部とコア間の沿面放電による絶縁劣化がある。線間放電とは、エナメルなどの絶縁物で被覆された電線の線間に高電圧が印加されたときに発生する放電である。また層間ボイド放電とは、集成マイカ板などの空隙のある絶縁物に高電圧が印加された場合に、絶縁物内部の空隙で発生する放電である。さらに沿面放電とは、エナメル線などの線上に高電圧部と接地部とが存在し、高電圧部と接地部との沿面距離間で発生する放電である。以下の発明の実施の形態では上記3種類の絶縁欠陥種別を判別する例を説明するが、絶縁欠陥種別は上記3種類に限定されない。
【0010】
《発明の第1の実施の形態》
図1は第1の実施の形態の絶縁診断システムの構成を示す。この絶縁診断システムは、センサー0101、計測器0102、ノイズ分離器0103、スペクトル変換器0104、判別器0105、表示器0106などを備えている。センサー0101は、絶縁診断対象の回転電機で発生する絶縁欠陥部の部分放電による信号を取得するためのものである。この信号には回転電機周囲に設置されている電気機器、例えば回転電機の駆動源となるインバータ電源などで発生するノイズが混入している。なお、センサー0101の個数と設置場所については後述する。
【0011】
計測器0102はセンサー0101により取得した信号を計測し、ノイズ分離器0103は部分放電による信号成分とノイズとを分離する。スペクトル変換器0104は、部分放電信号を周波数変換して周波数スペクトルを出力する。判別器0105は部分放電信号の周波数スペクトルに基づいて絶縁欠陥種別を判別し、表示器0106は判別結果の絶縁欠陥種別を表示する。
【0012】
図2は、回転電機で発生する部分放電を計測するセンサー部分の詳細を示す。絶縁診断対象の回転電機0202としては交流電動発電機や直流電動発電機などがあり、交流電動発電機はインバーターなどの電源0201により駆動され、直流電動発電機はコンバーターなどの電源0201により駆動される。この回転電機0202で発生する部分放電の信号を回転電機0202の内部に設置した3個のセンサーa0203、b0204、c0205で取得するとともに、計測器0206で電源0201から回転電機0202に印加される電源電圧を計測する。
【0013】
3個のセンサーa0203、b0204、c0205は回転電機0202の内部の異なる位置に配置され、回転電機0202で発生する部分放電による電磁波を取得して図1に示す計測器0102へ出力する。なお、3個のセンサーa0203、b0204、c0205を回転電機0202の外部に設置して部分放電による電磁波を取得することも可能である。3個のセンサーa0203、b0204、c0205はすべて同一の周波数特性を有しており、回転電機0202で部分放電信号とノイズとの分離が困難とされていたDC〜100MHzの周波数帯域をカバーしている。図2において、回転電機0202からは部分放電信号(図中に実線の矢印で示す)の他にノイズ(図中に破線の矢印で示す)が発生し、3個のセンサーa0203、b0204、c0205はいずれも部分放電信号とノイズを取得する。
【0014】
図3は、ノイズ分離器0103(図1参照)による部分放電信号とノイズの分離処理を示す。図3(a)〜(c)はセンサーa0203、b0204、c0205でそれぞれ取得し計測器0102で計測した部分放電発生時の信号波形を示し、横軸が時間tを縦軸が信号強度Vをそれぞれ表す。また、図3(e)〜(g)はセンサーa0203、b0204、c0205でそれぞれ取得し計測器0102で計測した部分放電がないときの信号波形を示し、横軸が時間tを縦軸が信号強度Vをそれぞれ表す。3カ所に配置された3個のセンサーa0203、b0204、c0205の信号波形の最大振幅強度を比較することによって、部分放電信号とノイズを分離する。
【0015】
図3(d)は、部分放電発生時のセンサーa0203、b0204、c0205で取得した信号波形の最大振幅強度をプロットした図である。また図3(h)は、部分放電がないときのセンサーa0203、b0204、c0205で取得した信号波形の最大振幅強度をプロットした図である。図3(d)および(h)から明らかなように、3個のセンサーa0203、b0204、c0205で同一時間の間に取得した信号波形の内、最大振幅強度が最大の信号と最少の信号とを比較することによって、部分放電信号とノイズとを分離する。図3(d)に示す例では、センサーb0204の最大振幅強度が他のセンサーa0203とc0205よりも大きく、センサーb0204で取得した信号は部分放電の信号であり、センサーa0203とc0205で取得した信号はノイズであると判別する。一方、図3(h)に示す例では、いずれのセンサーa0203、b0204、c0205で取得した信号も最大振幅強度が同じレベルであり、ノイズであると判別する。
【0016】
図4は、部分放電発生正面位置からの距離rに対する部分放電信号(図中に実線で示す)とノイズ(図中に破線で示す)の信号強度を示す。図4に示すように、部分放電信号はその発生位置からの距離rが遠くなるにしたがって信号強度Vが減衰し、ノイズは部分放電発生位置からの距離rに無関係に信号強度Vは一定である。
【0017】
ノイズ分離器0103(図1参照)で分別された部分放電信号はスペクトル変換器0104(図1参照)に送られ、デジタルオシロスコープのFFTまたはスペクトルアナライザなどのスペクトル変換器0104によって周波数スペクトルに解析される。図5はスペクトル変換器0104による周波数変換処理を示し、(a)が周波数変換前の部分放電信号を、(b)が周波数変換後の周波数スペクトルを示す。判別器0105(図1参照)は、部分放電信号の周波数スペクトルに基づいて絶縁欠陥種別を判別する。
【0018】
ここで、本発明の発明者らによる研究を通して、回転電機で発生する部分放電の信号には次のような特性があることが判明した。従来、回転電機で発生する部分放電において、信号強度は十分に得られるがノイズ分離が困難とされていたDC〜100MHzの範囲の部分放電信号の周波数解析を行ったところ、線間放電欠陥に起因する部分放電信号の周波数スペクトルには、周波数50〜70MHzの範囲に最大振幅強度が現れ、またボイド放電欠陥に起因する部分放電信号の周波数スペクトルには、周波数2〜20MHzの範囲に最大振幅強度が現れ、さらに沿面放電欠陥に起因する部分放電信号の周波数スペクトルには、周波数30〜50MHzの範囲に最大振幅強度が現れる。
【0019】
図6は絶縁欠陥種別ごとの部分放電信号の周波数スペクトルを示し、横軸に周波数(Hz)を縦軸にレベル(最大振幅強度)(V)をそれぞれ表す。図6(a)は、50〜70MHzの範囲に最大振幅強度がある線間放電の周波数スペクトルを示す。また図6(b)は、2〜20MHzの範囲に最大振幅強度があるボイド放電の周波数スペクトルを示す。さらに図6(c)は、30〜50MHzの範囲に最大振幅強度がある沿面放電の周波数スペクトルを示す。
【0020】
このように、回転電機の主要な絶縁欠陥種別、すなわち線間放電欠陥、ボイド放電欠陥および沿面放電欠陥による部分放電信号の周波数スペクトルには、それぞれ特定の周波数帯域に最大振幅強度が現れる。したがって、絶縁欠陥部から発生する部分放電信号を計測して周波数スペクトルに変換し、最大振幅強度が現れる周波数帯域を調べれば絶縁欠陥種別を正確に判別することができる。
【0021】
以上の研究成果に基づいて、判別器0105では図7に示す絶縁欠陥種別の判別プログラムを実行し、回転電機0202で発生した部分放電の種別を判別する。図7のステップ0701において、周波数スペクトルに変換後の放電信号を取り込む。続くステップ0702では、周波数スペクトルにおける最大振幅強度の周波数が2〜20MHzの範囲内にあるか否かを判別し、2〜20MHzの範囲内にある場合はステップ0703へ進む。ステップ0703において、回転電機0202で発生した部分放電はボイド放電欠陥によるものであると認定する。
【0022】
一方、ステップ0702で最大振幅強度の周波数が2〜20MHzの範囲にないと判別された場合はステップ0704へ進み、最大振幅強度の周波数が30〜50MHzの範囲内にあるか否かを判別する。30〜50MHzの範囲内にある場合はステップ0705へ進み、回転電機0202で発生した部分放電は沿面放電欠陥によるものであると認定する。
【0023】
ステップ0704で最大振幅強度の周波数が30〜50MHzの範囲にないと判別された場合はステップ0706へ進み、最大振幅強度の周波数が50〜70MHzの範囲内にあるか否かを判別する。50〜70MHzの範囲内にある場合はステップ0707へ進み、回転電機0202で発生した部分放電は線間放電欠陥によるものであると認定する。
【0024】
ステップ0706で最大振幅強度の周波数が50〜70MHzの範囲にないと判別された場合には、回転電機0202で発生した部分放電がボイド放電によるものか、あるいは沿面放電によるものか、さらには線間放電によるものかを判別できないため、判別処理を終了する。
【0025】
絶縁欠陥種別の判別後、表示器0106(図1参照)で判別結果の絶縁欠陥種別を表示する。図8に絶縁欠陥種別の第1の表示例を示す。第1の表示例では、部分放電信号の周波数スペクトル0801と絶縁欠陥種別0802などをパソコンのモニター上に表示する。図9は絶縁欠陥種別の第2の表示例を示す。この第2の表示例では、ボイド放電欠陥表示用LEDランプ0901、沿面放電欠陥表示用LEDランプ0902および線間放電欠陥表示用LEDランプ0903を設け、部分放電信号の最大振幅強度の周波数が50〜70MHzの範囲内にあるとの判別結果に応じて線間放電欠陥表示用LEDランプ0903を点灯させている。
【0026】
図10は絶縁欠陥種別の第3の表示例を示す。第3の表示例は、センサー1001と計測器1002で計測した部分放電信号を、表示器1003の切り替えスイッチ1004により周波数帯域を切り替えて周波数帯域ごとの最大振幅強度を表示する。周波数帯域としては例えば2〜20MHz、30〜50MHzおよび50〜70MHzを切り替え可能とし、それらの周波数帯域の中で最大振幅強度が最大の周波数帯域により絶縁欠陥種別を判別する。
【0027】
図11は絶縁欠陥種別の第4の表示例を示す。この第4の表示例では、図8に示す部分放電信号の周波数スペクトルと絶縁欠陥種別の表示に加え、部分放電が発生した絶縁欠陥位置を表示する。図11において、表示画面の左上に回転電機0202(図2参照)の固定子1101と回転子1102の横断面図と、表示画面の左下に回転電機0202の固定子1103と回転子1104の縦断面図を表示し、回転電機0202の内部に設置した3個のセンサー1105の取り付け位置を表示するとともに、部分放電が発生した絶縁欠陥位置1106を表示する。
【0028】
なお、図4で説明したように、部分放電信号の信号強度は部分放電を発生した絶縁欠陥位置からの距離が遠くなるにしたがって減衰する性質があり、3個のセンサー1105の取り付け位置と検出した部分放電信号の信号強度に基づいて絶縁欠陥位置1106を推定することができる。
【0029】
図12は、絶縁診断によって得られた絶縁欠陥種別と絶縁欠陥位置などの情報を、絶縁診断対象の回転電機の管理者に報告するシステムの構成例を示す。図12において、絶縁診断による判別結果1201はデータ収集用PC1202により収集され、インターネットなどを介して診断用PC1203へ送られる。診断用PC1203では、最新の情報とこれまでの履歴に基づいて総合的に絶縁劣化の危険部位を診断し、管理者に報告する。なお、その際に収集したデータをサーバ1204へも送信し、データベース1205に蓄積する。
【0030】
以上説明したように、第1の実施の形態の絶縁診断方法によれば、絶縁欠陥種別に応じて部分放電信号の周波数スペクトル上で最大振幅強度を示す周波数が異なる特性を利用し、部分放電信号の周波数スペクトル上で最大振幅強度を示す周波数がどの周波数帯域に現れるかを解析し、解析結果に基づいて絶縁欠陥種別を判別するようにしたので、正確に絶縁欠陥種別を判別することができる。
【0031】
また、部分放電信号を取得するためのセンサーを複数個設置し、それぞれのセンサーで検出した部分放電信号の信号強度(最大振幅強度)を比較して部分放電信号とノイズとを分離するようにしたので、特に、従来は低周波側における周辺環境のノイズの信号強度が大きいために正確な絶縁診断が困難であった回転電機に対して、絶縁欠陥種別、すなわち線間放電欠陥、ボイド放電欠陥、沿面放電放電欠陥を正確に判別することができる。
【0032】
さらに、複数の部分放電信号取得用センサーを回転電機内部あるいは外部の異なる位置に配置して部分放電信号を取得し、各センサーの設置位置と検出信号の信号強度とに基づいて絶縁欠陥位置を推定するようにしたので、部分放電を発生した絶縁欠陥位置を特定することができる。これにより、特に、回転電機のメインテナンスにおいて絶縁欠陥部位を容易に認識でき、修繕に要する時間とコストを削減することができる。
【0033】
《発明の第2の実施の形態》
上述した第1の実施の形態では同じ周波数帯域を有する3個のセンサーで部分放電信号を取得する例を示したが、回転電機の主要な絶縁欠陥種別、すなわち線間放電欠陥、ボイド放電欠陥および沿面放電欠陥にそれぞれ対応する異なる周波数帯域の3個のセンサーで部分放電信号を取得する第2の実施の形態を説明する。
【0034】
図13は第2の実施の形態の絶縁診断システムの構成を示す。この絶縁診断システムは、センサー1301、計測器1302、判別器1303、表示部1304などを備えている。センサー1301は、絶縁診断対象の回転電機内部で発生する部分放電による信号を取得する。この信号には回転電機周囲に設置されている電気機器、例えば回転電機の駆動源となるインバータ電源などで発生するノイズが混入している。なお、センサー1301の個数と設置場所については後述する。
【0035】
計測器1302はセンサー1301により取得した信号を計測し、判別器1303は計測された周波数帯域ごとの信号に基づいて絶縁欠陥種別を判別する。表示器1304は判別結果の絶縁欠陥種別を表示する。なお、この第2の実施の形態では、回転電機の絶縁欠陥種別に応じたセンサー1301により部分放電信号の取得を行うため、図1に示す第1の実施の形態で用いたノイズ分離器0103とスペクトル変換器0104が不要になる。
【0036】
図14は、回転電機で発生する部分放電を計測するセンサー部分の詳細を示す。絶縁診断対象の回転電機1402としては交流電動発電機や直流電動発電機などがあり、交流電動発電機はインバーターなどの電源1401により駆動され、直流電動発電機はコンバーターなどの電源1401により駆動される。この回転電機1402で発生する部分放電の信号を回転電機1402の内部に設置した3個のセンサーd1403、e1404、f1405で取得し、計測器1302(図13参照)で計測する。
【0037】
3個のセンサーd1403、e1404、f1405は回転電機1402の内部の同じ位置に設置され、回転電機1402で発生する部分放電による電磁波を取得して計測器1302(図13参照)へ出力する。3個のセンサーd1403、e1404、f1405は、それぞれ回転電機1402の主要な絶縁欠陥種別、すなわち線間放電欠陥、ボイド放電欠陥および沿面放電欠陥にそれぞれ対応する異なる周波数帯域50〜70MHz、2〜20MHz、30〜50MHzの特性を有している。なお、回転電機1402からは部分放電信号(図中に実線の矢印で示す)の他にノイズ(図中に破線の矢印で示す)が発生し、3個のセンサーd1403、e1404、f1405はいずれも部分放電信号とノイズを取得する。
【0038】
判別器1303(図13参照)は図15に示す絶縁欠陥種別の判別プログラムを実行し、回転電機1402で発生した部分放電の絶縁欠陥種別を判別する。ステップ1501において、部分放電発生位置からの電磁波を同じ位置に設置された3種類のセンサーd1403、e1404、f1405により検出し、計測器1302を介して取り込む。
【0039】
例えば、回転電機1402で線間放電欠陥による部分放電が発生したとすると、図6(a)に示すように、線間放電欠陥の部分放電信号に対応するセンサーd1403では最大振幅強度の信号が計測され、他のセンサーe1404とf1405ではノイズが計測される。また、回転電機1402でボイド放電欠陥による部分放電が発生したとすると、図6(b)に示すように、線間放電欠陥の部分放電信号に対応するセンサーe1404では最大振幅強度の信号が計測され、他のセンサーd1403とf1405ではノイズが計測される。
【0040】
さらに、回転電機1402で沿面放電欠陥による部分放電が発生したとすると、図6(c)に示すように、線間放電欠陥の部分放電信号に対応するセンサーf1405では最大振幅強度の信号が計測され、他のセンサーd1403とe1404ではノイズが計測される。これらのセンサーd1403、e1404、f1405で計測された信号強度比に基づいて部分放電信号とノイズを分離することができ、ノイズよりも信号強度の大きな最大振幅強度が検出されたセンサーの周波数帯域により絶縁欠陥種別を判別できる。
【0041】
ステップ1502では、2〜20MHzの周波数帯域を有するセンサーe1404で最大振幅強度が検出されたか否かを判別し、センサーe1404で最大振幅強度が検出された場合はステップ1503へ進み、絶縁欠陥種別はボイド放電欠陥であると判別する。一方、センサーe1404で最大振幅強度が検出されなかった場合はステップ1504へ進み、30〜50MHzの周波数帯域を有するセンサーf1405で最大振幅強度が検出されたか否かを判別する。センサーf1405で最大振幅強度が検出された場合はステップ1505へ進み、絶縁欠陥種別は沿面放電欠陥であると判別する。
【0042】
センサーf1405で最大振幅強度が検出されたかった場合はステップ1506へ進み、50〜70MHzの周波数帯域を有するセンサーd1403で最大振幅強度が検出されたか否かを判別する。センサーd1403で最大振幅強度が検出された場合はステップ1507へ進み、絶縁欠陥種別は線間放電欠陥であると判別する。センサーd1403で最大振幅強度が検出されたかった場合には、回転電機1402で発生した部分放電がボイド放電によるものか、あるいは沿面放電によるものか、さらには線間放電によるものかを判別できないため、判別処理を終了する。
【0043】
次に、判別器1303による判別結果の絶縁欠陥種別を表示器1304(図13参照)に表示する。表示器1304による絶縁診断結果の表示方法は、第1の実施の形態の上述した表示方法と同様な方法で行う。
【0044】
この第2の実施の形態の絶縁診断方法によれば、第1の実施の形態の絶縁診断方法のノイズ分離器0103とスペクトル変換器0104が不要になり、上述した第1の実施の形態の効果に加え、ノイズ分離と周波数スペクトル変換を行わないため、絶縁欠陥種別の判別をリアルタイムに行うことができ、しかも絶縁診断システムを安価にコンパクトに構成することができる。
【0045】
《発明の第3の実施の形態》
上述した第1の実施の形態では同じ周波数帯域を有する3個のセンサーで部分放電信号を取得する例を示したが、同じ周波数帯域を有する2個のセンサーで部分放電信号を取得する第3の実施の形態を説明する。この第3の実施の形態の絶縁診断システムでは、図1に示す第1の実施の形態の絶縁診断システムに対してセンサーが2個になる以外は同様であり、システム構成の図示と説明を省略する。
【0046】
図16は、回転電機で発生する部分放電を計測するセンサー部分の詳細を示す。絶縁診断対象の回転電機1602としては交流電動発電機や直流電動発電機などがあり、交流電動発電機はインバーターなどの電源1601により駆動され、直流電動発電機はコンバーターなどの電源1601により駆動される。この回転電機1602で発生する部分放電の信号を回転電機1602の内部に設置した2個のセンサーg1603とh1604で取得する。
【0047】
2個のセンサーg1603、h1604は回転電機1602の内部の異なる位置に配置され、回転電機1602で発生する部分放電による電磁波を取得して計測器(図1に示す計測器0102に相当)へ出力する。なお、2個のセンサーg1603、h1604を回転電機1602の外部に設置して部分放電信号による電磁波を取得することも可能である。2個のセンサーg1603、h1604はともに同一の周波数特性を有しており、回転電機1602で部分放電信号とノイズとの分離が困難とされていたDC〜100MHzの周波数帯域をカバーしている。図16において、回転電機1602からは部分放電信号(図中に実線の矢印で示す)の他にノイズ(図中に破線の矢印で示す)が発生し、2個のセンサーg1603、h1604はいずれも部分放電信号とノイズを取得する。
【0048】
図17は、ノイズ分離器(不図示、図1のノイズ分離器0103と同等)による部分放電信号とノイズの分離処理を示す。図17(a)、(b)はセンサーh1604、g1603でそれぞれ取得し計測器(不図示、図1の計測器0102に相当)で計測した部分放電発生時の信号波形を示し、横軸が時間tを縦軸が信号強度Vをそれぞれ表す。また、図17(d)、(e)はセンサーh1604、g1603でそれぞれ取得し計測器で計測した部分放電がないときの信号波形を示し、横軸が時間tを縦軸が信号強度Vをそれぞれ表す。
【0049】
2個のセンサーh1604とg1603で取得した信号波形、図17(a)と(b)の差分をとると、図17(c)に示す信号波形が得られる。また、2個のセンサーh1604とg1603で取得した信号波形、図17(d)と(e)の差分をとると、図17(f)に示す信号波形が得られる。なお、センサー信号の差分をとる際に信号レベルが小さい場合には増幅器により増幅する。
【0050】
2個のセンサーh1604とg1603のいずれか一方のセンサーで部分放電信号が取得され、他方のセンサーでノイズが取得された場合には、2個のセンサーh1604とg1603の信号波形の差分は図17(c)に示す部分放電信号の信号波形を表す。一方、2個のセンサーh1604とg1603のどちらでも部分放電信号が取得されず、ともにノイズが取得された場合には、2個のセンサーh1604とg1603の信号波形の差分は図17(f)に示すようにほぼ0Vの波形になる。
【0051】
ノイズ分離器によりノイズと分離された部分放電信号はスペクトル変換器(不図示、図1に示すスペクトル変換器0104に相当)へ送られ、周波数解析される。さらに、判別器(不図示、図1に示す判別器0105に相当)によって部分放電信号の周波数スペクトルに基づく絶縁欠陥種別の判別が行われる。この絶縁欠陥種別の判別方法は図7に示す方法と同様である。そして、表示器(不図示、図1に示す表示器0106に相当)により判別結果の絶縁欠陥種別が表示される。この絶縁診断結果の表示方法は第1の実施の形態で説明した表示方法と同様である。
【0052】
以上説明したように、第3の実施の形態の絶縁診断方法によれば、上述した第1の実施の形態の上記効果に加え、部分放電信号取得用センサーの個数を低減できるので、絶縁診断システムを安価にコンパクトに構成することができる。
【0053】
《発明の第4の実施の形態》
電磁波センサーと電流センサーのように、計測信号の種類が異なる複数のセンサーを用いて部分放電信号を計測し、絶縁欠陥種別を判別する第4の実施の形態を説明する。第4の実施の形態において、センサー以外のシステム構成は図1に示すシステム構成と同様であり、図示と説明を省略する。
【0054】
図18は、回転電機で発生する部分放電を計測するセンサー部分の詳細を示す。この第4の実施の形態では、絶縁診断対象の回転電機1908として交流電動発電機を例に挙げて説明する。回転電機1908はインバーターなどの電源1901により駆動される。電源1901の三相交流電圧は回転電機1908のU相端子1903、V相端子1904、W相端子1905に印加される。電流センサーj1902はCTやホール素子により構成され、回転電機1908に流れる電流を検出する。一方、電磁波センサーi1906は回転電機1908の内部に設置され、回転電機1908の絶縁欠陥部で発生する部分放電の信号を取得する。
【0055】
回転電機1908と電源1901からは部分放電信号の他にノイズが発生し、2個のセンサーj1902、i1906はいずれも部分放電信号とノイズを取得する。計測器1907は、電流センサーj1902と電磁波センサーi1906の取得信号をそれぞれ別個の入力端子ch1、ch2で入力し、部分放電信号を計測する。
【0056】
図19は、ノイズ分離器(不図示、図1のノイズ分離器0103に相当)による部分放電信号とノイズの分離処理を示す。図19(a)は電磁波センサーi1906で計測した信号波形を示し、横軸が時間tを縦軸が信号強度Vをそれぞれ表す。また、図19(b)は電流センサーj1902で計測した信号波形を示し、横軸が時間tを縦軸が信号強度Vをそれぞれ表す。ノイズ分離器は、電流センサーj1902と電磁波センサーi1906で同時に信号が検出された場合には、その信号を部分放電信号と見なす。一方、電流センサーj1902と電磁波センサーi1906のいずれか一方でのみ信号が検出された場合には、その信号をノイズと見なす。
【0057】
ノイズ分離器によりノイズと分離された部分放電信号はスペクトル変換器(不図示、図1に示すスペクトル変換器0104に相当)へ送られ、周波数解析される。さらに、判別器(不図示、図1に示す判別器0105に相当)によって部分放電信号の周波数スペクトルに基づく絶縁欠陥種別の判別が行われる。この絶縁欠陥種別の判別方法は図7に示す方法と同様である。そして、表示器(不図示、図1に示す表示器0106に相当)により判別結果の絶縁欠陥種別が表示される。この絶縁診断結果の表示方法は第1の実施の形態で説明した表示方法と同様である。
【0058】
以上説明したように、第4の実施の形態の絶縁診断方法によれば、計測信号の種類が異なる複数のセンサーにより部分放電信号を取得するようにしたので、上述した第1の実施の形態の上記効果に加え、ノイズ分離処理を簡略にすることができる。
【0059】
《発明の第5の実施の形態》
1個のセンサーで部分放電信号を取得するようにした第5の実施の形態を説明する。この第5の実施の形態では、予めセンサーによりノイズ信号を取得してノイズ信号の最大振幅強度に相当するしきい値を設定し、センサーにより取得した信号の内、しきい値を超える信号を部分放電信号として周波数解析し、絶縁欠陥種別を判別する。この第5の実施の形態において、センサー以外のシステム構成は図1に示すシステム構成と同様であり、図示と説明を省略する。
【0060】
図20は、回転電機で発生する部分放電を計測するセンサー部分の詳細を示す。絶縁診断対象の回転電機2102としては交流電動発電機や直流電動発電機などがあり、交流電動発電機はインバーターなどの電源2101により駆動され、直流電動発電機はコンバーターなどの電源2101により駆動される。この回転電機2102で発生する部分放電とノイズの電磁波を回転電機2102の内部に設置した単一のセンサーk2103で取得する。
【0061】
センサーk2103は回転電機2102の内部に設置され、回転電機2102で発生する部分放電とノイズの電磁波を取得して計測器(不図示、図1に示す計測器0102に相当)へ出力する。なお、センサーk2103を回転電機2102の外部に設置して部分放電とノイズの電磁波を取得することも可能である。センサーk2103は、回転電機2102において部分放電信号とノイズとの分離が困難とされていたDC〜100MHzの周波数帯域をカバーしている。図20において、回転電機2102からは部分放電信号(図中に実線の矢印で示す)の他にノイズ(図中に破線の矢印で示す)が発生し、センサーk2103はいずれも部分放電信号とノイズを取得する。
【0062】
図21は、ノイズ分離器(不図示、図1に示すノイズ分離器0103に相当)による部分放電信号とノイズの分離処理を示す。回転電機2102が静止した状態でノイズを計測し、ノイズ信号の最大振幅強度をしきい値αとして設定する。電源2101により回転電機2102を駆動中にセンサーk2103で取得した信号の内、最大振幅強度がしきい値を超える信号は回転電機2102の絶縁欠陥部で部分放電が発生したことによる信号であると判別し、しきい値以下の信号はノイズであると判別する。
【0063】
ノイズ分離器によりノイズと分離された部分放電信号はスペクトル変換器(不図示、図1に示すスペクトル変換器0104に相当)へ送られ、周波数解析される。さらに、判別器(不図示、図1に示す判別器0105に相当)によって部分放電信号の周波数スペクトルに基づく絶縁欠陥種別の判別が行われる。この絶縁欠陥種別の判別方法は図7に示す方法と同様である。そして、表示器(不図示、図1に示す表示器0106に相当)により判別結果の絶縁欠陥種別が表示される。この絶縁診断結果の表示方法は第1の実施の形態で説明した表示方法と同様である。
【0064】
以上説明したように、第5の実施の形態の絶縁診断方法によれば、単一のセンサーにより部分放電信号を取得するようにしたので、上述した第1の実施の形態の上記効果に加え、システムを簡略化して安価に構成することができる。
【0065】
《発明の第6の実施の形態》
上述した第5の実施の形態では、単一のセンサーで取得したノイズ信号に基づいてしきい値を設定し、部分放電信号とノイズとを分離する例を示したが、ノイズが周期的に発生する場合には、予めノイズを計測しておき、単一のセンサーで取得した信号から周期的なノイズを除去することによって、部分放電信号とノイズとを分離することが可能である。
【0066】
このようなノイズ分離方法を採用した第6の実施の形態を説明する。なお、この第6の実施の形態において、センサー以外のシステム構成は図1に示すシステム構成と同様であり、図示と説明を省略する。また、回転電機で発生する部分放電を計測するセンサー部分の詳細な構成については、図20に示す構成と同様であり、図示と説明を省略する。
【0067】
図22は、ノイズ分離器(不図示、図1に示すノイズ分離器0103に相当)による部分放電信号とノイズの分離処理を示す。図22(a)は電源(図20に示す電源2101に相当)の電圧波形を示し、図22(b)はノイズ波形を示す。また、図22(c)は部分放電信号とノイズの信号波形である。
【0068】
センサーと計測器により予めノイズ信号を計測して記録し、その後にノイズ計測時と同じ時間スケールでセンサーと計測器により信号を計測する。例えば図22(c)に示すような信号を取得したとすると、取得した信号波形から図22(a)に示す電源電圧の位相を参照してノイズの位相を合わせ、図22(c)に示す取得した信号波形から図22(b)に示すノイズ波形を差し引く。取得した信号の中に部分放電信号が含まれていれば、図22(d)に示すように部分放電信号のみが残り、部分放電信号とノイズを分離することができる。
【0069】
抽出した部分放電信号に基づく絶縁欠陥種別の判別と表示の方法については、第5の実施の形態の上述した方法と同様であり、説明を省略する。第6の実施の形態によれば、上述した第5の実施の形態と同様な効果を得ることができる。
【0070】
《発明の第7の実施の形態》
センサーで取得した信号にフィルター処理を施すことによって絶縁欠陥種別の判別を行う第7の実施の形態を説明する。この第7の実施の形態では、単一のセンサーで取得した信号を、絶縁欠陥種別に応じた異なる周波数帯域の複数のフィルターに通すことによって、信号の周波数変換処理を行わずに絶縁欠陥種別の判別を行う。
【0071】
図23は第7の実施の形態の絶縁診断システムの構成を示す。この絶縁診断システムは、センサー2301、フィルター2302、計測器2303、判別器2304、表示器2305などを備えている。センサー2301は、絶縁診断対象の回転電機内部で発生する部分放電による信号を取得するためのものである。この信号には回転電機周囲に設置されている電気機器、例えば回転電機の駆動源となるインバータ電源などで発生するノイズが混入している。
【0072】
フィルター2302は、絶縁欠陥種別に応じた異なる周波数帯域を有する3種類のバンドパスフィルターから構成される。上述したように、線間放電欠陥に起因する部分放電信号の周波数スペクトルには、周波数50〜70MHzの範囲に最大振幅強度が現れ、ボイド放電欠陥に起因する部分放電信号の周波数スペクトルには、周波数2〜20MHzの範囲に最大振幅強度が現れ、沿面放電欠陥に起因する部分放電信号の周波数スペクトルには、周波数30〜50MHzの範囲に最大振幅強度が現れる。
【0073】
したがって、これら3種類の絶縁欠陥種別に対応する周波数帯域、すなわち線間放電欠陥に対しては50〜70MHzの周波数帯域、ボイド放電欠陥に対しては2〜20MHzの周波数帯域、沿面放電欠陥に対しては30〜50MHzの周波数帯域の3種類のバンドパスフィルターを用いる。
【0074】
計測器2303は、フィルター2302の3種類の周波数帯域を通過した信号を計測する。判別器2304は、3種類の周波数帯域を通過した信号の最大振幅強度に基づいて絶縁欠陥種別を判別する。表示器2305は判別結果の絶縁欠陥種別を表示する。
【0075】
図24は、回転電機で発生する部分放電を計測するセンサー部分の詳細を示す。絶縁診断対象の回転電機2401は、上述した各実施の形態と同様に交流電動発電機や直流電動発電機であり、図示しない電源により駆動される。この回転電機2401で発生する部分放電とノイズの電磁波を回転電機2401の内部に設置した単一のセンサーL2402で取得する。
【0076】
センサーL2402は回転電機2401の内部に設置され、回転電機2401で発生する部分放電とノイズの電磁波を取得してバンドパスフィルター2403、2404、2405へ出力する。なお、センサーL2402を回転電機2401の外部に設置して部分放電とノイズの電磁波を取得するようにしてもよい。センサーL2402は、回転電機2401において部分放電信号とノイズとの分離が困難とされていたDC〜100MHzの周波数帯域をカバーしている。図24において、回転電機2401からは部分放電信号(図中に実線の矢印で示す)の他にノイズ(図中に破線の矢印で示す)が発生し、センサーL2402は部分放電信号とノイズを取得する。
【0077】
バンドパスフィルター2403、2404、2405は、それぞれ2〜20MHz、30〜50MHz、50〜70MHzの周波数帯域を有している。図24に示すように、センサーL2402で取得した電磁波信号を3種類のバンドパスフィルター2403〜2405を通過させると、2〜20MHz、30〜50MHz、50〜70MHzの3種類の周波数帯域の信号が得られ、これらの信号を計測器2406の各チャンネルへ入力して計測する。
【0078】
判別器2304(図23参照)は、計測器2406の各チャンネルから得られた信号の最大振幅強度を比較し、通常のノイズの振幅強度よりも大きな最大振幅強度の信号が含まれている周波数帯域を判別する。そして、最大振幅強度の信号を部分放電信号と認定し、その信号が含まれている周波数帯域により絶縁欠陥種別を判別する。
【0079】
図24に示す例では、30〜50MHzの周波数帯域にはノイズ程度の振幅強度の信号が含まれるが、2〜20MHzの周波数帯域にはノイズの振幅強度より大きな最大振幅強度の信号が含まれており、2〜20MHzの周波数帯域の信号を部分放電信号と認定し、2〜20MHzの周波数帯域に最大振幅強度の信号が現れるボイド放電欠陥であると判別する。
【0080】
図25は、判別器2304で実行される絶縁欠陥種別の判別プログラムを示すフローチャートである。ステップ2501において、3種類のバンドパスフィルター2403〜2405を通過した3種類の信号を取り込む。続くステップ2502で、3種類の周波数帯域の信号の振幅強度を比較し、最大振幅強度の信号を判別する。
【0081】
ステップ2503では、2〜20MHzの周波数帯域の信号に最大振幅強度があるか否かを判別し、最大振幅強度の信号が2〜20MHzの周波数帯域にあればステップ2504へ進み、ボイド放電欠陥であると判別する。一方、最大振幅強度の信号が2〜20MHzの周波数帯域にない場合はステップ2505へ進み、30〜50MHzの周波数帯域の信号に最大振幅強度があるか否かを判別する。
【0082】
最大振幅強度の信号が30〜50MHzの周波数帯域にある場合はステップ2506へ進み、沿面放電欠陥であると判別する。また、30〜50MHzの周波数帯域に最大振幅強度がない場合にはステップ2507へ進み、50〜70MHzの周波数帯域の信号に最大振幅強度があるか否かを判別する。
【0083】
50〜70MHzの周波数帯域の信号に最大振幅強度がある場合には、ステップ2508で線間放電欠陥であると判別する。なお、最大振幅強度の信号がどの周波数帯域にもなかった場合はステップ2509へ進み、絶縁欠陥種別の判別が不可能であるとして判別処理を終了する。
【0084】
判別器2304による絶縁欠陥種別の判別後、表示器2305(図23参照)は判別結果の絶縁欠陥種別を表示する。この絶縁診断結果の表示方法は第1の実施の形態で説明した表示方法と同様である。
【0085】
以上説明したように、第7の実施の形態の絶縁診断システムによれば、上述した第1の実施の形態の上記効果に加え、ノイズ分離器とスペクトル変換器が不要になるため、絶縁診断システムを安価にコンパクトに構成することができる。
【0086】
《発明の第8の実施の形態》
部分放電が発生した絶縁欠陥位置を推定する第8の実施の形態を説明する。上述したように、部分放電の電磁波はその発生位置からの距離が遠くなるにしたがって信号強度が減衰する性質を有している。そこで、回転電機の内部に複数の部分放電信号取得用センサーを一定間隔で設置し、各センサーで取得した信号強度の比に基づいて部分放電の発生位置、すなわち絶縁欠陥位置を推定する。
【0087】
図26は複数の部分放電信号取得用センサーを回転電機に設置した例を示す。図26(a)は固定子2612と回転子1613から成る回転電機の横断面(出力軸と垂直な面)を示し、固定子2612の内部に横断面に沿って3個の部分放電信号取得用センサー2601、2602、2603を等間隔に設置した例を示す。また、図26(b)は固定子2614と回転子2615から成る回転電機の縦断面(出力軸と平行な面)を示し、固定子2614側に縦断面に沿って3個の部分放電取得用センサー2604、2605、2606を等間隔に設置した例を示す。
【0088】
また、図26(c)は固定子2616と回転子2617から成る回転電機の縦断面を示し、回転子2617の出力軸両端に2個の部分放電信号取得用センサー2607、2608を設置した例を示す。さらに、図26(d)は固定子2618と回転子2619から成る回転電機の横断面を示し、固定子2619の内部に横断面に沿って3個の部分放電信号取得用センサー2609、2610、2611を設置した例を示す。
【0089】
回転電機の内部に複数の部分放電信号取得用センサーを設置し、絶縁欠陥種別を判別するとともに、絶縁欠陥位置を推定することによって、部分放電による電磁波を高感度に取得でき、ノイズ分離が容易かつ正確にでき、信頼性の高い回転電機を提供することができる。さらに、回転電機の工場出荷検査時に上記絶縁診断を実施することによって不良品を低減でき、信頼性の高い回転電機を提供することができる。
【0090】
《発明の第9の実施の形態》
固定センサーと可動センサーを用いて絶縁欠陥位置を推定する第9の実施の形態を説明する。図27は、電源2701により駆動される回転電機2702で発生する部分放電による電磁波を、同一の特性を有する固定センサーM2703と可動センサーN2704により取得する構成を示す。なお、センサーM2703、N2704以外の構成については図1および図2に示す第1の実施の形態と同様であり、それらの構成についての説明を省略する。
【0091】
回転電機2702で発生する部分放電とノイズの電磁波を、回転電機2702の外部に設置した部分放電信号取得用の固定センサーM2703と可動センサー2704で取得する。固定センサーM2703は回転電機2702の周辺に固定される。つまり、固定センサーM2703と回転電機2702との相対位置は固定される。一方、可動センサーN2704は駆動装置(不図示)により回転電機2702の周辺を移動可能に設置される。つまり、可動センサーN2704と回転電機2702との相対位置は可変である。
【0092】
ここで、固定センサーM2703と可動センサーN2704との間の距離をrとして両センサーで取得した信号の強度比(固定センサーM2703の信号強度に対する可動センサーN2704の信号強度の比)を求めると、図28に示すようなデータが得られる。強度比が最大になる距離rに基づいて部分放電の発生位置、すなわち絶縁欠陥位置を推定することができる。
【0093】
固定センサーM2703と可動センサーN2704による部分放電信号の取得を、回転電機2702を通るX軸とY軸に沿って実行すれば、X−Y平面上のX軸方向で検出された絶縁欠陥ラインとY軸方向で検出された絶縁欠陥ラインとの交点に絶縁欠陥がある。
【0094】
この第9の実施の形態の絶縁欠陥位置の推定方法によれば、絶縁劣化した回転電機等の機器のメインテナンスにおいて、絶縁劣化した場所のみを修理することができ、修理にかかる時間と費用を削減することができる。
【0095】
なお、上述した実施の形態とそれらの変形例において、実施の形態どうし、または実施の形態と変形例とのあらゆる組み合わせが可能である。
【符号の説明】
【0096】
0101、0203〜0205、1001、1301、1403〜1405、1603、1604、1902、1906、2103、2301、2402、2703、2704;センサー、2303、2403〜2405;フィルター、0102、0206、1002、1302、1907、2303、2406;計測器、0103;ノイズ分離器、0104;スペクトル変換器、0105、1303、2304;判別器、0202、1402、1602、1908、2102、2401、2702;回転電機

【特許請求の範囲】
【請求項1】
診断対象機器から発生する信号を計測する計測処理と、
前記計測処理で計測された信号から最大振幅強度を示す周波数または周波数帯域を検出する検出処理と、
前記検出処理により検出された最大振幅強度を示す周波数または周波数帯域に基づいて、前記診断対象機器の絶縁欠陥種別を判別する判別処理とを実行することを特徴とする絶縁診断方法。
【請求項2】
請求項1に記載の絶縁診断方法において、
前記検出処理では、前記計測処理で計測された信号の周波数スペクトルを検出し、前記周波数スペクトル上で最大振幅強度を示す周波数を検出することを特徴とする絶縁診断方法。
【請求項3】
請求項1に記載の絶縁診断方法において、
前記検出処理では、前記計測処理で計測された信号を周波数帯域特性が異なる複数のバンドパスフィルターに通し、前記複数のバンドパスフィルターを通過した信号の強度を比較して最大振幅強度を示す周波数帯域を検出することを特徴とする絶縁診断方法。
【請求項4】
請求項1に記載の絶縁診断方法において、
前記計測処理では、周波数帯域特性が異なる複数のセンサーにより信号を計測し、
前記検出処理では、前記計測処理で前記複数のセンサーにより計測された信号の強度を比較して最大振幅強度を示す信号の周波数帯域を検出することを特徴とする絶縁診断方法。
【請求項5】
請求項1〜4のいずれか一項に記載の絶縁診断方法において、
前記計測処理では、同一特性の複数のセンサーにより前記診断対象機器から発生する信号を計測し、
前記同一特性の複数のセンサーにより計測した信号の強度比に基づいて絶縁欠陥位置を推定する推定処理を実行することを特徴とする絶縁診断方法。
【請求項6】
請求項5に記載の絶縁診断方法において、
前記複数のセンサーは、前記診断対象機器との相対位置が固定された固定センサーと、前記診断対象機器との相対位置が移動可能な可動センサーとからなり、
前記推定処理では、前記固定センサーと前記可動センサーにより計測した信号の強度比に基づいて絶縁欠陥位置を推定することを特徴とする絶縁診断方法。
【請求項7】
請求項5または請求項6に記載の絶縁診断方法において、
前記計測処理では、前記同一特性の複数のセンサーにより計測した信号の強度を比較し、比較結果に基づいて絶縁欠陥による部分放電の信号とノイズとを分離することを特徴とする絶縁診断方法。
【請求項8】
請求項1〜4のいずれか一項に記載の絶縁診断方法において、
前記計測処理では、計測した信号から予め計測したノイズとの差分をとって絶縁欠陥による部分放電の信号を抽出することを特徴とする絶縁診断方法。
【請求項9】
請求項1〜4のいずれか一項に記載の絶縁診断方法において、
前記計測処理では、計測信号の種類が異なる第1センサーと第2センサーにより前記診断対象機器から発生する信号を計測し、前記第1センサーと前記第2センサーにより同時に検出された信号を絶縁欠陥による部分放電の信号として抽出することを特徴とする絶縁診断方法。
【請求項10】
請求項1〜4のいずれか一項に記載の絶縁診断方法において、
前記計測処理では、計測した信号の内、予め設定したしきい値を超える信号を絶縁欠陥による部分放電の信号として抽出することを特徴とする絶縁診断方法。
【請求項11】
請求項1〜10のいずれか一項に記載の絶縁診断方法において、
前記判別処理では、回転電機を前記診断対象機器として線間放電欠陥、ボイド放電欠陥および沿面放電欠陥を判別することを特徴とする絶縁診断方法。
【請求項12】
請求項11に記載の絶縁診断方法において、
前記判別処理では、最大振幅強度を示す周波数が50〜70MHzの範囲にある場合は線間放電欠陥、2〜20MHzの範囲にある場合はボイド放電欠陥、30〜50MHzの範囲にある場合は沿面放電欠陥であると判別することを特徴とする絶縁診断方法。
【請求項13】
請求項11または請求項12に記載の絶縁診断方法において、
前記計測処理では、前記回転電機に設置されたセンサーにより前記回転電機から発生する信号を計測することを特徴とする絶縁診断方法。
【請求項14】
請求項1〜13のいずれか一項に記載の絶縁診断方法により絶縁診断を行うことを特徴とする回転電機。
【請求項15】
絶縁診断機器から発生する信号を計測する計測器からの信号に基づいて、最大振幅強度を示す周波数または周波数帯域を検出する検出部と、
前記検出部で検出された最大振幅強度を示す周波数または周波数帯域に基づいて、前記診断対象機器の絶縁欠陥種別を判別する判別部とを備えることを特徴とする絶縁診断システム。
【請求項16】
請求項15に記載の絶縁診断システムにおいて、
前記検出部は、前記計測器で計測された信号の周波数スペクトルを検出し、前記周波数スペクトル上で最大振幅強度を示す周波数を検出することを特徴とする絶縁診断システム。
【請求項17】
請求項15に記載の絶縁診断システムにおいて、
前記検出部は、前記計測器で計測された信号を周波数帯域特性が異なる複数のバンドパスフィルターに通し、最大振幅強度を示す周波数帯域を検出することを特徴とする絶縁診断システム。
【請求項18】
請求項15に記載の絶縁診断システムにおいて、
前記計測器は、周波数帯域特性が異なる複数のセンサーにより信号を計測し、
前記検出部は、前記複数のセンサーにより計測された信号の中から最大振幅強度を示す信号の周波数帯域を検出することを特徴とする絶縁診断システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate